The Higher Harmonic Signature for Foliations
 Moulay-Tahar Benameur

James Heitsch

University of Illinois at Chicago
and
Northwestern University
September 29, 2009

Main Theorems

Theorem

Suppose that M is a compact Riemannian manifold with oriented Riemannian foliation F of dimension 4ℓ. Then the leafwise signature $\sigma(F)$ of F_{s} is a leafwise homotopy invariant, and

$$
\sigma(F)=\int_{F} \mathrm{~L}(T F) .
$$

Can twist by a leafwise flat \mathbb{C} bundle $E=E^{+} \oplus E^{-} \rightarrow M$ with an (indefinite) non-degenerate Hermitian metric, preserved by the leafwise flat structure, i.e. a leafwise $U(p, q)$ flat bundle.

Theorem

$M, F, E \rightarrow M$, as above. $\operatorname{dim} F=2 \ell$.
Assume that $\rho^{E}: \Omega_{(2)}^{*}\left(F_{s} \otimes r^{*}(E)\right) \rightarrow \operatorname{Ker}\left(\Delta_{\ell}^{E}\right)$, is transversely smooth. Then $\sigma(F, E)$, the leafwise (for F_{s}) signature with coefficients in $r^{*}(E)$, is a leafwise homotopy invariant.
ρ^{E} is transversely smooth

- if $E=M \times \mathbb{C}$, i.e., the untwisted case;
- if leafwise parallel translation on E defined by the flat structure is a bounded map;
- if the preserved metric on E is positive definite;
- if E is a bundle associated to the normal bundle of F;
- for important examples, e.g., the examples of Lusztig which proved the Novikov conjecture for \mathbb{Z}^{n}.

Conjecture (B-H)

$$
\sigma(F, E)=\int_{F} \mathrm{~L}(T F)\left(\operatorname{ch}\left(E^{+}\right)-\operatorname{ch}\left(E^{-}\right)\right) .
$$

H-Lazarov (improved by Benameur-H) proved this for foliations with nice spectra. Azzali, Goette \& Schick prove it for globally flat E,

Applications of B-H Thm, assuming Conj if necessary.

Conjecture (Novikov)

Suppose $f: N \rightarrow B \pi_{1} N$ classifies the $\pi_{1} N$ bundle $\widetilde{N} \rightarrow N$, and $x \in \mathrm{H}^{*}\left(B \pi_{1} N ; \mathbb{Q}\right)$. Then $\int_{N} L(T N) f^{*}(x)$ is a homotopy invariant.

B-H implies this immediately for \mathbb{Z}^{n} and for all surface groups.
Originally proved by Lusztig.
B-H implies this for $\operatorname{ch}\left(E^{+}\right)-\operatorname{ch}\left(E^{-}\right)$, where $E^{+} \oplus E^{-}$is a $U(p, q)$ flat bundle over $B \pi_{1} N$.

Conjecture (Baum-Connes Novikov conjecture)
$f: M \rightarrow B \mathcal{G}$ a classifying map for F. Then, for any $x \in H^{*}(B \mathcal{G} ; \mathbb{Q})$,
$\int_{F} L(T F) f^{*} x$ is a leafwise homotopy invariant.
B-H implies this for the Chern characters of leafwise $U(p, q)$ flat bundles over $B \mathcal{G}$.

A Foliation Chart on M for F

F is a partition of M into disjoint $\operatorname{dim} 4 \ell$ submanifolds.
Locally F is a product $T \times \mathbb{D}^{4 \ell}$. F Riemannian if there is a metric on M so that the distance between leaves is constant.

	T		

$$
\mathbb{D}^{4 \ell}
$$

Holonomy and Local Integration

$$
U_{i} \simeq T_{i} \times D^{4 \ell}
$$

$$
U_{j} \simeq T_{j} \times D^{4 \ell}
$$

- $h^{*}: \Omega_{c}^{k}\left(T_{j} \cap h\left(T_{i}\right)\right) \rightarrow \Omega_{c}^{k}\left(T_{i}\right)$.
- If $\omega_{i} \in \Omega_{c}^{4 \ell+k}\left(U_{i}\right)$, get $\int \omega_{i} \in \Omega_{c}^{k}\left(T_{i}\right)$.

Haefliger Cohomology

- Write $\quad M=\bigcup U_{i} \quad U_{i}$ foliation charts for F.
- Choose transversals $T_{i} \subset U_{i}$ so that $T=\bigcup T_{i}$ is disjoint union.
- In $C^{\infty} k$ forms with compact support $=\Omega_{c}^{k}(T)$, consider
$L^{k}=\overline{\operatorname{span}\left\{\alpha-h^{*} \alpha\right\}}, \quad h \in$ holonomy pseudogroup.
- Set $\quad \Omega_{c}^{k}(M / F)=\Omega_{c}^{k}(T) / L^{k}$.
- $d: \Omega_{c}^{k}(T) \rightarrow \Omega_{c}^{k+1}(T)$ induces $d_{H}: \Omega_{c}^{k}(M / F) \rightarrow \Omega_{c}^{k+1}(M / F)$.
- $\mathrm{H}_{c}^{*}(M / F)=$ cohomology of this complex.
- If F given by a fibration $M \rightarrow B$, then $H_{c}^{*}(M / F)=H^{*}(B ; \mathbb{R})$.
- Independent of all choices.

Integration over the fiber of F

- $\int_{F}: \Omega^{4 \ell+k}(M) \rightarrow \Omega_{c}^{k}(M / F)$.
- Given $\omega \in \Omega^{4 \ell+k}(M)$, write $\omega=\sum_{i} \omega_{i}$, where

$$
\omega_{i} \in \Omega_{c}^{4 \ell+k}\left(U_{i}\right)
$$

- Integrate ω_{i} along the fibers of $U_{i} \rightarrow T_{i}$. Get $\int \omega_{i} \in \Omega_{c}^{k}\left(T_{i}\right)$.
- $\int_{F} \omega \equiv$ class of $\sum_{i} \int \omega_{i} . \quad \int_{F} \omega \in \Omega_{C}^{k}(M / F)$ well defined.
- $d_{H} \circ \int_{F}=\int_{F} \circ d \quad$ so get $\quad \int_{F}: H^{4 \ell+k}(M) \rightarrow H_{c}^{k}(M / F)$.

Homotopy groupoid \mathcal{G} of F

- $\mathcal{G}=$ equivalence classes of leafwise paths in M.
- Paths equivalent if homotopic in their leaf rel their end points.
- $\boldsymbol{s}: \mathcal{G} \rightarrow M: \quad \boldsymbol{s}([\gamma])=\gamma(0), \quad$ is a fiber bundle.
- F_{S} foliation of \mathcal{G}, leaves are $\widetilde{L}_{x}=s^{-1}(x)$, the fibers.
- $r([\gamma])=\gamma(1) . \quad r: \widetilde{L}_{x} \rightarrow L_{x}$ is the simply connected cover of L_{x}.
- $x \in M$ gives $\bar{x} \in \mathcal{G}, \bar{x}=$ class of constant path at x.
- So, $x \rightarrow \bar{x} \quad$ gives $\quad M \simeq \mathcal{G}_{0} \subset \mathcal{G}$, and $M \subset \mathcal{G}$.

Connections on Transversely Smooth Idempotents

- M a compact Riemannian manifold with oriented Riemannian foliation F of dimension 4ℓ.
- $\Omega_{(2)}^{*}\left(F_{s}\right) \rightarrow M$ is the bundle of L^{2} differential forms on leaves of F_{s}. For $x \in M, \quad\left(\Omega_{(2)}^{*}\left(F_{s}\right)\right)_{x}=L^{2}\left(\widetilde{L}_{x}, \wedge T^{*} \widetilde{L}_{x}\right)$.
- Any connection on $\wedge T^{*} F$ induces one on $\wedge T^{*} F_{s}$,

$$
\nabla^{F_{s}}: C^{\infty}\left(T^{*} F_{s} \otimes \Lambda T^{*} \mathcal{G}\right) \rightarrow C^{\infty}\left(T^{*} F_{s} \otimes \Lambda T^{*} \mathcal{G}\right) .
$$

- $\nu_{s}^{*} \equiv s^{*}\left(T^{*} M\right) \subset T^{*} \mathcal{G}$ is dual normal bundle of F_{s}.
- $p_{\nu}: \wedge T^{*} \mathcal{G} \rightarrow \Lambda \nu_{s}^{*}$, the projection.
- An idempotent $\rho: \Omega_{(2)}^{*}\left(F_{s}\right) \rightarrow \Omega_{(2)}^{*}\left(F_{s}\right)$ assigns to each $x \in M$, an idempotent $\rho_{x}: L^{2}\left(\widetilde{L}_{x}, \wedge T^{*} \widetilde{L}_{x}\right) \rightarrow L^{2}\left(\widetilde{L}_{x}, \wedge T^{*} \widetilde{L}_{x}\right)$.

Definition

A connection ∇ on ρ is a \mathcal{G} invariant operator on $\Omega_{(2)}^{*}\left(F_{s}\right) \otimes \Omega^{*}(M)$, which can be written as

$$
\nabla=\rho\left(\rho_{\nu} \nabla^{F_{s}}+A\right) \rho .
$$

A a transversely smooth \mathcal{G} invariant leafwise operator on $\Omega_{(2)}^{*}\left(F_{s}\right)$.

- ∇ is \mathcal{G} invariant means $\nabla\left|\widetilde{L}_{x_{1}}=\nabla\right| \widetilde{L}_{x_{2}}$, where $x_{1}, x_{2} \in L$. Same for A.
- A is transversely smooth if all the transverse derivatives of its Schwartz kernel define leafwise operators on $\Omega_{(2)}^{*}\left(F_{s}\right)$ which are smoothing and are globally bounded.

Recall: Schwartz kernel of A is $K_{x}^{A}(y, z) \in \operatorname{Hom}\left(\left(\Lambda T^{*} \widetilde{L}_{x}\right)_{z},\left(\Lambda T^{*} \widetilde{L}_{x}\right)_{y}\right)$.
$\xi \in L^{2}\left(\tilde{L}_{x}, \Lambda T^{*} \tilde{L}_{x}\right)$ and $y \in \tilde{L}_{x}$, then $A(\xi)(y)=\int_{\tilde{L}_{x}} K_{x}^{A}(y, z) \xi(z) d z$.
All powers $\nabla^{2 k}$ of the curvature ∇^{2} are transversely smooth \mathcal{G} invariant leafwise operators. $K_{x}^{\nabla^{2 k}}(y, z)$ the Schwartz kernel of $\nabla^{2 k}$.
For each $x \in M$, denote by \bar{x} the class of the constant path at x.

Definition

Set

$$
\operatorname{Tr}\left(\nabla^{2 k}\right)=\int_{F} \operatorname{tr}\left(K_{x}^{\nabla^{2 k}}(\bar{x}, \bar{x})\right) d x \quad \in \quad \Omega_{c}^{k}(M / F) .
$$

Proposition

$\operatorname{Tr}\left(\exp \left(-\nabla^{2} / 2 i \pi\right)\right)$ is a closed Haefliger form. Its class is indep. of ∇.
Definition

$$
\mathrm{ch}_{a}(\rho)=\left[\operatorname{Tr}\left(\exp \left(-\nabla^{2} / 2 i \pi\right)\right)\right] .
$$

The Higher Harmonic Signature for Foliations

- $\Omega_{(2)}^{*}\left(F_{s}\right) \rightarrow M$ is the bundle of L^{2} differential forms on leaves of F_{s}. For $x \in M, \quad\left(\Omega_{(2)}^{*}\left(F_{s}\right)\right)_{x}=L^{2}\left(\widetilde{L}_{x}, \wedge T^{*} \widetilde{L}_{x}\right)$.
- τ the usual leafwise involution (a \mathbb{C} multiple of deRham $*$) gives

$$
\Omega_{(2)}^{*}\left(F_{s}\right)=\Omega_{+}^{*}\left(F_{s}\right) \oplus \Omega_{-}^{*}\left(F_{s}\right) .
$$

- The leafwise Laplacian Δ preserves this splitting.
- The leafwise operator $D=d+d^{*}$ reverses splitting, $D^{2}=\Delta$.
- D defines $D^{+}: \Omega_{+}^{*}\left(F_{s}\right) \rightarrow \Omega_{-}^{*}\left(F_{s}\right)$, the leafwise signature operator.
- $\operatorname{Ind}_{c}^{\infty}\left(D^{+}\right) \in K_{0}\left(C_{c}^{\infty}\left(\mathcal{G} ; \operatorname{Hom}\left(\Lambda T^{*} F_{s}\right)\right)\right)$.

Theorem

The projections $\rho_{ \pm}: \Omega_{(2)}^{*}\left(F_{s}\right) \rightarrow \operatorname{Ker}\left(\Delta_{2 \ell}^{ \pm}\right)=\operatorname{Ker}(\Delta) \cap \Omega_{ \pm}^{2 \ell}\left(F_{s}\right)$ are transversely smooth.

$$
\left(\rho_{ \pm}\right)_{x}: L^{2}\left(\widetilde{L}_{x}, \wedge T^{*} \tilde{L}_{x}\right) \rightarrow\left(\operatorname{Ker}\left(\Delta_{2 \ell}^{ \pm}\right)\right)_{x}=\operatorname{Ker}\left(\Delta_{x}\right) \cap L_{ \pm}^{2}\left(\widetilde{L}_{x}, \Lambda^{2 \ell} T^{*} \tilde{L}_{x}\right) .
$$

Definition

The Higher Harmonic Signature $\sigma(F)$ of (M, F) is the Haefliger class

$$
\sigma(F)=\operatorname{ch}_{a}\left(\rho_{+}\right)-\operatorname{ch}_{a}\left(\rho_{-}\right) .
$$

Recall First Main Theorem

Theorem

Suppose that M is a compact Riemannian manifold with oriented Riemannian foliation F of dimension 4ℓ. Then the leafwise signature $\sigma(F)$ of F_{s} is a leafwise homotopy invariant, and

$$
\sigma(F)=\int_{F} \mathrm{~L}(T F) .
$$

Recent results of Azzali, Goette, and Schick improving results of H -Lazarov and Benameur-H immediately give:

Theorem
Suppose that M is a compact Riemannian manifold with oriented Riemannian foliation F of dimension 4ℓ. Then

$$
\mathrm{ch}_{a}\left(\operatorname{lnd}_{c}^{\infty}\left(D^{+}\right)\right)=\sigma(F) .
$$

Theorem

$$
\operatorname{ch}_{a}\left(\operatorname{lnd}_{c}^{\infty}\left(D^{+}\right)\right)=\int_{F} \mathrm{~L}(T F) .
$$

Outline of the Proof of the First Main Theorem

(1) $f: M, F \rightarrow M^{\prime}, F^{\prime}$ a LHE induces a leafwise $\operatorname{map} \tilde{f}: \mathcal{G}, F_{s} \rightarrow \mathcal{G}^{\prime}, F_{s}^{\prime}$, and an isomorphism $\quad f^{*}: H_{c}^{*}\left(M^{\prime} / F^{\prime}\right) \rightarrow H_{c}^{*}(M / F)$.
(2) $\quad \rho_{ \pm}^{f}=\widetilde{f}^{*}\left(\rho_{ \pm}^{\prime}\right)$ is a transversely smooth idempotent.
(3) $f^{*} \operatorname{ch}_{a}\left(\rho_{ \pm}^{\prime}\right)=\operatorname{ch}_{a}\left(\rho_{ \pm}^{f}\right)$.
(4) $\quad \operatorname{ch}_{a}\left(\rho_{ \pm}^{f}\right)=\operatorname{ch}_{a}\left(P_{2 \ell} \rho_{ \pm}^{f}\right) . \quad P_{2 \ell}$ proj. to $\operatorname{Ker}\left(\Delta_{2 \ell}\right)$.
(5) $\quad \operatorname{ch}_{a}\left(P_{2 \ell} \rho_{ \pm}^{f}\right)=\operatorname{ch}_{a}\left(\rho_{ \pm}\right)$.

Use \widetilde{f}^{*} to pull back the idempotents $\rho_{ \pm}^{\prime}$ to idempotents $\rho_{ \pm}^{f}$.

Problem. In general, \tilde{f}^{*} does NOT induce a map on L^{2} leafwise forms. Solution. Adapt Hilsum-Skandalis and H-Lazarov (à la Dodziuk) to re-define \widetilde{f}, get a leafwise submersion. Prove \widetilde{f} induces bounded maps on all leafwise Sobolev spaces.

Definition

$g: M^{\prime}, F^{\prime} \rightarrow M, F$ a homotopy inverse for f.
$P_{2 \ell}$ proj. to $\operatorname{Ker}\left(\Delta_{2 \ell}\right)$. Set

$$
\rho_{ \pm}^{f}=\widetilde{f}^{*} \rho_{ \pm}^{\prime} \tilde{g}^{*} P_{2 \ell} .
$$

Proposition

The $\rho_{ \pm}^{f}=\widetilde{f}^{*} \rho_{ \pm}^{\prime} \widetilde{g}^{*} P_{2 \ell}$ are transversely smooth idempotents.

Proof.

$P_{2 \ell}$ and $\rho_{ \pm}^{\prime}$ are TS, so take any Sobolev space to any Sobolev space. \tilde{f}^{*} and \tilde{g}^{*} are bounded maps on all leafwise Sobolev k spaces.

Lemma

$$
d_{\nu} \tilde{f}^{*}-\widetilde{f}^{*} d_{\nu}^{\prime}=\tilde{f}^{*} d_{s}^{\prime}-d_{s} \tilde{f}^{*} \text { and } d_{\nu}^{\prime} \tilde{g}^{*}-\tilde{g}^{*} d_{\nu}=\tilde{g}^{*} d_{s}-d_{s}^{\prime} \tilde{g}^{*} .
$$

d_{ν} and d_{ν}^{\prime} are the transverse de Rham operators. d_{s} and d_{s}^{\prime} are the leafwise de Rham operators, so take leafwise Sobolev k spaces to leafwise Sobolev $k-1$ spaces.
Lemma relates transverse derivatives for $\left(\mathcal{G}, F_{s}\right)$ and $\left(\mathcal{G}^{\prime}, F_{s}^{\prime}\right)$.
A good deal of functional analysis finishes the proof.

Proposition

$$
f^{*} \operatorname{ch}_{a}\left(\rho_{ \pm}^{\prime}\right)=\operatorname{ch}_{a}\left(\rho_{ \pm}^{f}\right) .
$$

Proof.

If ∇^{\prime} is a connection on ρ_{+}^{\prime}, it defines the pull-back connection
$\nabla=\widetilde{f}^{*}\left(\nabla^{\prime}\right)$ on ρ_{+}^{f}. Then $\nabla^{2}=\widetilde{f}^{*}\left(\nabla^{\prime 2}\right)$ and $\operatorname{Tr}\left(\nabla^{2 k}\right)=f^{*} \operatorname{Tr}\left(\nabla^{\prime 2 k}\right)$ for all k, which gives the result.

Proposition

If $e_{t}, 0 \leq t \leq 1$, is a smooth family of \mathcal{G} invariant transversely smooth idempotents, then $\operatorname{ch}_{a}\left(e_{0}\right)=\operatorname{ch}_{a}\left(e_{1}\right)$.

Proposition

$$
\operatorname{ch}_{a}\left(\rho_{ \pm}^{f}\right)=\operatorname{ch}_{a}\left(P_{2 \ell} \rho_{ \pm}^{f}\right) .
$$

Proof.

$(1-t) P_{2 \ell} \rho_{ \pm}^{f}+t \rho_{ \pm}^{f}$ is a smooth family of TS idempotents.

Finally,
Proposition

$$
\operatorname{ch}_{a}\left(P_{2 \ell} \rho_{ \pm}^{f}\right)=\operatorname{ch}_{a}\left(\rho_{ \pm}\right) .
$$

Proof.

Restriction of $\rho_{ \pm}$to $\operatorname{Im}\left(P_{2 \ell} \rho_{ \pm}^{f}\right)$ is an isomorphism onto $\operatorname{Im}\left(\rho_{ \pm}\right)$with uniformly bounded inverse.
Main Step: $\varphi_{ \pm}=\rho_{ \pm}^{-1} \circ \rho_{ \pm}: \Omega_{(2)}^{22}\left(F_{s}\right) \rightarrow \operatorname{Im}\left(P_{2 \ell} \rho_{ \pm}^{f}\right)$ is a TS idempotent.
Proof involves a good deal of heavy functional analysis.
To finish we need two easy results.

1. The TS idempotents $\varphi_{ \pm}$and $P_{2 \ell} \rho_{ \pm}^{f}$ have the same image, so $t \varphi_{ \pm}+(1-t) P_{2 \ell} \rho_{ \pm}^{f}$ is a smooth family of TS idempotents, and

$$
\operatorname{ch}_{a}\left(P_{2 \ell} \rho_{ \pm}^{f}\right)=\operatorname{ch}_{a}\left(\varphi_{ \pm}\right) .
$$

2. Since $\varphi_{ \pm}$is projection onto $\operatorname{Im}\left(P_{2 \ell} \rho_{ \pm}^{f}\right)$ along $\operatorname{Ker}\left(\rho_{ \pm}\right)$, we have $\varphi_{ \pm} \rho_{ \pm}=\varphi_{ \pm}$and $\rho_{ \pm} \varphi_{ \pm}=\rho_{ \pm}$. Thus, $t \varphi_{ \pm}+(1-t) \rho_{ \pm}$is a smooth family of TS idempotents, and

$$
\operatorname{ch}_{a}\left(\varphi_{ \pm}\right)=\operatorname{ch}_{a}\left(\rho_{ \pm}\right) .
$$

