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polynomial homotopy continuation

f (x) = 0 is a polynomial system we want to solve,

g(x) = 0 is a start system (g is similar to f ) with known solutions.

A homotopy h(x, t) = (1 − t)g(x) + t f (x) = 0, t ∈ [0,1],
to solve f (x) = 0 defines solution paths x(t): h(x(t), t) ≡ 0.

Numerical continuation methods track the paths x(t), from t = 0 to 1.

Predictor-corrector method operate in two stages:

1 The predictor sets the new value for t and predicts x(t).

2 The corrector applies Newton’s method to h(x, t) = 0.
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problem statement

Current predictor methods apply higher-order extrapolation,

which may cause path crossing: the predicted point lies so close

to another path that it gets corrected to that other path;

which may not be sufficient to reach convergence in the corrector.

Our solution: apply Newton’s method on truncated power series.
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truncated power series

A series s(t) in t with coefficients sk ∈ C:

s(t) = s0 + s1t + s2t2 + · · ·+ sntn + O(tn+1),

is truncated to a polynomial of degree n, after dropping O(tn+1).

The inverse x(t) of s(t) is defined via x(t)× s(t) = 1 + O(tn+1).

The coefficients xk of the inverse x(t) are computed as

x0 = 1/s0

x1 = −(s1x0)/s0

x2 = −(s1x1 + s2x0)/s0

...

xn = −(s1xn−1 + s2xn−2 + · · ·+ snx0)/s0
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Newton’s method on truncated power series

Given c = c0 + c1t + c2t2 + · · ·+ cntn, compute
√

c.

Apply Newton’s method on the equation x2 − c = 0,

doubling the degrees of the truncated power series in each step:

x :=
√

c0 + x1t

c := c0 + c1t

k := 1

while (k ≤ n) do

∆x := (x2 − c)/(2x)
x := x −∆x

x := x + xk+1tk+1 + · · ·+ x2k t2k

c := x + ck+1tk+1 + · · · + c2k t2k

k := 2 × k

Quadratic convergence: the order of ∆x doubles in each step.
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the Viviani curve
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computing a power series solution

h(x(t), y(t), z(t), t) =





(1 − t)y + t(y − 1) = 0

x2 + y2 + z2 − 4 = 0

(x − 1)2 + y2 − 1 = 0

After 3 steps with Newton’s method:

y = t

x = 0.5t2

z = 2 − 0.25t2

After 4 steps with Newton’s method:

y = t

x = 0.5t2 + 0.125t4 + 0.0625t6 + 0.03125t8

z = 2 − 0.25t2 − 0.078125t4 − 0.041015625t6 − 0.020751953125t8
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Gauss-Newton on truncated power series

Orthogonality is defined via an inner product on vectors:

〈u,v〉 = ū1v1 + ū2v2 + · · ·+ ūnvn, ||u||22 = 〈u,u〉.

To make a vector x parallel to e1 = (1,0, . . . ,0)T :

v = x + ||x||2e1, Hx = x − 2〈v,x〉
〈v,v〉 v,

where H is a Householder transformation.

To transform a matrix A into an upper triangular matrix R,

apply a sequence of Householder transformations:

HnHn−1 · · ·H1A = R, Q = H1 · · ·Hn−1Hn, A = QR.

This is well defined for matrices of truncated power series.
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biunimodular vectors and cyclic n-roots





x0 + x1 + · · ·+ xn−1 = 0

i = 2,3,4, . . . ,n − 1 :
n−1∑

j=0

j+i−1∏

k=j

xk mod n = 0

x0x1x2 · · · xn−1 − 1 = 0.

The system arises in the study of biunimodular vectors.

A vector u ∈ Cn of a unitary matrix A is biunimodular if for

k = 1,2, . . . ,n: |uk | = 1 and |vk | = 1 for v = Au.

J. Backelin: Square multiples n give infinitely many cyclic n-roots.

Technical Report, 1989.

H. Führ and Z. Rzeszotnik. On biunimodular vectors for unitary

matrices. Linear Algebra and its Applications 484:86–129, 2015.
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series developments for cyclic 8-roots

Cyclic 8-roots has solution curves not reported by Backelin.

With Danko Adrovic (ISSAC 2012, CASC 2013): a tropism is

v = (1,−1,0,1,0,0,−1,0), the leading exponents of the series.

The corresponding unimodular coordinate transformation x = zM is

M =




1 −1 0 1 0 0 −1 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1




x0 = z0

x1 = z1z−1
0

x2 = z2

x3 = z3z0

x4 = z4

x5 = z5

x6 = z6z−1
0

x7 = z7.

Solving inv(f)(x = zM) = 0 gives the leading term of the series.
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version 2.4.21 of PHCpack and 0.5.0 of phcpy

The source code (GNU GPL License) is availale at github.

After 2 Newton steps with phc -u, the series for z1:

(-1.25000000000000E+00 + 1.25000000000000E+00*i)*z0^2

+( 5.00000000000000E-01 - 2.37676980513323E-17*i)*z0

+(-5.00000000000000E-01 - 5.00000000000000E-01*i);

After 3 Newton steps with phc -u, the series for z1:

( 7.12500000000000E+00 + 7.12500000000000E+00*i)*z0^4

+(-1.52745512076048E-16 - 4.25000000000000E+00*i)*z0^3

+(-1.25000000000000E+00 + 1.25000000000000E+00*i)*z0^2

+( 5.00000000000000E-01 - 1.45255178343636E-17*i)*z0

+(-5.00000000000000E-01 - 5.00000000000000E-01*i);
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Gauss-Newton power series predictor

To correct a solution, apply Gauss-Newton in complex arithmetic,

on vectors of complex numbers.

The predictor is symbolic-numeric:

Gauss-Newton on truncated power series: x(t),
where x(t) is a vector of series, each series is of degree n.

Step control via evaluation of the series, y(t) = f (x(t)).
Let k be the order of y(t), k < n.

Let ǫ > 0 be the tolerance on the residual ||f (x(t))||.
To compute the step size τ , solve ǫ = |yk |τ k :

τ =

(
ǫ

|yk |

)1/k

.
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one method to predict and correct

Polynomials in the homotopy, with support A, have the form

h(x, t) =
∑

a∈A

ca(t)x
a, xa = x

a1

1 x
a2

2 · · · xan
n .

where the coefficients ca(t) are truncated power series.

Three stages in one step with the path tracker:

1 Given a tolerance ǫ > 0, set the step size τ : ||h(x(τ), τ)|| is O(ǫ).

2 Shift the coefficient series ca(t) into ca(t − τ) in the homotopy.

3 Correct the solution with Newton’s method on series of degree 0.

Continue with truncated power series of increasing degrees to

compute solution series x(t), accurate up to a prescribed order.
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Linearization

Consider a vector of power series v(t), truncated to degree two:

v(t) =




v1(t)
v2(t)
v3(t)


 =




v1,0 + v1,1t + v1,2t2

v2,0 + v2,1t + v2,2t2

v3,0 + v3,1t + v3,2t2


 .

We can rewrite v(t) as

v(t) =




v1,0

v2,0

v3,0




︸ ︷︷ ︸
v0

+




v1,1

v2,1

v3,1




︸ ︷︷ ︸
v1

t +




v1,2

v2,2

v3,2




︸ ︷︷ ︸
v2

t2.

Then we have a power series vector v(t), truncated to degree two:

v(t) = v0 + v1t + v2t2, v0,v1,v2 ∈ C3.

A truncated power series vector is a vector polynomial.

Jan Verschelde (UIC) Computing Power Series Solutions August, 25 2016 16 / 23



Vector Series and Matrix Series

Instead of working with a vector of power series,

consider a power series with vectors as coefficients.

A vector series v(t) is a series with vectors as coefficients:

v(t) = v0 + v1t + v2t2 + · · · , vk ∈ Cn×n.

A vector series, truncated to degree d ,

is represented by a column vector v = [v0 v1 v2 · · · vd ]
T , vk ∈ Cn.

A matrix series A(t) is a series with matrices as coefficients:

A(t) = A0 + A1t + A2t2 + · · · , Ak ∈ Cn×n.

A matrix series, truncated to degree d ,

is represented by a row vector A = [A0 A1 A2 · · · Ad ],Ak ∈ Cn×n.

A truncated matrix series vector is a matrix polynomial.
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Matrix Series and Linear Systems

Given a row vector A = [A0 A1 A2 · · · Ad ],Ak ∈ Cn×n,

which represents a matrix series, truncated to degree d .

Given a column vector b = [b0 b1 b2 · · · bd ]
T , bk ∈ Cn,

which represents a vector series, truncated to degree d .

Denote A(t)x(t) = b(t), with x(t) = x0 + x1t + x2t2 + · · · + xd td :

[
A0 A1t A2t2 · · · Ad td

]




x0

x1t

x2t2

...

xd td



= b0 + b1t + b2t2 + · · · + bd td

as a linear system of vector and matrix series.
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Solving a Linear Matrix Series System
Consider A(t)x(t) = b(t), for d = 2:

[
A0 A1t A2t2

]



x0

x1t

x2t2


 = b0 + b1t + b2t2

Expanding along powers of t , ignoring powers higher than two:

t0 : A0x0 = b0

t1 : A0x1 + A1x0 = b1

t2 : A0x2 + A1x1 + A2x0 = b2

which gives a triangular system. Suppose A0 is invertible:

x0 = A−1
0 b0

x1 = A−1
0 (b1 − A1x0)

x2 = A−1
0 (b2 − A1x1 − A2x0)
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Numerical Linear Algebra

A power series is invertible if the leading coefficient is invertible.

If the leading coefficient A0 of a matrix series A(t) is invertible,

then we solve A(t)x(t) = b(t) via

x0 = A−1
0 b0

x1 = A−1
0 (b1 − A1x0)

x2 = A−1
0 (b2 − A1x1 − A2x0)

...

xd = A−1
0 (bd − A1xd−1 − A2xd−2 − · · · − Adx0)

The solving of A(t)x(t) = b(t) is in that case reduced to the solving of

d + 1 regular linear systems, using LU, QR, or SVD.
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Numerical Conditioning

We apply the following numerical algorithm:

solve A0x0 = b0

solve A0x1 = b1 − A1x̃0

solve A0x2 = b2 − A1x̃1 − A2x̃0

...

solve A0xd = bd − A1x̃d−1 − A2x̃d−2 − · · · − Ad x̃0

Because of roundoff, solving A0x0 = b0 does not give the exact x0

but an approximate x̃0. The approximation errors are propagated to

the right hand sides of the other linear systems, so we compute not the

exact x1, x2, . . ., xd but approximate x̃1, x̃2, . . ., x̃d .

The condition number of A0 predicts the size of the error.
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What if A0 is singular? Who cares?
A special position of the circles of Appolonius problem:

The given circles are double solutions to the problem.

With Puiseux power series solutions of the special position,

we can predict the solutions to perturbed instances of the problem.
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conclusions

Solving polynomial systems with power series is inspired by tropical

algebraic geometry. The leading exponents of series are tropisms.

Predicting the solution on a path defined by a homotopy with

Gauss-Newton on truncated power series is promising.

One future research direction:

shared memory parallel implementations,

acceleration with Graphics Processing Units (GPUs),

quality up: compensate extra cost with parallel computations.
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