The Higher Harmonic Signature for Foliations

Joint work with Moulay-Tahar Benameur

James Heitsch

University of Illinois at Chicago and Northwestern University

September 29, 2009

Main Theorems

Theorem

Suppose that M is a compact Riemannian manifold with oriented Riemannian foliation F of dimension 4 ℓ . Then the leafwise signature $\sigma(F)$ of F_s is a leafwise homotopy invariant, and

$$\sigma(F) = \int_F \mathsf{L}(TF).$$

Can twist by a leafwise flat \mathbb{C} bundle $E = E^+ \oplus E^- \to M$ with an (indefinite) non-degenerate Hermitian metric, preserved by the leafwise flat structure, i.e. a leafwise U(p,q) flat bundle.

Theorem

M, *F*, *E* \rightarrow *M*, as above. dim *F* = 2 ℓ . Assume that $\rho^{E} : \Omega^{*}_{(2)}(F_{s} \otimes r^{*}(E)) \rightarrow \text{Ker}(\Delta^{E}_{\ell})$, is transversely smooth. Then $\sigma(F, E)$, the leafwise (for F_{s}) signature with coefficients in $r^{*}(E)$, is a leafwise homotopy invariant.

ρ^E is transversely smooth

- if $E = M \times \mathbb{C}$, i.e., the untwisted case;
- if leafwise parallel translation on *E* defined by the flat structure is a bounded map;
- if the preserved metric on *E* is positive definite;
- if *E* is a bundle associated to the normal bundle of *F*;
- for important examples, e.g., the examples of Lusztig which proved the Novikov conjecture for Zⁿ.

Conjecture (B-H)

$$\sigma(F,E) = \int_F L(TF) \Big(\operatorname{ch}(E^+) - \operatorname{ch}(E^-) \Big).$$

H-Lazarov (improved by Benameur-H) proved this for foliations with nice spectra. Azzali, Goette & Schick prove it for globally flat *E*.

James Heitsch (UIC & NWU)

Higher Harmonic Signature

Applications of B-H Thm, assuming Conj if necessary. Conjecture (Novikov)

Suppose $f : N \to B\pi_1 N$ classifies the $\pi_1 N$ bundle $\widetilde{N} \to N$, and $x \in H^*(B\pi_1 N; \mathbb{Q})$. Then $\int_N L(TN)f^*(x)$ is a homotopy invariant.

B-H implies this immediately for \mathbb{Z}^n and for all surface groups. Originally proved by Lusztig. B-H implies this for $ch(E^+) - ch(E^-)$, where $E^+ \oplus E^-$ is a U(p,q) flat bundle over $B\pi_1 N$.

Conjecture (Baum-Connes Novikov conjecture)

 $f: M \to B\mathcal{G}$ a classifying map for F. Then, for any $x \in H^*(B\mathcal{G}; \mathbb{Q})$, $\int_F L(TF)f^*x$ is a leafwise homotopy invariant.

B-H implies this for the Chern characters of leafwise U(p,q) flat bundles over $B\mathcal{G}$.

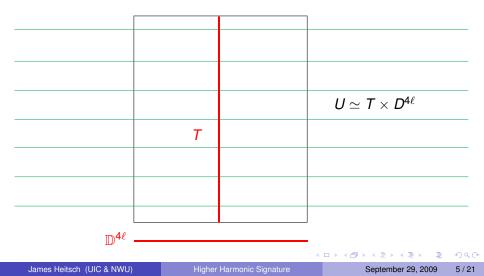
James Heitsch (UIC & NWU)

Higher Harmonic Signature

A Foliation Chart on *M* for *F*

F is a partition of *M* into disjoint dim 4ℓ submanifolds.

Locally *F* is a product $T \times \mathbb{D}^{4\ell}$. *F* Riemannian if there is a metric on *M* so that the distance between leaves is constant.



Holonomy and Local Integration

$$U_{i} \simeq T_{i} \times D^{4\ell}$$

$$U_{j} \simeq T_{j} \times D^{4\ell}$$

$$z \qquad h \qquad h(z)$$

$$T_{i} \qquad T_{j}$$

•
$$h^* : \Omega_c^k(T_j \cap h(T_i)) \to \Omega_c^k(T_i).$$

• If $\omega_i \in \Omega_c^{4\ell+k}(U_i)$, get $\int \omega_i \in \Omega_c^k(T_i).$

э

Haefliger Cohomology

- Write $M = \bigcup U_i$ U_i foliation charts for *F*.
- Choose transversals $T_i \subset U_i$ so that $T = \bigcup T_i$ is disjoint union.
- In C^{∞} k forms with compact support = $\Omega_c^k(T)$, consider $L^k = \overline{\text{span}\{\alpha - h^*\alpha\}}, \quad h \in \text{holonomy pseudogroup.}$

• Set
$$\Omega_c^k(M/F) = \Omega_c^k(T)/L^k$$
.

• $d: \Omega_c^k(T) \to \Omega_c^{k+1}(T)$ induces $d_H: \Omega_c^k(M/F) \to \Omega_c^{k+1}(M/F)$.

- $H_c^*(M/F)$ = cohomology of this complex.
- If *F* given by a fibration $M \to B$, then $H^*_c(M/F) = H^*(B; \mathbb{R})$.
- Independent of all choices.

Integration over the fiber of F

•
$$\int_{F} : \Omega^{4\ell+k}(M) \to \Omega^{k}_{c}(M/F).$$

- Given $\omega \in \Omega^{4\ell+k}(M)$, write $\omega = \sum_{i} \omega_{i}$, where $\omega_{i} \in \Omega_{c}^{4\ell+k}(U_{i})$.
- Integrate ω_i along the fibers of $U_i \to T_i$. Get $\int \omega_i \in \Omega_c^k(T_i)$.

•
$$\int_{F} \omega \equiv \text{class of } \sum_{i} \int \omega_{i}.$$
 $\int_{F} \omega \in \Omega_{c}^{k}(M/F)$ well defined.

• $d_H \circ \int_F = \int_F \circ d$ so get $\int_F : H^{4\ell+k}(M) \to H^k_c(M/F).$

Homotopy groupoid \mathcal{G} of F

- G = equivalence classes of leafwise paths in *M*.
- Paths equivalent if homotopic in their leaf rel their end points.

•
$$s: \mathcal{G} \to M$$
: $s([\gamma]) = \gamma(0)$, is a fiber bundle.

- F_s foliation of \mathcal{G} , leaves are $\widetilde{L}_x = s^{-1}(x)$, the fibers.
- $r([\gamma]) = \gamma(1)$. $r: \widetilde{L}_x \to L_x$ is the simply connected cover of L_x .
- $x \in M$ gives $\overline{x} \in \mathcal{G}$, \overline{x} = class of constant path at x.

• So, $x \to \overline{x}$ gives $M \simeq \mathcal{G}_0 \subset \mathcal{G}$, and $M \subset \mathcal{G}$.

イロト 不得 トイヨト イヨト ヨー ろくの

Connections on Transversely Smooth Idempotents

- *M* a compact Riemannian manifold with oriented Riemannian foliation *F* of dimension 4ℓ .
- Ω^{*}₍₂₎(F_s) → M is the bundle of L² differential forms on leaves of F_s.
 For x ∈ M, (Ω^{*}₍₂₎(F_s))_x = L²(*L̃*_x, ΛT^{*}*L̃*_x).
- Any connection on ΛT^*F induces one on ΛT^*F_s ,

$$\nabla^{F_{\mathcal{S}}}: C^{\infty}(T^*F_{\mathcal{S}}\otimes \Lambda T^*\mathcal{G}) \to C^{\infty}(T^*F_{\mathcal{S}}\otimes \Lambda T^*\mathcal{G}).$$

• $\nu_s^* \equiv s^*(T^*M) \subset T^*\mathcal{G}$ is dual normal bundle of F_s .

•
$$p_{\nu} : \Lambda T^* \mathcal{G} \to \Lambda \nu_s^*$$
, the projection.

くゆ くうとく ひとう う

An idempotent ρ : Ω^{*}₍₂₎(F_s) → Ω^{*}₍₂₎(F_s) assigns to each x ∈ M, an idempotent ρ_x : L²(*L̃*_x, ∧T^{*}*L̃*_x) → L²(*L̃*_x, ∧T^{*}*L̃*_x).

Definition

A connection ∇ on ρ is a \mathcal{G} invariant operator on $\Omega^*_{(2)}(F_s) \otimes \Omega^*(M)$, which can be written as

$$\nabla = \rho \Big(\rho_{\nu} \nabla^{F_s} + A \Big) \rho.$$

A a transversely smooth \mathcal{G} invariant leafwise operator on $\Omega^*_{(2)}(F_s)$.

- ∇ is \mathcal{G} invariant means $\nabla | \widetilde{L}_{x_1} = \nabla | \widetilde{L}_{x_2}$, where $x_1, x_2 \in L$. Same for A.
- A is transversely smooth if all the transverse derivatives of its Schwartz kernel define leafwise operators on Ω^{*}₍₂₎(F_s) which are smoothing and are globally bounded.

3

Recall: Schwartz kernel of *A* is $K_x^A(y, z) \in \text{Hom}((\Lambda T^* \widetilde{L}_x)_z, (\Lambda T^* \widetilde{L}_x)_y)$. $\xi \in L^2(\widetilde{L}_x, \Lambda T^* \widetilde{L}_x)$ and $y \in \widetilde{L}_x$, then $A(\xi)(y) = \int_{\widetilde{L}_x} K_x^A(y, z)\xi(z) dz$.

All powers ∇^{2k} of the curvature ∇^2 are transversely smooth \mathcal{G} invariant leafwise operators. $\mathcal{K}_x^{\nabla^{2k}}(y, z)$ the Schwartz kernel of ∇^{2k} .

For each $x \in M$, denote by \overline{x} the class of the constant path at x.

Definition

Set
$$\operatorname{Tr}(\nabla^{2k}) = \int_{F} \operatorname{tr}(K_{x}^{\nabla^{2k}}(\overline{x},\overline{x})) dx \in \Omega_{c}^{k}(M/F).$$

Proposition

 $\operatorname{Tr}(\exp(-\nabla^2/2i\pi))$ is a closed Haefliger form. Its class is indep. of ∇ .

Definition

$$ch_a(
ho) = [Tr(exp(-
abla^2/2i\pi))].$$

James Heitsch (UIC & NWU)

э.

(日)

The Higher Harmonic Signature for Foliations

- Ω^{*}₍₂₎(F_s) → M is the bundle of L² differential forms on leaves of F_s.
 For x ∈ M, (Ω^{*}₍₂₎(F_s))_x = L²(L̃_x, ΛT^{*}L̃_x).
- au the usual leafwise involution (a $\mathbb C$ multiple of deRham *) gives

$$\Omega^*_{(2)}(F_s) = \Omega^*_+(F_s) \oplus \Omega^*_-(F_s).$$

- The leafwise Laplacian Δ preserves this splitting.
- The leafwise operator $D = d + d^*$ reverses splitting, $D^2 = \Delta$.
- *D* defines $D^+ : \Omega^*_+(F_s) \to \Omega^*_-(F_s)$, the leafwise signature operator.

•
$$\operatorname{Ind}_{c}^{\infty}(D^{+}) \in K_{0}(C_{c}^{\infty}(\mathcal{G}; \operatorname{Hom}(\Lambda T^{*}F_{s}))).$$

Theorem

The projections $\rho_{\pm} : \Omega^*_{(2)}(F_s) \to \text{Ker}(\Delta^{\pm}_{2\ell}) = \text{Ker}(\Delta) \cap \Omega^{2\ell}_{\pm}(F_s)$ are transversely smooth.

$$(
ho_{\pm})_{x}: L^{2}(\widetilde{L}_{x}, \wedge T^{*}\widetilde{L}_{x})
ightarrow (\mathsf{Ker}(\Delta_{2\ell}^{\pm}))_{x} = \mathsf{Ker}(\Delta_{x}) \cap L^{2}_{\pm}(\widetilde{L}_{x}, \wedge^{2\ell}T^{*}\widetilde{L}_{x}).$$

Definition

The Higher Harmonic Signature $\sigma(F)$ of (M, F) is the Haefliger class

$$\sigma(F) = \operatorname{ch}_{a}(\rho_{+}) - \operatorname{ch}_{a}(\rho_{-}).$$

Recall First Main Theorem

Theorem

Suppose that M is a compact Riemannian manifold with oriented Riemannian foliation F of dimension 4 ℓ . Then the leafwise signature $\sigma(F)$ of F_s is a leafwise homotopy invariant, and

$$\sigma(F) = \int_F \mathsf{L}(TF).$$

Recent results of Azzali, Goette, and Schick improving results of H-Lazarov and Benameur-H immediately give:

Theorem

Suppose that M is a compact Riemannian manifold with oriented Riemannian foliation F of dimension 4ℓ . Then

 $\operatorname{ch}_{a}(\operatorname{Ind}_{c}^{\infty}(D^{+})) = \sigma(F).$

Theorem

$$\mathsf{ch}_a(\mathsf{Ind}^\infty_{\mathcal{C}}(D^+)) = \int_F \mathsf{L}(TF).$$

James Heitsch (UIC & NWU)

Higher Harmonic Signature

September 29, 2009 15 / 21

3

Outline of the Proof of the First Main Theorem

• $f: M, F \to M', F'$ a LHE induces a leafwise map $\tilde{f}: \mathcal{G}, F_s \to \mathcal{G}', F'_s$,

and an isomorphism $f^*: H^*_c(M'/F') \to H^*_c(M/F).$

$$\mathsf{ch}_{a}(
ho^{f}_{\pm})=\mathsf{ch}_{a}(P_{_{2\ell}}
ho^{f}_{\pm}).$$
 $P_{_{2\ell}}$ proj. to $\mathsf{Ker}(\Delta_{2\ell}).$

3

イロト イポト イラト イラト

Use \tilde{f}^* to pull back the idempotents ρ'_{\pm} to idempotents ρ'_{\pm} .

Problem. In general, \tilde{f}^* does NOT induce a map on L^2 leafwise forms.

Solution. Adapt Hilsum-Skandalis and H-Lazarov (à la Dodziuk) to re-define \tilde{f} , get a leafwise submersion. Prove \tilde{f} induces bounded maps on all leafwise Sobolev spaces.

Definition

 $g: M', F' \to M, F$ a homotopy inverse for *f*. $P_{_{2\ell}}$ proj. to Ker $(\Delta_{2\ell})$. Set

$$\rho^{f}_{\pm} = \widetilde{f}^* \rho'_{\pm} \widetilde{g}^* P_{_{2\ell}}.$$

Proposition

The $\rho_{\pm}^{f} = \tilde{f}^{*} \rho_{\pm}' \tilde{g}^{*} P_{_{2\ell}}$ are transversely smooth idempotents.

Proof.

 $P_{2\ell}$ and ρ'_{\pm} are TS, so take any Sobolev space to any Sobolev space. \tilde{f}^* and \tilde{g}^* are bounded maps on all leafwise Sobolev *k* spaces.

Lemma

$$d_{\nu}\widetilde{f}^{*}-\widetilde{f}^{*}d_{\nu}'=\widetilde{f}^{*}d_{s}'-d_{s}\widetilde{f}^{*} \text{ and } d_{\nu}'\widetilde{g}^{*}-\widetilde{g}^{*}d_{\nu}=\widetilde{g}^{*}d_{s}-d_{s}'\widetilde{g}^{*}.$$

 d_{ν} and d'_{ν} are the transverse de Rham operators. d_s and d'_s are the leafwise de Rham operators, so take leafwise Sobolev *k* spaces to leafwise Sobolev *k* – 1 spaces. Lemma relates transverse derivatives for (\mathcal{G} , F_s) and (\mathcal{G}' , F'_s). A good deal of functional analysis finishes the proof.

3

< 日 > < 同 > < 回 > < 回 > < □ > <

Proposition

$$f^* \operatorname{ch}_a(\rho'_{\pm}) = \operatorname{ch}_a(\rho^f_{\pm}).$$

Proof.

If ∇' is a connection on ρ'_+ , it defines the pull-back connection $\nabla = \tilde{f}^*(\nabla')$ on ρ^f_+ . Then $\nabla^2 = \tilde{f}^*(\nabla'^2)$ and $\text{Tr}(\nabla^{2k}) = f^* \text{Tr}(\nabla'^{2k})$ for all k, which gives the result.

A (10) A (10)

Proposition

If e_t , $0 \le t \le 1$, is a smooth family of \mathcal{G} invariant transversely smooth idempotents, then $\operatorname{ch}_a(e_0) = \operatorname{ch}_a(e_1)$.

Proposition

$$\operatorname{ch}_{a}(\rho_{\pm}^{f}) = \operatorname{ch}_{a}(P_{2\ell}\rho_{\pm}^{f}).$$

Proof.

 $(1 - t)P_{2\ell}\rho_{\pm}^{f} + t\rho_{\pm}^{f}$ is a smooth family of TS idempotents.

Finally,

Proposition

$$\operatorname{ch}_{a}(P_{2\ell}\rho_{\pm}^{f}) = \operatorname{ch}_{a}(\rho_{\pm}).$$

James Heitsch (UIC & NWU)

3

イロト 不得 トイヨト イヨト

Proof.

Restriction of ρ_{\pm} to Im($P_{2\ell}\rho_{\pm}^{f}$) is an isomorphism onto Im(ρ_{\pm}) with uniformly bounded inverse.

Main Step: $\varphi_{\pm} = \rho_{\pm}^{-1} \circ \rho_{\pm} : \Omega_{(2)}^{2\ell}(F_s) \to \operatorname{Im}(P_{2\ell}\rho_{\pm}^f)$ is a TS idempotent.

Proof involves a good deal of heavy functional analysis.

To finish we need two easy results.

1. The TS idempotents φ_{\pm} and $P_{2\ell}\rho_{\pm}^{f}$ have the same image, so $t\varphi_{\pm} + (1-t)P_{2\ell}\rho_{\pm}^{f}$ is a smooth family of TS idempotents, and

$$\operatorname{ch}_{a}(P_{_{2\ell}}\rho^{f}_{\pm}) = \operatorname{ch}_{a}(\varphi_{\pm}).$$

2. Since φ_{\pm} is projection onto $\text{Im}(P_{2\ell}\rho_{\pm}^{f})$ along $\text{Ker}(\rho_{\pm})$, we have $\varphi_{\pm}\rho_{\pm} = \varphi_{\pm}$ and $\rho_{\pm}\varphi_{\pm} = \rho_{\pm}$. Thus, $t\varphi_{\pm} + (1 - t)\rho_{\pm}$ is a smooth family of TS idempotents, and

$$ch_a(\varphi_{\pm}) = ch_a(\rho_{\pm}).$$