Polynomial Homotopy Continuation on Graphics Processing Units

Jan Verschelde joint work with Xiangcheng Yu

University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science http://www.math.uic.edu/~jan emails: janv@uic.edu and xiangchengyu@outlook.com

Graduate Computational Algebraic Geometry Seminar 8 September 2016

4 **A** N A **B** N A **B** N

Quality Up by GPU Acceleration

- graphics processing units
- polynomial homotopy continuation
- double double and quad double precision

GPU Accelerated Path Trackers

- evaluation and differentiation
- arithmetic circuits
- granularity issues

Software

- from standalone programs to production code
- navigating the code

Quality Up by GPU Acceleration

- graphics processing units
- polynomial homotopy continuation
- double double and quad double precision

2 GPU Accelerated Path Trackers

- evaluation and differentiation
- arithmetic circuits
- granularity issues

B) Software

- from standalone programs to production code
- navigating the code

graphics processing units

NVIDIA Tesla K20 "Kepler" C-class Accelerator

- 2,496 CUDA cores, 2,496 = 13 SM × 192 cores/SM
- 5GB Memory at 208 GB/sec peak bandwidth
- peak performance: 1.17 TFLOPS double precision

NVIDIA Tesla P100 16GB "Pascal" Accelerator

- 3,586 CUDA cores, 3,586 = 56 SM \times 64 cores/SM
- 16GB Memory at 720GB/sec peak bandwidth
- peak performance: 4.7 TFLOPS double precision

Programming model: Single Instruction Multiple Data (SIMD).

- Data parallelism: blocks of threads read from memory, execute the same instruction(s), write to memory.
- Massively parallel: need 10,000 threads for full occupancy.

-

(日)

polynomial homotopy continuation

 $f(\bm{x})=\bm{0}$ is a polynomial system we want to solve, $\bm{g}(\bm{x})=\bm{0}$ is a start system (\bm{g} is similar to \bm{f}) with known solutions.

A homotopy
$$\mathbf{h}(\mathbf{x}, t) = (1 - t)\mathbf{g}(\mathbf{x}) + t\mathbf{f}(\mathbf{x}) = \mathbf{0}, t \in [0, 1],$$

to solve $\mathbf{f}(\mathbf{x}) = \mathbf{0}$ defines solution paths $\mathbf{x}(t)$: $\mathbf{h}(\mathbf{x}(t), t) \equiv \mathbf{0}$.

Numerical continuation methods track the paths $\mathbf{x}(t)$, from t = 0 to 1.

Newton's method is the most computationally intensive stage:

- Evaluation and differentiation of all polynomials in the system.
- Solve a linear system for the update to the approximate solution.

Bootstrapping to solve a start system $\mathbf{g}(\mathbf{x}) = \mathbf{0}$:

- Random coefficients of **g** imply that all solutions are regular.
- Polyhedral homotopies deform **g** to 2-nomial systems.

3

(日)

double double and quad double precision

Larger problems give rise to larger condition numbers.

- Standard hardware double precision is no longer sufficient to obtain accurate and reliable results.
- Higher precision arithmetic as defined by software package causes a large overhead both on time and memory.

With GPU acceleration we can compensate for the overhead for the higher precision arithmetic and achieve *quality up*.

A double double is a sequence of two doubles

- a high part with the most significant bits;
- a low part with the least significant bits.

We double the precision with predictable overhead:

- twice the amount of storage, compared to a double;
- comparable overhead to complex arithmetic (factor of 5 to 8).

4 **A** N A **B** N A **B** N

software for GPU accelerated path tracking

Double double and quad double arithmetic:

- QDlib by Y. Hida, X.S. Li, and D.H. Bailey, 2001.
- GQD, a CUDA library version of QDlib, by M. Lu, B. He, and Q. Luo, 2010.

Proof-of-concept implementation on random data, with Genady Yoffe:

- Evaluation and differentiation in PDSEC 2012.
- Modified Gram-Schmidt orthogonalization in PDSEC 2013.

Generalized to benchmark polynomial systems, with Xiangcheng Yu.

- Newton's method, in HPCC 2014.
- Tracking one path of large systems, in PASCO 2015.
- Tracking all paths of benchmark problems, in HPCC 2015.
- Wrapped in Python (phcpy), in ACM Comm. Comp. Alg., 2015.

(日)

problem statement

Conclusions of the GPU accelerated path trackers:

- double double real arithmetic is memory bound, working with complex double doubles is compute bound.
- to occupy the GPU well, scale the problems:
 - need at least 10,000 paths, e.g.: cyclic 10-roots; or
 - need at least 10,000 monomials, e.g.: cyclic 100-roots.

A blackbox solver to solve a polynomial system $f(\mathbf{x}) = \mathbf{0}$:

- compute the mixed volume of the Newton polytopes;
- polyhedral homotopies solve a random coefficient system,
 g(x) = 0 has the same Newton polytopes as f(x) = 0
- 3 track paths defined by $(1 t)\mathbf{g}(\mathbf{x}) + t\mathbf{f}(\mathbf{x}) = \mathbf{0}, t \in [0, 1].$

 ${\tt phc}\ {\tt -b}\ {\tt -t}$ applies pipelining to multithreaded path trackers.

Problem: no GPU accelerated path trackers for polyhedral homotopies.

Quality Up by GPU Acceleration

- graphics processing units
- polynomial homotopy continuation
- double double and quad double precision

GPU Accelerated Path Trackers

- evaluation and differentiation
- arithmetic circuits
- granularity issues

B) Software

- from standalone programs to production code
- navigating the code

evaluating polyhedral homotopies

Multi-index notation, consider

- *n* variables $\mathbf{x} = (x_1, x_2, \dots, x_n)$, and
- *n* exponents $\mathbf{a} = (a_1, a_2, \dots, a_n) \in \mathbb{Z}^n$,

then $\mathbf{x}^{\mathbf{a}} = x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}$.

A polynomial $f(\mathbf{x})$ is supported on the set A:

$$f(\mathbf{x}) = \sum_{\mathbf{a} \in A} c_{\mathbf{a}} \mathbf{x}^{\mathbf{a}}, \quad c_{\mathbf{a}} \in \mathbb{C} \setminus \{\mathbf{0}\}.$$

A polynomial in a polyhedral homotopy has the form

$$h(\mathbf{x},t) = c_{\mathbf{b}_1} \mathbf{x}^{\mathbf{b}_1} + c_{\mathbf{b}_2} \mathbf{x}^{\mathbf{b}_2} + \sum_{\mathbf{a} \in A \setminus \{\mathbf{b}_1, \mathbf{b}_2\}} c_{\mathbf{a}} \mathbf{x}^{\mathbf{a}} t^{e_{\mathbf{a}}}, \quad t^{e_{\mathbf{a}}} > 0.$$

At t = 0, $h(\mathbf{x}, 0)$ is a 2-nomial: $c_{\mathbf{b}_1} \mathbf{x}^{\mathbf{b}_1} + c_{\mathbf{b}_2} \mathbf{x}^{\mathbf{b}_2}$.

ヨト イヨト ニヨ

polynomial evaluation and differentiation

We distinguish three stages:

Common factors and tables of power products:

$$x_1^{d_1}x_2^{d_2}\cdots x_n^{d_n} = x_{i_1}x_{i_2}\cdots x_{i_k} \times x_{j_1}^{e_{j_1}}x_{j_2}^{e_{j_2}}\cdots x_{j_\ell}^{e_{j_\ell}}$$

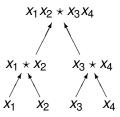
The factor $x_{j_1}^{e_{j_1}} x_{j_2}^{e_{j_2}} \cdots x_{j_{\ell}}^{e_{j_{\ell}}}$ is common to all partial derivatives. The factors are evaluated as products of pure powers of the variables, computed in shared memory by each block of threads.

- Evaluation and differentiation of products of variables: Computing the gradient of $x_1 x_2 \cdots x_n$ with the reverse mode of algorithmic differentiation requires 3n - 5 multiplications.
- Coefficient multiplication and term summation. Summation jobs are ordered by the number of terms so each warp has the same amount of terms to sum.

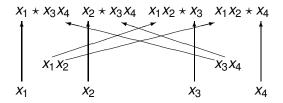
3

arithmetic circuits

First to evaluate the product:

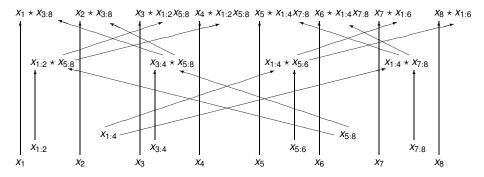


and then to compute the gradient:



computing the gradient of $x_1 x_2 \cdots x_8$

Denote by $x_{i:j}$ the product $x_i \star \cdots \star x_k \star \cdots \star x_j$ for all k between i and j.



The computation of the gradient of $x_1 x_2 \cdots x_n$ requires

- 2n 4 multiplications, and
- *n* 1 extra memory locations.

3 > 4 3 >

granularity issues

We distinguish between evaluation and differentiation

- of many products in few variables, $n \leq 32$; and
- of few products in many variables, $n \gg 32$.

Many monomials in few variables:

- Every thread has one product to compute.
- The number of threads which can multiply products in parallel depends on the size of the shared memory.

Few monomials in many variables:

- Many threads collaborate to compute one product.
- The multiplication is executed with memory coalescing, with the prefix sum algorithm, organized in a tree.

Quality Up by GPU Acceleration

- graphics processing units
- polynomial homotopy continuation
- double double and quad double precision

2 GPU Accelerated Path Trackers

- evaluation and differentiation
- arithmetic circuits
- granularity issues

Software

- from standalone programs to production code
- navigating the code

current state

All the CUDA code is

- released under the GNU GPL licence;
- under version control at github;
- installed and ready to run on kepler.math.uic.edu.

Reproducibility of published results not a short term problem.

Languages and compilers:

- needs the NVIDIA CUDA nvcc compiler;
- C++ for the code on the host;
- the gnu-ada compiler for the connection to PHCpack.

Goal: turn into production software that anybody can use.

Make it useful with GPU accelerated polyhedral homotopies!

3

- ロ ト - (同 ト - - 三 ト - - 三 ト

navigating the code

Every computation is defined at least twice:

- on the host, in plain C++,
- on the device, kernels written in CUDA.

The code for the host is intended mainly to verify correctness, not for high performance.

Building executables:

- one central makefile in the src/Objects folder;
- standalone test programs for all parts of the code.

4 3 5 4 3 5 5