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Abstract. In this paper we solve the general case of the cohomological relative index problem for foliations

of non-compact manifolds. In particular, we significantly generalize the groundbreaking results of Gromov
and Lawson, [GL83], to Dirac operators defined along the leaves of foliations of non-compact complete

Riemannian manifolds, by involving all the terms of the Connes-Chern character, especially the higher order

terms in Haefliger cohomology. The zero-th order term corresponding to holonomy invariant measures was
carried out in [BH21] and becomes a special case of our main results here. In particular, for two leafwise

Dirac operators on two foliated manifolds which agree near infinity, we define a relative topological index

and the Connes-Chern character of a relative analytic index, both being in relative Haefliger cohomology.
We show that these are equal. This invariant can be paired with closed holonomy invariant currents (which

agree near infinity) to produce higher relative scalar invariants. When we relate these invariants to the

leafwise index bundles, we restrict to Riemannian foliations on manifolds of sub-exponential growth. This
allows us to prove a higher relative index bundle theorem, extending the classical index bundle theorem of

[BH08]. Finally, we construct examples of foliations and use these invariants to prove that their spaces of
leafwise positive scalar curvature metrics have infinitely many path-connected components, completely new

results which are not available from [BH21]. In particular, these results confirm the well-known idea that

important geometric information of foliations is embodied in the higher terms of the pA genus.
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1. Introduction

In this paper we continue our program of extending the groundbreaking relative index theorems of Gromov-
Lawson, especially Theorem 4.18, [GL83], to Dirac operators defined along the leaves of foliations of non-
compact complete Riemannian manifolds. Their results have played a fundamental role in the development
and understanding of the existence and non-existence of metrics with positive scalar curvature (PSC), as
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well as the structure of spaces of such metrics. It is an essential tool for the extension of results for compact
manifolds to non-compact manifolds.

In [BH21], we extended the Gromov-Lawson theorem to foliations admitting invariant transverse measures,
and crucial requirements for the applications were that the foliation admits a holonomy invariant measure,

and that the measured pA genus of the foliation be non-zero. In this paper, we dispense with both these
requirements and completely solve the general case. We obtain results for all the terms of the Atiyah-
Singer characteristic forms associated with the Dirac operators, especially the higher order terms of the
Connes-Chern character of the relative analytic index, as well as the higher order terms of the Connes-Chern
characters of their “index bundles”. We also construct a large collection of spin foliations, with trivial

zero-th order Haefliger pA genus, whose spaces of leafwise PSC metrics have infinitely many path connected

components. In particular, these results confirm the idea that the higher order terms of the pA genus carry
important geometric information.

As in [BH21], our work is in the spirit of the transition from the Atiyah-Singer index theorem, [AS68III],
to Connes’ index theorem for foliations, [C79, C81, CS84]. In order to overcome the problems of dealing
with non-compact manifolds, we assume that our objects have bounded geometry. Our higher relative index
theorem then provides the expected formula in an appropriate relative Haefliger cohomology for pairs of
foliations which are isomorphic near infinity, equating the higher relative analytical index constructed out
of parametrices with the higher relative A-hat forms. When the foliations are top dimensional, we recover
the Gromov-Lawson theory [GL83, LM89]. When the foliated manifolds are compact (without boundary),
we recover the cohomological version of the Connes-Skandalis index theorem [CS84], as developed in [BH04]
using Haefliger cohomology. When the foliations are not top-dimensional, any pair of Haefliger transverse
currents which are compatible near infinity lead to scalar higher relative index formulae. We thus recover
the results of our previous paper [BH21] by pairing our higher relative index formula with a compatible pair
of holonomy invariant transverse measures.

As is well known and already observed for closed foliated manifolds, see for instance [BH08, BHW14,
HL99], despite the top-dimensional case, further conditions are required to relate the higher analytic index of
leafwise Dirac operators to their spectral index, say the Connes-Chern characters of the leafwise projections to
their kernels, the so-called index bundle. The examples in [BHW14] show that such restrictions are necessary.
Assuming, as in [BH08], that the spectral projections of the leafwise Dirac operators are sufficiently sparse
near zero and that the foliations are Riemannian, we prove our next higher index theorem which now involves
the relative spectral index. This theorem holds only in the absolute Haefliger cohomologies since the pair
of index bundles is in general not compatible near infinity. This incompatibility can prevent the pairing of
the index bundles with compatible near infinity Haefliger currents from being well defined. Finally, we show
that when the ambient manifolds have sub-exponential growth, such pairings are miraculously well defined
as soon as the Dirac operators are invertible near infinity, and they equal the pairing with the higher relative
A-hat forms. The invertibility near infinity is the usual Gromov-Lawson condition involving the zero-th
order term of the Bochner formula. It occurs for instance when the foliations are spin with leafwise PSC
near infinity, compare with [GL83].

Notational details are given in the next section.

Denote by pM,F q a foliated manifold where M is a non-compact complete Riemannian manifold and F is
an oriented foliation (with the induced metric) ofM . We assume that both M and F are of bounded geometry
and that the holonomy groupoid of F is Hausdorff. We will sometimes assume that F is Riemannian, and
when we do, we will explicitly point it out in the text. The general case will be addressed in [BH23].
We assume that we have a Clifford bundle EM Ñ M over the Clifford algebra of the co-tangent bundle
to F , along with a Hermitian connection ∇F,E compatible with Clifford multiplication. This determines
a leafwise generalized Dirac operator, denoted DF . We assume that we have a second foliated manifold
pM 1, F 1q with the same structures. We further assume that there are compact subspaces KM “ M r VM
and K1M 1 “ M 1 r V 1M 1 so that the situations on VM and V 1M 1 are identical via a smooth isometry ϕ. These
are the usual Gromov-Lawson relative data. Note that in our case, the “bad set” restricted to a leaf need
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not be compact as in the Gromov-Lawson case. Only the global aggregate of all such leafwise subsets needs
to be compact as a subset of M .

In [BH21], we worked on the ambient manifolds M and M 1. Here we work on their holonomy groupoids
G and G1, with their canonical foliations Fs and F 1s, as we did in [BH08]. We lift everything to G using the
range map r : G ÑM , which is a covering map from the leaves of Fs to those of F , and similarly for M 1. In
particular, we have the G invariant leafwise Dirac operator D for the foliation Fs, and similarly D1 for F 1s.

Recall that for a good cover U “ tpUi, Tiqu of M , [HL90], by foliation charts Ui with local complete
transversals Ti Ă Ui, the Haefliger forms associated to F are the bounded smooth differential forms on >Ti
which have compact support in each Ti, modulo forms minus their holonomy images. The (absolute) Haefliger
cohomology of F , denoted H˚c pM{F q, is then the associated de Rham cohomology, and is independent of
the choice of good cover, [Ha80]. Also recall that there is an integration over the leaves map from forms on

M to Haefliger forms, denoted

ż

F

, which induces a map on cohomology. For the foliation given by the fibers

of a bundle M Ñ B, the Haefliger cohomology reduces to the cohomology of the base and

ż

F

is the classical

integration over the fibers map. See again [Ha80] for more details.

The receptacle for our relative index formulae will be a relative version of Haefliger cohomology that we
denote by H˚c pM{F,M

1{F 1;ϕq. This is the cohomology of pairs of Haefliger forms which agree near infinity
(that is, on Ti far enough away from KM and similarly for the T 1i ), again modulo pairs of forms minus their
holonomy images which also agree near infinity.

Denote by ASpDF q the Atiyah-Singer characteristic differential form, associated with the above ϕ-
compatible data, for DF , and similarly for DF 1 . These differential forms agree near infinity on M and
M 1. The relative A-hat genus of the compatible pair pD,D1q, alternatively called the relative topological
index, is

IndtpD,D
1q “

„
ż

F

ASpDF q,

ż

F 1
ASpD1F 1qq



P H˚c pM{F,M
1{F 1;ϕq.

Using parametrices, we define a relative analytical index class IndapD,D
1q in the appropriate K-theory

group, and its Connes-Chern character,

chpIndapD,D
1qq P H˚c pM{F,M

1{F 1;ϕq.

Our first result is

Theorem 4.2 For the pM,F q, pM 1, F 1q, D and D1 as above,

chpIndapD,D
1qq “ IndtpD,D

1q in H˚c pM{F,M
1{F 1;ϕq.

So, pairing with any compatible near infinity pair pC,C 1q of closed Haefliger currents yields a (higher) scalar
relative index formula. Such pairings will be denoted x¨, ¨y, e.g. xchpIndapD,D

1qq, pC,C 1qy.

An important application of this theorem is to pairs of “reflective” foliations, which we consider in Section

6. They can be “cut and pasted” to get a compact foliated manifold xM , with the foliation pF and operator
pD

pF . Given C and C 1 as above, denote by pC the current they determine on xM . Then we have the following
extension of the Gromov-Lawson Relative Index Theorem, see [GL83], which is most useful in Section 7,
where we construct our examples.

Theorem 6.7 Suppose that F (and so also F 1) is reflective. Then

xchpIndapD,D
1q, pC,C 1qy “ xchpIndap pD pF qq,

pCy.

The RHS of this index formula can then be computed using the classical higher cohomological index
theorem for foliations of closed manifolds [C94, BH04]. For top dimensional foliations, say when TF “ TM
and TF 1 “ TM 1, the previous two theorems reduce to the classical Gromov-Lawson relative index theorems.
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Despite the top dimensional case, it is well known that the higher index is not easily related with the
so-called index bundle, i.e. the Chern character of the “kernel minus cokernel superbundle”. Constraints on
the spectral distributions, as well as on the geometry near infinity are necessary, see for instance [BHW14].
Denote by P0 the leafwise spectral projection to the kernel of D2. In general P0 is not transversely smooth
(although it is always leafwise smooth), and if not, we cannot even define its Connes-Chern character in our
Haefliger cohomology without perturbing the operator. There are though interesting classes of foliations and
leafwise Dirac-type operators whose kernel superbundle P0 is transversely smooth, and in this case, we get
a well defined spectral index class

chpP0q P H˚c pM{F q,

and similarly for P 10, see [BH08].

Denote by Pp0,εq the leafwise spectral projection for D2 for the interval p0, εq. The Novikov-Shubin
invariants NSpDq of D are a measure of the density of the image of Pp0,εq. The larger NSpDq is, the sparser
the image of Pp0,εq is as εÑ 0.

We also have the natural map pπˆ π1q : H˚c pM{F,M
1{F 1;ϕq Ñ H˚c pM{F q ˆH

˚
c pM

1{F 1q, and with it the
Riemannian Foliation Relative Index Bundle Theorem.

Theorem 4.3 Fix 0 ď ` ď q{2, where q is the codimension of F and F 1. Assume that:

‚ the foliations F and F 1 are Riemannian;
‚ the leafwise operators P0, P 10, Pp0,εq and P 1

p0,εq (for ε sufficiently small) are transversely smooth;

‚ NSpDq and NSpD1q are greater than `.

Then, for 0 ď k ď `, we have in H2k
c pM{F q ˆH

2k
c pM

1{F 1q

pπ ˆ π1q chkpIndapD,D
1qq “ pchkpIndapDqq, ch

k
pIndapD

1qqq “ pchkpP0q, ch
k
pP 10qq.

For Riemannian foliations, important examples of compatible near infinity pairs of closed Haefliger currents
are given by closed bounded holonomy invariant transverse differential forms ω on M and ω1 on M 1 which
agree near infinity. These determine closed bounded Haefliger forms on T , denoted ωT and ω1T 1 which agree
near infinity. Denote by dx the global volume form on M .

We then have the Higher Relative Index Pairing Theorem.

Theorem 4.6 In addition to the assumptions in Theorem 4.3, assume that for ε sufficiently small,
ż

M

trpPr0,εqqdx ă 8 and

ż

M 1

trpP 1r0,εqqdx ă 8, and that M , and so also M 1, has sub-exponential growth.

Then, for any ω P C8p^q´2kν˚q and ω1 P C8p^q´2kν1
˚
q (0 ď k ď `) as above,

ż

T

chpP0q ^ ωT and

ż

T 1
chpP 10q ^ ω

1
T 1 are well defined complex numbers,

and
ż

T

chpP0q ^ ωT ´

ż

T 1
chpP 10q ^ ω

1
T 1 “ x

„
ż

F

ASpDF q, p

ż

F 1
ASpD1F 1q



, rωT , ω
1
T 1sy.

In Section 6, we show that the finite integral assumptions in Theorem 4.6 are satisfied when DF (and hence
also DF 1) is invertible near infinity, i.e. when the zeroth order differential operator RE

F in the associated
Bochner Identity

D2
F “ ∇˚∇`RE

F ,

is uniformly positive near infinity on M . The sub-exponential growth condition can be extended to expo-
nential growth provided it is not too robust. See Remark 5.7.

For a single foliated manifold with a pair of compatible near infinity leafwise Dirac operators, we have
the following generalization of a classical result of Gromov-Lawson [GL83], compare with Theorem 6.5 in
[LM89].
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Theorem 6.5 Suppose that E and E1 are two Clifford bundles over the foliated manifold pM,F q, which
are isomorphic off the compact subset KM , with associated twisted Dirac operators D and D1. Let ω be a
bounded closed holonomy invariant transverse form (or Haefliger current) of degree ` ď q. Suppose that

‚ M has sub-exponential growth, and F is Riemannian;
‚ the leafwise operators P0, P 10, Pp0,εq and P 1

p0,εq (for ε sufficiently small) are transversely smooth;

‚ minpNSpDq, NSpD1qq is greater than `;

‚ RE
F , and hence also RE1

F , is uniformly positive near infinity.

Then, since chpEq “ chpE1q off KM ,
ż

KM
pASpDF qpchpEq ´ chpE1qq ^ ω “

ż

T

`

chpP0q ´ chpP 10q
˘

^ ωT .

In the reflective case, again more constraints are necessary to obtain the link with the index bundle, and
we have the following.

Theorem 6.8 Suppose that F (so also F 1) is reflective. Suppose furthermore that pF is Riemannian and

that pP0 and pPp0,εq are transversely smooth and the Novikov-Shubin invariants of pD
pF are greater than `, for

some 0 ď ` ď q{2. Then for any 2` homogeneous ϕ-compatible pω, ω1q as above,

xchpIndapD,D
1qq, rωT , ω

1
T 1sy “ xpchp

pP0q, pω pT y.

Moreover, if we impose the assumptions of Theorem 4.6, then

xpchpP0q, chpP0qq, pωT , ω
1
T 1qy “ xpchp pP0q, pω pT y.

In Section 7, we consider foliations which admit positive scalar curvature (PSC) leafwise metrics. Given
such a foliation, we associate to any pair pg0, g1q of such metrics, an invariant living in Haefliger cohomology,
which provides an obstruction for the leafwise path connected equivalence of g0 and g1. This precisely
generalizes the classical Gromov-Lawson invariant. Finally, we construct a large collection of spin foliations
whose space of leafwise PSC metrics has infinitely many path connected components.

Acknowledgements. MTB thanks the french National Research Agency for support via the project ANR-14-
CE25-0012-01 (SINGSTAR). JLH thanks the Simons Foundation for a Mathematics and Physical Sciences-
Collaboration Grant for Mathematicians, Award Number 632868.

2. The Setup

Denote by M a smooth non-compact complete Riemannian manifold of dimension n, and by F an oriented
foliation (with the induced metric) of M of dimension p, (until further notice, we assume that p is even),
and codimension q “ n ´ p. The tangent and cotangent bundles of M and F are denoted TM, T˚M,TF
and T˚F . The normal and dual normal bundles of F are denoted ν and ν˚. A leaf of F is denoted by L. At
times, we will assume that F is Riemannian, that is the metric on M , when restricted to ν is bundle like, so
the holonomy maps of ν and ν˚ are isometries. We will consider the general case in [BH23].

We assume that both M and F are of bounded geometry, that is, the injectivity radius on M and on all
the leaves of F is bounded below, and the curvatures and all of their covariant derivatives on M and on all
the leaves of F are bounded (the bound may depend on the order of the derivative).

Let U be a good cover of M by foliation charts as defined in [HL90]. In particular, denote by Dpprq “ tx P
Rp, ||x|| ă ru, and similarly for Dqprq. An open locally finite cover tpUi, ψiqu of M by foliation coordinate
charts ψi : Ui Ñ Dpp1q ˆ Dqp1q Ă Rn is a good cover for F provided that

(1) For each y P Dqp1q, Py “ ψ´1
i pDpp1q ˆ tyuq is contained in a leaf of F . Py is called a plaque of F .

(2) If U i X U j ‰ H, then Ui X Uj ‰ H, and Ui X Uj is connected.

(3) Each ψi extends to a diffeomorphism ψi : Vi Ñ Dpp2q ˆ Dqp2q, so that the cover tpVi, ψiqu satisfies
p1q and p2q, with Dpp1q and Dqp1q replaced by Dpp2q and Dqp2q.
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(4) Each plaque of Vi intersects at most one plaque of Vj and a plaque of Ui intersects a plaque of Uj if
and only if the corresponding plaques of Vi and Vj intersect.

(5) There are global positive upper and lower bounds on the norms of each of the derivatives of the ψi.

Bounded geometry foliated manifolds always admit good covers.

For each Ui P U , let Ti Ă Ui be a local complete transversal (e.g. Ti “ ψ´1
i pt0u ˆ Dqp1qq) and set

T “
Ť

Ti. We may assume that the closures of the Ti are disjoint. Given pUi, Tiq and pUj , Tjq, suppose
that γij` : r0, 1s Ñ M is a path whose image is contained in a leaf with γij`p0q P Ti and γij`p1q P Tj . Then
γij` induces a local diffeomorphism hγij` : Ti Ñ Tj , with domain Domγij` and range Ranγij` . The space

Ak
c pT q consists of all smooth k-forms on T which are C8 bounded and have compact support in each Ti.

The Haefliger k-forms for F , denoted Ak
c pM{F q, consists of elements in the quotient of Ak

c pT q by the closure
of the vector subspace W generated by elements of the form αij`´h

˚
γij`

αij` where αij` P Ak
c pT q has support

contained in Ranγij` . We need to take care as to what this means. Members of W consist of possibly infinite
sums of elements of the form αij`´h

˚
γij`

αij`, with the following restrictions: each member of W has a bound
on the leafwise length of all the γij` for that member, and each γij` occurs at most once. Note that these
conditions plus bounded geometry imply that for each member of W, there is n P N so that the number of
elements of that member having Domγij` contained in any Ti is less than n, and that each Ui and each Uj
appears at most a bounded number of times. The projection map is denoted

r¨s : A˚c pT q Ñ A˚c pM{F q.

Denote the exterior derivative by dT : Ak
c pT q Ñ Ak`1

c pT q, which induces dH : Ak
c pM{F q Ñ Ak`1

c pM{F q.
Note that Ak

c pM{F q and dH are independent of the choice of cover U . The cohomology H˚c pM{F q of the
complex tA˚c pM{F q, dHu is the Haefliger cohomology of F .

Denote by A˚upMq the space of differential forms on M which are smooth and C8 bounded, and denote
its exterior derivative by dM and its cohomology by H˚u pM ;Rq. As the bundle TF is oriented, there is a
continuous open surjective linear map, called integration over F ,

ż

F

: Ap`k
u pMq Ñ Ak

c pT q,

which commutes with the exterior derivatives. This map is given by choosing a partition of unity tφiu

subordinate to the cover U , and setting

ż

F

ω to be the class of
ÿ

i

ż

Ui

φiω. It is a standard result, [Ha80],

that the image of this differential form
”

ż

F

ω
ı

P Ak
c pM{F q is independent of the partition of unity and of

the cover U . As

ż

F

commutes with dM and dH , it induces the map

ż

F

: Hp`k
u pM ;Rq Ñ Hk

c pM{F q.

Note that

ż

Ui

is integration over the fibers of the projection Ui Ñ Ti, and that each integration ω Ñ

ż

Ui

φiω

is essentially integration over a compact fibration, so

ż

F

satisfies the Dominated Convergence Theorem on

each Ui P U .

The holonomy groupoid G of F consists of equivalence classes of paths γ : r0, 1s ÑM such that the image
of γ is contained in a leaf of F . Two such paths γ1 and γ2 are equivalent if γ1p0q “ γ2p0q, γ1p1q “ γ2p1q, and
the holonomy germ along them is the same. Two classes may be composed if the first ends where the second
begins, and the composition is just the juxtaposition of the two paths. This makes G a groupoid. The space
Gp0q of units of G consists of the equivalence classes of the constant paths, and we identify Gp0q with M .

The basic open sets defining the (in general non-Hausdorff) 2p`q dimensional manifold structure of G are
given as follows. Given Ui, Uj P U and a leafwise path γij` starting in Ui and ending in Uj , define the graph
chart Uiˆγij`Uj to be the set of equivalence classes of leafwise paths starting in Ui and ending in Uj which are
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homotopic to γij` through a homotopy of leafwise paths whose end points remain in Ui and Uj respectively.
It is easy to see, using the holonomy map hγij` : Ti Ñ Tj that Ui ˆγij` Uj » Dpp1q ˆ Dpp1q ˆ Dqp1q.

G has the natural the maps r, s : G Ñ M , with sprγsq “ γp0q and rprγsq “ γp1q. It also has has two
natural foliations, Fs and Fr, whose leaves are the fibers of s and r. We will primarily use Fs, whose leaves

are denoted rLx “ s´1pxq, for x P M . Note that r : rLx Ñ L is the holonomy covering map. We will assume
that G is Hausdorff, which is automatic for Riemannian foliations.

The smooth sections of a bundle E are denoted by C8pEq, and those with compact support by C8c pEq.
We assume that any connection or any metric on E, and all their derivatives, are bounded. See [Sh92] for
material about bounded geometry bundles and their properties.

For a real or complex bundle EM Ñ M , the external tensor product bundle EM b E˚M Ñ M ˆ M
can be pulled back under ps, rq to a smooth bundle denoted E b E˚ over G. We denote the smooth,
bounded sections kpγq with compact support of the restriction of this bundle to subset Ui ˆγij` Uj Ă G by
C8c pUi ˆγij` Uj , E b E˚q. We extend them to all of G by by setting kpγq “ 0 if γ R Ui ˆγij` Uj .

Definition 2.1. [BH18] The algebra C8u pE b E˚q consists of smooth sections k of E b E˚, called kernels,
such that k is a (possibly infinite) sum k “

ř

ij` kij`, with each kij` P C
8
c pUi ˆγij` Uj , E b E˚q. For each

k, we require that there is a bound on the leafwise length of its γij`, and that each index ij` occurs at most
once. We further require that for each k, each of its derivatives in the local coordinates given by the good
cover is bounded, with the bound possibly depending on the particular derivative.

The proof of Lemma 2.3 of [BH08] shows that this is indeed an algebra. Each k P C8u pE bE˚q defines a
G-invariant leafwise smoothing operator on C8c pEq in the sense of [C79], which is transversely smooth and
has finite propagation. See [Sh92] for the definition of bounded geometry smoothing operators, as well as

[NWX96] for the groupoid version. To see this, use the leafwise distance function dxpγ, pγq on rLx. This is
defined as the infimum over the leafwise length lpγpγ´1q of all paths in the class of γpγ´1 P G. For any bounded
geometry foliation with Hausdorff holonomy groupoid, the sets Ui ˆγij` Uj have the property that there is a
universal constant (namely the bound C on the diameters of all the placques in all the Ui ˆγij` Uj), so that
for all γ P Ui ˆγij` Uj , we have lpγq ď lpγij`q ` 2C. Next, suppose that kij` P C

8
c pUi ˆγij` Uj , E b E˚q, and

σ P C8c pEq. Then,

kij`pσqpγq “

ż

rLspγq

kij`pγpγ
´1qσppγqdpγ.

Now, kij`pγpγ
´1q “ 0 unless γpγ´1 P Ui ˆγij` Uj , that is only if lpγpγ´1q “ dspγqpγ, pγq ď lpγij`q ` 2C, the

very definition of finite propagation. The restrictions imposed on each kij` imply that each Ui and each Uj
appears at most a bounded number of times, so the sum converges locally uniformly, in particular pointwise.
These restrictions on k insure that it also has bounded propagation.

Denote by DF a generalized leafwise Dirac operator for the even dimensional foliation F . It is defined
as follows. Let EM be a complex vector bundle over M with Hermitian metric and connection, which is of
bounded geometry. Assume that the tangent bundle TF is spin with a fixed spin structure. Because F is
even dimensional, the bundle of spinors along its leaves, denoted SF splits as SF “ S`F ‘ S´F . Denote by
∇F the Levi-Civita connection on each leaf L of F . ∇F induces a connection ∇F on SF |L, and we denote
by ∇F,E the tensor product connection on SF bEM |L. These data determine a smooth family DF “ tDLu

of leafwise Dirac operators, where DL acts on sections of SF b EM |L as follows. Let X1, . . . , Xp be a local
oriented orthonormal basis of TL, and set

DL “

p
ÿ

i“1

ρpXiq∇F,E
Xi

where ρpXiq is the Clifford action of Xi on the bundle SF bEM |L. Then DL does not depend on the choice
of the Xi, and it is an odd operator for the Z2 grading of SF b EM “ pS`F b EM q ‘ pS´F b EM q. Thus
DF : C8c pS˘F b EM q Ñ C8c pS¯F b EM q, and D2

F : C8c pS˘F b EM q Ñ C8c pS˘F b EM q. For more on the
generalized Dirac operators that we are using here, see [LM89].
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Given a leafwise operator A on SbEb^ν˚s , denote its leafwise Schwartz kernel by kA. Then, depending
on the context and under appropriate assumptions on kA, the Haefliger traces, TrpAq and TrpAq, of A are
defined to be,

TrpAq “

ż

F

trpkApx, xqqdxF P A˚c pM{F q and TrpAq “

„
ż

F

trpkApx, xqqdxF



P H˚c pM{F q,

where dxF is the leafwise volume form associated with the fixed orientation of the foliation F . The element
x P rLx is the class of the constant path at x P L Ă M . See again for instance [BH04] for more details on
these constructions.

Now suppose that we have the situation in Section 4 of the companion paper [BH21]. That is, we have:

‚ foliated manifolds pM,F q and pM 1, F 1q;
‚ Clifford bundles EM ÑM and EM 1 ÑM 1, with Clifford compatible Hermitian connections;
‚ leafwise Dirac operators DF and DF 1 ;
‚ compact subspaces KM “M r VM and K1M 1 “M 1 r V 1M 1 ;
‚ an isometry ϕ : VM Ñ V 1M 1 with ϕ´1pF 1q “ F ;

‚ an isomorphism φ : EM |VM Ñ E1M 1 |V 1
M1

, covering ϕ, with φ˚p∇F 1,E1 |V 1
M1
q “ ∇F,E |VM .

The pair Φ “ pφ, ϕq is thus a bundle morphism from EM |VM to E1M 1 |V 1M 1 . The well defined (since they are
differential operators) restrictions of DF and DF 1 to the sections over VM and V 1M 1 agree through Φ, i.e.

pΦ´1q˚ ˝DF ˝ Φ˚ |V 1
M1
“ DF 1 |V 1

M1
.

Such operators are called Φ compatible. Without loss of generality, we may assume that KM and K1M 1 are
the closures of open subsets of M and M 1 respectively.

Recall the following material from [BH21]. Denote by g : M Ñ r0,8q and g1 : M 1 Ñ r0,8q compatible
smooth approximations to the distance functions dM pKM , xq and dM 1pK1M 1 , x1q, where dM and dM 1 are the
distance functions on M and M 1. So we assume that g and g1 are 0 on KM and K1M 1 respectively and they
satisfy g1 ˝ ϕ “ g. Hence, for s ě 0, the open submanifolds Mpsq “ tg ą su and M 1psq “ tg1 ą su agree
through ϕ, that is ϕpMpsqq “M 1psq and g|Mpsq “ g1 ˝ ϕ|Mpsq. For s ě 0 denote by Ts the set

Ts “ tTi Ă T | Ti XMpsq ‰ Hu,

and similarly for T 1s.

Suppose that pζ, ζ 1q PW ˆW 1 Ă A˚c pT q ˆA˚c pT 1q, with ζ “
ř

pα,γq α´ h
˚
γα and ζ 1 “

ř

pα1,γ1q α
1 ´ h˚γ1α

1.

For simplicity, we have dropped the subscripts. The vector subspace WˆϕW 1 ĂWˆW 1 consists of elements
pζ, ζ 1q which are ϕ compatible. This means that all but a finite number of the pα, γq and pα1, γ1q are paired,
that is

α “ ϕ˚pα1q and γ1 “ ϕ ˝ γ, so α´ h˚γα “ ϕ˚pα1 ´ h˚γ1α
1q.

Definition 2.2. Given β P A˚c pT q and β1 P A˚c pT 1q, the pair pβ, β1q is ϕ-compatible if there exists s ě 0 so
that β “ ϕ˚pβ1q on Ts. Set

A˚c pM{F,M 1{F 1;ϕq “ tpβ, β1q P A˚c pT q ˆA˚c pT 1q | pβ, β1q is ϕ compatibleu{pW ˆϕ W 1q.

The de Rham differentials on A˚c pT q and A˚c pT 1q yield a well defined relative Haefliger complex, whose
homology spaces are denoted

H˚c pM{F,M
1{F 1;ϕq “ ‘0ďkďqH

k
c pM{F,M

1{F 1;ϕq,

and there are well defined graded maps,

π : H˚c pM{F,M
1{F 1;ϕq Ñ H˚c pM{F q and π1 : H˚c pM{F,M

1{F 1;ϕq Ñ H˚c pM
1{F 1q.

which are induced by the projections

A˚c pM{F,M 1{F 1;ϕq Ñ A˚c pM{F q and A˚c pM{F,M 1{F 1;ϕq Ñ A˚c pM 1{F 1q.
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Definition 2.3. Suppose pξ, ξ1q P A˚c pM{F,M 1{F 1;ϕq, and let C and C 1 be closed (bounded) ϕ compatible
holonomy invariant Haefliger currents. Set

xpξ, ξ1q, pC,C 1qy “ lim
sÑ8

`

Cpξ|TrTsq ´ C
1pξ1|T 1rT 1sq

˘

.

This is well defined because any representative in pξ, ξ1q is ϕ compatible, so the right hand side is eventually
constant. In addition, every pζ, ζ 1q PW ˆϕ W 1 is ϕ compatible, so satisfies

lim
sÑ8

`

Cpζ|TrTsq ´ C
1pζ 1|T 1rT 1sq

˘

“ 0.

To see this, recall that there is a global bound on the leafwise length of the γ and γ1 in ζ and ζ 1. This, and
the fact that there are only finitely many unpaired pα, γq and pα1, γ1q, insures that for large s, every unpaired
pα, γq will have both Domγ and Ranγ Ă T rTs, so Cpα´h˚γαq will be zero, and similarly for every unpaired
pα1, γ1q. Those pα, γq and pα1, γ1q which are paired and appear in the integration, will have Domγ and/or
Ranγ Ă T rTs with corresponding Domγ1 and/or Ranγ1 Ă T 1rT 1s. In both cases, their integrals will cancel.

Remark 2.4. Examples of such currents include the following.

(1) Invariant transverse measures Λ and Λ1 on T and T 1 which are ϕ compatible as in [BH21].
(2) Suppose ω P C8p^˚ν˚q and ω1 P C8p^˚ν1

˚
q are closed holonomy invariant forms on M and M 1

which are ϕ compatible. They determine ϕ compatible closed holonomy invariant currents, also
denoted ωT and ω1T 1 . In particular,

xpξ, ξ1q, pωT , ω
1
T 1qy “ lim

sÑ8

˜

ż

TrTs
ξ ^ ωT ´

ż

T 1rT 1s
ξ1 ^ ω1T 1

¸

.

Here ωT “ ω |T , which is well defined and is holonomy invariant, as is ω1T 1 .
For Riemannian foliations, examples of this type abound. In particular, the characteristic forms

of holonomy invariant bundles which agree at infinity, for example ^jν˚bpb`νq, and ^jν1˚bpb`ν1q.
For definiteness, we will generally use this example in the sequel, but all the statements obviously

remain valid with more general holonomy invariant currents.

In this paper, we will have a number of different pairings, which will be uniformly indicated by the notation
x¨, ¨y. The notation should make clear where the objects live. For example, we have

x

„
ż

F

ASpDF q,

ż

F 1
ASpD1F 1q



, rωT , ω
1
T 1sy “

ż

T

ˆ
ż

F

ASpDF q

˙

^ ωT ´

ż

T 1

ˆ
ż

F 1
ASpD1F 1q

˙

^ ω1T 1 ,

and

xpchpP0q, chpP0qq, pωT , ω
1
T 1qy “

ż

T

chpP0q ^ ωT ´

ż

T 1
chpP 10q ^ ω

1
T 1

In the first case, the terms in the pairing live in relative Haelfliger cohomology. In the second, the terms are
pairs of bounded Haefliger forms, and the second pair happen to agree near infinity.

3. Chern characters in Haefliger cohomology

We recall in this section the main steps in the construction of the Chern character in Haefliger cohomology
and explain how they immediately extend to the case of a pair of foliations which are compatible near infinity.
In this latter case, our Chern character takes values in a relative version of Haefliger cohomology that we
introduce below.

In [BH21] we worked on M , while in [H95, HL99, BH04, BH08], we worked on G, which we will also do
here, but our basic data will be taken from the ambient manifolds. The results in [BH21] extend readily to
G with the only change being that the spectral projections used on G are for the operator lifted to Fs. This
represents another extension, in the spirit of Connes’ extensions in [C79, C81], of the classical Atiyah L2

covering index theorem, [A76]. In addition, as will be explained below, the results in the above cited papers
where M was assumed to be compact still hold provided both M and F are of bounded geometry and we
use our definition of the Haefliger cohomology.
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All the data in the previous section may be lifted to pG, Fsq using the map r : G Ñ M . The notation we
will use is obtained from that above by:

EM Ñ E; SF Ñ S; ∇F,E Ñ ∇; LÑ rLx; DF Ñ D; DL Ñ Dx.

Thus the smooth G invariant family D “ tDxu of leafwise Dirac operators acting on sections of S b E|rLx is

given as follows. Let X1, . . . , Xp be a local oriented orthonormal basis of T rLx. Then,

Dx “

p
ÿ

i“1

ρpXiq∇Xi : C8c pGx,S˘ bEq Ñ C8c pGx,S¯ bEq and D2
x : C8c pGx,S˘ bEq Ñ C8c pGx,S¯ bEq.

Denote by ^ν˚s , the exterior powers of the dual normal bundle ν˚s of Fs “ r˚F, which we identify with
s˚pT˚Mq “ s˚pTF˚q ‘ s˚pν˚q so that each C8c pS b E b ^ν˚s q is an Ω˚pMq-module. We extend D to an
Ω˚pMq-equivariant operator

D : C8c pS b E b^ν˚s q ÝÑ C8c pS b E b^ν˚s q,

by using the leafwise flat connection on ^ν˚s determined by the pull-back of the Levi-Civiti connection on
T˚M .

In [BH08], we used the traces Tr and Tr to define Connes-Chern characters in H˚c pM{F q for operators on
C8c pS b Eq. For the leafwise spectral projection P0 onto the kernel of D2, when this latter is smooth, this
is denoted,

chpP0q P H˚c pM{F q.

We also proved that if M is compact and IndapDq is Connes’ K-theory index class defined in terms of a
parametrix for D, then under the usual regularity assumption, chpP0q “ chpIndapDqq. We now extend these
notions to our situation.

We now return to our compatible foliations pM,F q and pM 1, F 1q and their holonomy groupoids G and
G1. First, we lift the compatibility data Φ to G and denote again the corresponding data by Φ, which gives
an equivalence off (the generally non-compact subsets) K “ r´1pKM q and K 1 “ pr1q´1pKM 1q, that is on
the subsets V “ r´1pVM q and V 1 “ pr1q´1pVM 1q. In [BH08], we defined an algebra of super-exponentially
decaying G´operators on C8c pS b E b ^ν˚s q. Here we need a stronger condition on our operators, namely
that they have finite propagation. This is provided by using operators from the algebra C8u ppSbEb^ν˚s qb

pS b E b ^ν˚s q
˚q, which we denote simply as C8u pFsq. Any A “ pAxqxPM P C8u pFsq defines a leafwise

(smoothing) G´operator on C8c pSbEb^ν˚s q which has uniform finite propagation, and its Schwartz kernel
is smooth in all variables, with all derivatives being globally bounded, the bounds possibly depending on the
derivatives.

Using the algebra C8u pFsq, we have a K-theory index class represented by idempotents constructed from a
parametrix, and this K-index does not depend on the parametrix, so its Connes-Chern character is also inde-

pendent of the parametrix. In particular, as D is an odd super operator, we may write D “

„

0 D´

D` 0



.

Suppose that Qt is a smooth (in t) family of leafwise parametrices for D. That is, each Qt is an odd operator
which is smooth in all variables, and which has finite propagation remainders, namely the even operators

St “ IS`bE ´Qt
´D` and Rt “ IS´bE ´D

`Qt
´.

For t ą 0, set, as in [BH08],

At “

»

–

S2
t Q´t pRt `R

2
t q

RtD
` ´R2

t

fi

fl .

Then At has finite propagation, is smooth in all variables, and is a bounded leafwise smoothing operator,
that is, At P C

8
u pFsq. Set π´ “ diagp0, IS´bEq, and π` “ diagpIS`bE , 0q. Then At ` π´ is an idempotent

as is π´. Set

IndapDq “ rAt ` π´s ´ rπ´s P K0pC
8
u pFsqq.
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Since At`π´ is a smooth family of idempotents, it follows from results of [BH04] that IndapDq is independent
of t. Since any two parametrices can be joined in a smooth family, it follows immediately that IndapDq does
not depend on the parametrix.

For details of the following, see [BH08], Section 3, where we define the quasi-connection,

C8pS b E b^ν˚s q
∇ν
ÝÑ C8pS b E b^ν˚s q.

Given an operator A on S b E b^ν˚s , denote by

Bν : EndpC8pS b E b^ν˚s qq Ñ EndpC8pS b E b^ν˚s qq

the linear operator given by the graded commutator

BνpAq “ r∇ν , As.

Set θ “ p∇νq2, which is a leafwise differential operator with coefficients in ^ν˚s . Since B2
ν is not necessarily

zero, we used Connes’ X-trick in [BH08] to construct a new differential operator δ out of Bν and θ, whose
square is zero. Note carefully that δA is nilpotent since it always contains a coefficient from ^ν˚ě1

s .

Corollary 3.7 of [BH08] states,

Proposition 3.1. The Haefliger form Tr
´

At exp
”

´pδAtq
2

2iπ

ı¯

is closed, and the Haefliger class

Tr
´

At exp
”

´pδAtq
2

2iπ

ı¯

is independent of t.

Definition 3.2. The Connes-Chern character of IndapDq is,

chpIndapDqq “ Tr
´

At exp

„

´pδAtq
2

2iπ



¯

P H˚c pM{F q.

We have the same constructions for D1. In Section 5, we construct families of parametrices Qt and Q1t
directly from D and D1 in such a way that their remainders are Φ compatible, so also are At and A1t.

For pairs pA,A1q of operators from C8u pFsq ˆ C8u pF
1
sq which are Φ-compatible, there is also an algebra

C8u pFs, F
1
s; Φq, and the previous construction of the analytic index class extends immediately to yield the

relative analytic index class

IndapD,D
1q “ rpAt ` π´, A

1
t ` π

1
´s ´ rpπ´, π

1
´qs P K0pC

8
u pFs, F

1
s; Φqq.

The Connes-Chern character then extends to the relative case

ch : K0pC
8
u pFs, F

1
s; Φqq ÝÑ H˚c pM{F,M

1{F 1;ϕq,

with the obvious definition (see [BH08], Theorem 3.2 for the notation below and more precise details),

chprẽ, ẽ1sq “

„

Tr

ˆ

e exp

ˆ

´pδeq2

2iπ

˙˙

,Tr

ˆ

e1 exp

ˆ

´pδe1q2

2iπ

˙˙

P H˚c pM{F,M
1{F 1;ϕq.

Definition 3.3. Suppose the parametrices Qt and Q1t have Φ compatible remainders, so with Φ compatible
operators At and A1t. Then the relative Connes-Chern character of IndapD,D

1q is given by

chpIndapD,D
1qq “

„

Tr

ˆ

At exp

ˆ

´pδAtq
2

2iπ

˙˙

,Tr

ˆ

A1t exp

ˆ

´pδA1tq
2

2iπ

˙˙

P H˚c pM{F,M
1{F 1;ϕq.

The class chpIndapD,D
1qq is clearly well defined due to its independence of the Φ-compatible pair of

finite propagation parametrices. This is proved below, see Theorem 5.5, where we also point out that it is
independent of the parameter t.
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4. Four Theorems

Our first main theorem is the following extension of a classical Atiyah-Singer Index Theorem. This
theorem is purely local and, as in [BH21], requires bounded geometry.

Denote by rASpDF qs the Atiyah-Singer characteristic class for DF , and similarly for D1F 1 . Note that for
large s, the differential forms satisfy ASpDF q “ ϕ˚pASpD1F 1qq on Ms, so

ˆ
ż

F

ASpDF q,

ż

F 1
ASpD1F 1qq

˙

P A˚c pM{F,M 1{F 1;ϕq.

Definition 4.1. The relative topological index of pD,D1q is,

IndtpD,D
1q “

„
ż

F

ASpDF q,

ż

F 1
ASpD1F 1qq



P H˚c pM{F,M
1{F 1;ϕq.

Theorem 4.2. [The Higher Relative Index Theorem] Suppose that pM,F q, pM 1, F 1q, D and D1 are as in
Section 2. In particular, F and F 1 need not be Riemannian. Then,

chpIndapD,D
1qq “ IndtpD,D

1q P H˚c pM{F,M
1{F 1;ϕq

In particular, for any closed ϕ-compatible pair pC,C 1q of holonomy invariant closed Haefliger currents, the
following scalar formula holds

xchpIndapD,D
1qq, rC,C 1sy “ lim

sÑ`8

ˆ

x

ż

F

ASpDF q|TrTs , Cy ´ x

ż

F 1
ASpD1F 1q|T 1rT 1s , C

1y

˙

.

.

Denote by Pp0,εq the spectral projection for D2 for the interval p0, εq. The Novikov-Shubin invariants
NSpDq of D are greater than k ě 0 provided that there is τ ą k so that

TrpPp0,εqq is Opετ q as εÑ 0.

A Haefliger form Ψ depending on ε is Opετ q as εÑ 0 means that there is a representative ψ P Ψ defined on
a transversal T , and a constant C ą 0, so that the function on T , }ψ}T ď Cετ as ε Ñ 0. Here } }T is the
pointwise norm on forms on the transversal T induced from the metric on M .

Recall that P0 is the spectral projection onto the kernel of D2. In general the leafwise operators Pp0,εq
and P0 are not transversely smooth (although they are always leafwise smooth), so that, in general, their
Haefliger traces in A˚c pM{F q are not defined. When P0 is transversely smooth, see [BH08], Definition 3.8,

chpP0q “ Tr
´

π˘P0 exp

ˆ

´pδpπ˘P0qq
2

2iπ

˙

¯

P H˚c pM{F q,

and similarly for P 10. Here π˘ is the grading operator

π˘ “ diagpIS`bE ,´ IS´bEq.

When Pp0,εq is transversely smooth,

chpPp0,εqq “ Tr
´

π˘Pp0,εq exp

ˆ

´pδpπ˘Pp0,εqqq
2

2iπ

˙

¯

P H˚c pM{F q,

and similarly for P 1
p0,εq For simplicity of notation, we will uniformly suppress the constant 2iπ in what follows.

As the closed Haefliger differential forms Trpπ˘P0 exp
`

´pδpπ˘P0qq
2
˘

q and Trpπ1˘P
1
0 exp

`

´pδpπ1˘P
1
0qq

2
˘

q are
not ϕ compatible in general, we proceed as follows.

The component of chpIndapD,D
1qq in H2k

c pM{F,M
1{F 1;ϕq is denoted chkpIndapD,D

1qq, and the part of

chpIndapP0q in H2k
c pM{F q is denoted chkpP0qq, and similarly for P 10.

The following theorem generalizes the main result of [BH08] to bounded geometry foliations.

Theorem 4.3. [Riemannian Foliation Relative Index Bundle Theorem] Fix 0 ď ` ď q{2, where q is the
codimension of F and F 1. Assume that:
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‚ the foliations F and F 1 are Riemannian;
‚ the leafwise operators P0, P 10, Pp0,εq and P 1

p0,εq (for ε sufficiently small) are transversely smooth;

‚ NSpDq and NSpD1q are greater than `.

Then, for 0 ď k ď `, we have in H2k
c pM{F q ˆH

2k
c pM

1{F 1q

pπ ˆ π1q chkpIndapD,D
1qq “ pchkpIndapDqq, ch

k
pIndapD

1qqq “ pchkpP0q, ch
k
pP 10qq.

Remarks 4.4.

(1) If the foliations F and F 1 are not Riemannian then we can still prove this equality but under the
stronger assumption that NSpDq and NSpD1q be greater than 3q, see [HL99, BH23].

(2) The examples in [BHW14] show that the conditions on the Novikov-Shubin invariants are the best
possible.

(3) Note that if there are uniform gaps in the spectrums at 0, that is there is ε ą 0 so Pp0,εq “ P 1
p0,εq “ 0,

then Pp0,εq and P 1
p0,εq are transversely smooth and the Novikov-Shubin invariants are infinite. For top

dimensional foliations, i.e. TF “ TM , these special cases were studied for instance in [Vi67, Do87].

Combining Theorem 4.2 and Theorem 4.3, we immediately deduce the following important corollary.

Theorem 4.5. Under the assumptions of Theorem 4.3, assume furthermore that P0 “ P 10 “ 0, then
ˆ
ż

F

ASpDF q,

ż

F 1
ASpD1F 1q

˙

“ p0, 0q in H˚c pM{F q ˆH
˚
c pM

1{F 1q.

So the vanishing conclusion of the previous theorem holds in particular when there exists ε ą 0 such that
Pr0,εq “ 0 and P 1

r0,εq “ 0.

Denote by ω P C8p^˚ν˚q and ω1 P C8p^˚ν1
˚
q closed bounded holonomy invariant differential forms on

M and M 1 which are ϕ compatible. For simplicity, we will assume that ω and ω1 are ϕ compatible on VM
and V 1M 1 . These determine ϕ compatible closed bounded Haefliger forms on T , denoted ωT and ω1T 1 . Recall
that dx is the global volume form on M .

Theorem 4.6. [Higher Relative Index Pairing Theorem] In addition to the assumptions in Theorem 4.3,
assume the following:

‚ for ε sufficiently small, Pr0,εq satisfies

ż

M

trpPr0,εqqdx ă 8, and similarly for P 1
r0,εq;

‚ M , and so also M 1, has sub-exponential growth.

Then, for any homogeneous ω P C8p^q´2kν˚q and ω1 P C8p^q´2kν1
˚
q as above, (0 ď k ď `),

ż

T

chpP0q ^ ωT and

ż

T 1
chpP 10q ^ ω

1
T 1 are well defined complex numbers,

and
ż

T

chpP0q ^ ωT ´

ż

T 1
chpP 10q ^ ω

1
T 1 “ x

„
ż

F

ASpDF q,

ż

F 1
ASpD1F 1q



,
“

ωT , ω
1
T 1
‰

y.

Remarks 4.7.

(1) Since the pair of Connes-Chern characters of P0 and P 10 is usually not ϕ-compatible, the previous
theorem is totally new and we cannot deduce it from any absolute version of the index bundle theorem.
This is compatible with the classical relative index theorem.

(2) The theorem also holds for appropriate closed ϕ compatible closed holonomy invariant currents, but
this more general statement will not be needed for our applications.

(3) We shall see in Section 6 that the finite integral assumptions are satisfied when the zero-th order
operator RE

F defined there in the Bochner formula is strictly positive near infinity. As RE
F is locally

defined, this means that RE1

F 1 is also strictly positive near infinity.
(4) The growth condition is a technical assumption which simplifies the proof, it can be weakened as

explained in Remark 5.7
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(5) The main theorem in [BH21] recovers the Gromov-Lawson relative index theorem in full generality
for bounded geometry manifolds, which correspond to top-dimensional foliations. Our results here
require more conditions to deal with the higher components of the Connes-Chern character, and it
only recovers the Gromov-Lawson results for sub-exponential bounded geometry manifolds. Recall
that in the top-dimensional case, Gromov-Lawson show that there is ε ą 0 so that Pp0,εq “ 0, and
ż

M

trpP0qdx ă 8, so all the other assumptions of Theorems 4.3 and 4.6 are fulfilled.

5. Proofs of the Theorems

This section is devoted to the proofs of Theorems 4.2, 4.3, 4.5 and 4.6. The proofs are rather technical
and have been split into many intermediate lemmas and propositions. We shall first prove Theorem 4.2 and
then later on Theorems 4.3 and 4.5, and eventually we shall end this section by the proof of Theorem 4.6.

Recall the following construction from [BH21]. Denote the Fourier Transform of a complex valued function
g by pg and FT pgq, and its inverse transform FT´1pgq by rg. If h is also a complex function, denote the
convolution of g and h by g ‹ h. Set gλpzq “ gpλzq, for non-zero λ P R˚. We have the following facts:

FT pgλq “
1

λ
FT pgq 1

λ
; FT pg ‹ hq “

?
2πFT pgqFT phq; and FT ppgq “ FT´1ppgq “ g, if g is even.

Fix a smooth even non-negative function ψ supported in r´1, 1s, which equals 1 on r´1{4, 1{4s, is non-

increasing on R`, and whose integral over R is 1. Note that FT p pψq “ ψ since ψ is even. The family 1?
t
pψ 1?

t

is an approximate identity when acting on a Schwartz function f by convolution, since, up to the constant?
2π which we systematically ignore,

1
?
t
pψ 1?

t
‹ f “ FT´1pFT p

1
?
t
pψ 1?

t
‹ fqq “ FT´1pψ?t

pfq Ñ
r

pf “ f,

in the Schwartz topology as t Ñ 0. Denote as usual by || ¨ ||r,s the norm of an operator acting from the r
Sobolev space to the s Sobolev space. Then more is true.

Lemma 5.1. Suppose that µ : R` Ñ R`, with µptq ď Cpt
p or µptq ě Cpt

´p near 0, where p ą 0 and Cp ą 0.
Then, for any Schwartz function f ,

lim
tÑ0

˜

„

1
?
t
pψ 1?

t
‹ f



µptq

´ fµptq

¸

“ 0

in the Schwartz topology.
Thus for all r, s,

lim
tÑ0

||

„

1
?
t
pψ 1?

t
‹ f



µptq

pDq ´ fµptqpDq||r,s “ 0,

so the differences of their Schwartz kernels converge uniformly to 0 pointwise.

Proof. The last statement follows from standard Sobolev theory given the first. Thus we need only prove
that the difference of the Fourier transforms goes to zero in the Schwartz topology. But,

FT

˜

„

1
?
t
pψ 1?

t
‹ f



µptq

¸

´ FT
“

fµptq
‰

“
1

µptq
pf 1
µptq
pψ?t{µptq ´ 1q.

Now, ψ?t{µptqpzq ´ 1 is 0 for |z| ď µptq{4
?
t and constant for |z| ě µptq{

?
t, so all its derivatives are zero on

these subsets. In addition, for all non-negative n, there is a constant Cn so that

|
Bn

Bzn
pψ?t{µptqpzq ´ 1q| ď Cnp

?
t{µptqqn.

Thus, we have

||zn
Bm

Bzm

„

1

µptq
pf 1
µptq
pψ?t{µptq ´ 1q



||8 “ sup
|z|ěµptq{p4

?
tq

ˇ

ˇ

ˇ

ˇ

zn
Bm

Bzm

„

1

µptq
pf 1
µptq
pψ?t{µptq ´ 1q


ˇ

ˇ

ˇ

ˇ

ď
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sup
|z|ěµptq{p4

?
tq

ˇ

ˇ

ˇ

ˇ

ˇ

zn
m
ÿ

k“0

Cm´kp
?
t{µptqqm´k

Bk

Bzk

„

1

µptq
pf 1
µptq



pzq

ˇ

ˇ

ˇ

ˇ

ˇ

“

m
ÿ

k“0

Cm´kp
?
t{µptqqm´kµptq´pk`1q sup

|z|ěµptq{p4
?
tq

ˇ

ˇ

ˇ
zn pf pkq pz{µptqq

ˇ

ˇ

ˇ
“

m
ÿ

k“0

Cm´kp
?
tqm´kµptq´pm`1q sup

|z|ě1{p4
?
tq

ˇ

ˇ

ˇ
zn pf pkqpzq

ˇ

ˇ

ˇ
.

Since f , so also pf , is Schwartz, for any non-negative k P Z, the function z ÞÑ zn pf pkqpzq is Schwartz. But
for any Schwartz function g, any N ě 0 (N ď 0 is trivial) and any η ą 0, lim

tÑ0
t´N sup
|z|ěη{

?
t

|gpzq| “ 0. Thus, if

µptq ď Cpt
p or µptq ě Cpt

´p near 0,

lim
tÑ0

||zn
Bm

Bzm

„

1

µptq
pf 1
µptq
pψ?t{µptq ´ 1q



||8 “ 0. �

Define the functions αptq and βptq as follows. Both have domains p0, 1q, and are smooth. αptq “ t near 0,
and αptq “ 1´ t near 1, it is increasing on p0, 1{2s and symmetric about t “ 1{2. β is an increasing function,
with β “ t near 0, and βptq “ p1´ tq´1 near 1.

Set epzq “ e´z
2
{2, and for t P p0, 1q, set

χtpzq “

«

1
a

αptq
pψ 1?

αptq

‹ e

ff

?
βptq

pzq.

Remark 5.2. By Lemma 5.1, we have,

lim
tÑ0

´

χtpzq ´ e´tz
2
{2
¯

“ 0 “ lim
tÑ1

´

χtpzq ´ e´z
2
{p2p1´tqq

¯

,

in the Schwartz topology. In addition, the limit as tÑ 0 of the Schwartz kernel of χtpDq ´ e´tD
2
{2 and the

limit as tÑ 1 of the Schwartz kernel of χtpDq ´ e´D
2
{p2p1´tqq both converge uniformly pointwise to zero.

Lemma 5.3. χtpDq has finite propagation ď
a

βptq{αptq.

Proof. Since pe “ e, we have that up to a constant,

FT p
1

a

αptq
pψ 1?

αptq

‹ eq “ ψ?
αptq

e.

In fact, up to a constant,

χtpDq “ FT´1pψ?
αptq

eqp
a

βptqDq “

ż

R
ψp

a

αptqξqepξq cospξ
a

βptqDq dξ,

since ψ?
αptq

e is even. Setting η “
a

αptqξ gives,

χtpDq “
1

a

αptq

ż

|η|ď1

ψpηqepη{
a

αptqq cospη
a

βptq{αptqDqdη.

The operator cospη
a

βptq{αptqDq has propagation ď |η
a

βptq{αptq|, see [Ch73, R87]. Thus χtpDq has finite

propagation ď
a

βptq{αptq, which near 0 is ď 1, while near 1 it is ď p1 ´ tq´1, so may go to infinity as
tÑ 1. �

As D is an odd super operator, we may write

D “

„

0 D´

D` 0



, and we set Qt “
´1´ χtp0q´1χtpzq

z

¯

pDq “
´1´ χtp0q´1χtpzq

z2
z
¯

pDq.
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We claim that Qt is a smooth family of leafwise parametrices for D with finite propagation Φ compatible
remainders, namely the even operators

St “ IS`bE ´Qt
´D` and Rt “ IS´bE ´D

`Q´t .

There are similar relations for D´.

The main step in the proof of Theorem 4.2 is the following expected independent result.

Proposition 5.4. For 0 ă t ă 1, set, as in [BH21],

At “

»

–

S2
t Q´t pRt `R

2
t q

RtD
` ´R2

t

fi

fl “

»

–

S2
t StQ

´
t p1`Rtq

RtD
` ´R2

t

fi

fl ,

a form which is more useful here. Then At and δAt, so also pδAtq
2, have finite propagations which are

bounded by multiples of
a

βptq{αptq, are smooth in all variables, and are bounded leafwise smoothing opera-
tors.

Proof. We deal with At first. Note that St “ χtp0q´1χtpDq acting on S` b E, and similarly for Rt acting
on S´ b E. They both have finite propagations, and by Theorem 2.1, [R87], they are both smooth in
all variables. It follows immediately that S2

t , R2
t , RtD

`, St and Rt are also smooth in all variables. Since
propagation is additive for compositions, they all have finite propagations, which are bounded by multiples of
a

βptq{αptq. Finally, since χtpzq is a Schwartz function, χtpDq and χtpDqD are bounded leafwise smoothing
operators.

To deal with Q´t , we show that

rQtpD
´D`q “

“`

1´ χtp0q´1χtpzq
˘

pDq
‰`

D´D`

has finite propagation which is bounded by a multiple of
a

βptq{αptq, so also does Q´t “ rQtpD
´D`qD´,

and that StQ
´
t is smooth in all variables and is a bounded leafwise smoothing operator.

For u P p0, 1s, set

χt,upzq “

«

1
a

αptq
pψ 1?

αptq

‹ eu

ff

?
βptq

pzq,

and

rqt,upzq “
1´ χt,up0q´1χt,upzq

z2
“ χt,up0q´1χ

t,up0q ´ χt,upzq

z2
.

Notice that χt,0pzq and rqt,0pzq are also well defined, and that for fixed z, the resulting function is continuous
on r0, 1s and smooth on p0, 1q. Since

χt,upzq “ FT´1pFT

˜

1
a

αptq
pψ 1?

αptq

‹ eu

¸

qp
a

βptqzq,

we have,

χt,upzq “

ż

R
ψp

a

αptqyq
1

u
e´y

2
{2u2

cospy
a

βptqzqdy “

ż

R
ψp

a

αptquyqe´y
2
{2 cospuy

a

βptqzqdy,

and,

χt,up0q “

ż

R
ψp

a

αptquyqe´y
2
{2dy.
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The latter is smooth in t and u, positive, and bounded by

ż

R
e´y

2
{2dy. Thus χt,up0q´1 is smooth on

p0, 1q ˆ p0, 1q. In addition,

´
B

Bu

`

χt,up0q´1
˘

“ χt,up0q´2

ż

R
ψ1p

a

αptquyq
a

αptqye´y
2
{2dy,

so has the same properties as χt,up0q´1.

Next, we have

rqt,upzq “ χt,up0q´1

ż

R
ψp

a

αptquyqe´y
2
{2 p1´ cospuy

a

βptqzqq

z2
dy.

So,

Brqt,u

Bu
pzq “

B

Bu

`

χt,up0q´1
˘

ż

R
ψp

a

αptquyqe´y
2
{2 p1´ cospuy

a

βptqzqq

z2
dy `

χt,up0q´1

ż

R

a

αptqψ1p
a

αptquyqye´y
2
{2 p1´ cospuy

a

βptqzqq

z2
dy `

χt,up0q´1

ż

R

a

βptqψp
a

αptquyqye´y
2
{2 sinpuy

a

βptqzq

z
dy.

For t and z fixed, this is a smooth function of u.

Note that χt,0pzq is well defined and equals

ż

R
e´y

2
{2dy, which is independent of z. Thus, rqt,0pzq is also

well defined and equals 0. As rqt,1pDq` “ rQtpD
´D`q, we have

rQtpD
´D`q “ rqt,1pDq` ´ rqt,0pDq` “

„
ż 1

0

Brqt,u

Bu
pDq du

`

,

so we need to show that
Brqt,u

Bu
pDq has finite propagation which is bounded by a multiple of

a

βptq{αptq. Since

χt,up0q and B
Bu

`

χt,up0q´1
˘

are independent of z, they give multiples of the identity map when evaluated at D,

so have propagation zero and may be disregarded. Thus, we may assume that rqt,upzq “
χt,upzq ´ χt,up0q

z2
.

Since χt,upzq is an even function, it has Taylor expansion in z with integral remainder

χt,upzq “ χt,up0q `
pχt,uqp2qp0q

2
z2 `

z4

6

ż 1

0

p1´ vq3pχt,uqp4qpvzqdv.

So the Taylor expansion in z with integral remainder of rqt,upzq “
χt,upzq ´ χt,up0q

z2
is

rqt,upzq “
pχt,uqp2qp0q

2
`
z2

6

ż 1

0

p1´ vq3pχt,uqp4qpvzqdv.

The term B
Bu ppχ

t,uqp2qp0qq is independent of z, so, as above, it may be disregarded. Using the fact that

χt,upvzq “

ż

R
ψp

a

αptqyq
1

u
e´y

2
{2u2

cospy
a

βptqvzqdy,

we have

pχt,uqp4qpvzq “

ż

R
ψp

a

αptqyqβptq2v4y4 1

u
e´y

2
{2u2

cospy
a

βptqvzqdy “

«

1
a

αptq
pψ 1?

αptq

‹ βptq2v4ep4qu

ff

p
a

βptqvzq “

«

1
a

αptq
pψ 1?

αptq

‹ βptq2v4peu

ff

p
a

βptqvzq,

where p is a finite polynomial in u and z, since eupzq “ e´u
2z2
{2. Note carefully that B

Bu pχ
t,uqp4qpvzq has the

same form.
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As peu is a Schwartz function for non-zero u, so is pχt,uqp4qpvDq, and the now usual argument shows

that it has propagation ď v
a

βptq{αptq. As D2 has zero propagation,
Brqt,u

Bu
pDq has propagation which is a

multiple of
a

βptq{αptq, so also do rQt and Q´t .

For smoothness and bounded leafwise smoothing of StQ
´
t , first note that

St

ż 1

0

B

Bu

ˆ

pχt,uqp2qp0q

2

˙

pDqdu “

ˆ
ż 1

0

B

Bu

ˆ

pχt,uqp2qp0q

2

˙

pDqdu

˙

St,

and St has these properties. Finally, any positive power of D times an operator of the form
«

1
a

αptq
pψ 1?

αptq

‹ βptq2v4peu

ff

p
a

βptqvDq

has these properties, (the function in the brackets is Schwartz), see for instance Theorem 2.1, [R87]. Thus,
ż 1

0

D2

6

ż 1

0

p1´ vq3
B

Bu
pχt,uqp4qpvDqdv du

has these properties. Therefore, StQ
´
t has all the requisite properties, so At does also.

The operator δAt is essentially a polynomial in At, BνpAtq “ r∇ν , Ats, and θ “ p∇νq2. Both ∇ν and θ
are smooth and bounded in all variables and are differential operators. Since At has finite propagation and
is smooth in all variables, δAt and pδAtq

2 also have finite propagations and are smooth in all variables.

It remains to show that δAt is bounded leafwise smoothing, but this is a routine exercise. We give some
details for the convenience of the reader. Every term of δAt contains either At, BνpAtq, or both. As At
is bounded leafwise smoothing, we need only show that BνpAtq “ r∇ν , Ats is bounded leafwise smoothing,
since θ composed with a bounded leafwise smoothing operator is bounded leafwise smoothing. As Bν is a
derivation, we need only show that Bν applied to the individual elements of At, save D`, yields a bounded
leafwise smoothing operator.

First,

Bνpχ
tpDqq “ Bν

˜

ż

R

1
a

αptq
pψ 1?

αptq

pyqe´p
?
βptqD´yq2{2dy

¸

“

´
1

2

ż

R

1
a

αptq
pψ 1?

αptq

pyq

ż 1

0

e´p1´wqp
?
βptqD´yq2{2Bνpp

a

βptqD ´ yqq2qe´wp
?
βptqD´yq2{2dw dy.

For the second equality, we refer to the proof of Proposition 3.5 of [H95], which is an extension of Proposition

2.8 of [B86] to foliations with Hausdorff holonomy groupoids. Now, Bνpp
a

βptqD ´ yq2q is a differential
operator with smooth bounded coefficients, so Bνpχ

tpDqq has the same properties as χtpDq, i.e. it is bounded
and leafwise smoothing. Thus BνpStq and BνpRtq are bounded leafwise smoothing. Since BνpDq is a differential
operator with smooth bounded coefficients, RtBνpDq is also bounded leafwise smoothing. Finally, as Q´t “
rQtpD

´D`qD´, it suffices to show that StBνp rQtpD
´D`qq is bounded leafwise smoothing. As above, this

follows if we show that StBνp
Brqt,u

Bu pDqq is bounded leafwise smoothing. For the terms

StBν

ˆ

B

Bu
ppχt,uqp2qp0qqpDq

˙

“ Bν

ˆ

B

Bu
ppχt,uqp2qp0qq

˙

St, and StBνp
D2

6
q

this is obvious. As noted above, the term Bν

ˆ
ż 1

0

p1´ vq3
B

Bu
pχt,uqp4qpvDqdv

˙

has the form

Bν

˜

ż 1

0

p1´ vq3

«

1
a

αptq
pψ 1?

αptq

‹ βptq2v4peu

ff

p
a

βptqvDqdv

¸

“
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Bν

˜

ż 1

0

p1´ vq3
ż

R

´ 1
a

αptq
pψ 1?

αptq

pyq
¯

βptq2v4ppu,
a

βptqvD ´ yqe´up
?
βptqvD´yq2{2dy dv

¸

.

The argument used for Bνpχ
tpDqq is also valid here, so we have the result. �

We have the same results forD1, and sinceAt andA1t are constructed directly fromD andD1 and have finite
propagation, they are Φ compatible, as are δAt and δA1t. Thus Tr

`

At expp´pδAtq
2
˘

and Tr
`

A1t expp´pδA1tq
2
˘

are ϕ compatible. Now Theorem 4.2 will be deduced right away from the following

Theorem 5.5. For t P p0, 1q, the ϕ compatible Haefliger forms Tr
`

At expp´pδAtq
2
˘

and Tr
`

A1t expp´pδA1tq
2
˘

are closed. In addition,
“

Tr
`

At expp´pδAtq
2q
˘

,Tr
`

A1t expp´pδA1tq
2q
˘‰

P H˚c pM{F,M
1{F 1;ϕq

is independent of t. So chpIndapD,D
1qq is well defined, and

chpIndapD,D
1qq “ IndtpD,D

1q.

Proof. The Haefliger forms are closed by Proposition 3.1, which also gives that d
dt Tr

`

At expp´pδAtq
2
˘

“

dHWt, and d
dt Tr

`

A1t expp´pδA1tq
2
˘

“ dHW
1
t . To finish the proof of t independence, we need only show that

Wt and W 1
t can be chosen to be ϕ compatible.

Recall that π˘ is the grading operator π˘ “ diagpIS`bE ,´ IS´bEq “ π` ´ π´, and similarly for π1˘.
When we identify the spin bundles and Dirac operators off compact subspaces, we also identify these gradings,
so they are Φ compatible. In particular, π´ and π1´ are Φ compatible. Note that At ` π´ and A1t ` π

1
´ are

idempotents. Using this fact, in [BH04], Corrigendum, it is shown that

d

dt

`

Tr
`

pAt ` π´q expp´pδpAt ` π´qq
2q
˘

,Tr
`

pA1t ` π
1
´q expp´pδpA1t ` π

1
´q

2q
˘˘

“ dHpWt,W
1
tq,

where pWt,W
1
tq P A˚c pM{F,M 1{F 1;ϕq, in particular they are ϕ compatible. This follows from the fact that

the operators Bν , θ,Θ, and δ all preserve Φ compatability, and that Wt and W 1
t are constructed using those

operators, At, A
1
t, π´, π1´ (and the identities I and I1), and their derivatives with respect to t. Since At, A

1
t,

π´, π1´, I and I1 are Φ compatible, Wt and W 1
t are ϕ compatible. As

dH Tr
`

pAt ` π´q expp´pδpAt ` π´qq
2q
˘

“ dH Tr
`

pA1t ` π
1
´q expp´pδpA1t ` π

1
´q

2q
˘

“ 0,

it follows that
“

Tr
`

pAt ` π´q expp´pδpAt ` π´qq
2q
˘

,Tr
`

pA1t ` π
1
´q expp´pδpA1t ` π

1
´q

2q
˘‰

P H˚c pM{F,M
1{F 1;ϕq

is independent of t.

Next, using Proposition 3.5 and Corollary 3.7 of [BH08], with the reasoning above, (that is: all the
operators used in the proofs preserve Φ compatibility, so if the input is Φ compatible, the output is ϕ
compatible), shows that

“

Tr
`

At expp´pδAtq
2q
˘

,Tr
`

A1t expp´pδA1tq
2q
˘‰

“
“

Tr
`

pAt ` π´q expp´pδpAt ` π´qq
2q
˘

,Tr
`

pA1t ` π
1
´q expp´pδpA1t ` π

1
´q

2q
˘‰

P H˚c pM{F,M
1{F 1;ϕq.

For the equality chpIndapD,D
1qq “ IndtpD,D

1q, standard techniques used in [HL90, BH08], coupled with
Remark 5.2, show that

lim
tÑ0

tr
`

At expp´pδAtq
2q
˘

“ ASpDF q,

uniformly pointwise on M , and we have the same for A1t. As Tr
`

At expp´pδAtq
2q
˘

involves integrating over
compact subsets, we may interchange the limit with the integration. �

So we have Theorem 4.2.

Note that so far, we have not used the assumptions in Theorem 4.3 or 4.6. We now move on to the proofs
of Theorems 4.3 and 4.5. For the proof of Theorem 4.3, we need to show that

lim
tÑ1

Tr
`

At expp´pδAtq
2q
˘

“ Tr
`

π˘P0 expp´pδpπ˘P0qq
2q
˘

.
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Recall that At is only defined for 0 ă t ă 1, that P0 is the projection onto the kernel of D2, and that
At expp´pδAtq

2q has propagation bounded by cA
a

βptq{αptq for some cA P R`. We recall below that

lim
tÑ1

kPr0,εqAtPr0,εqqpx, xq “ kPr0,εqπ˘P0Pr0,εqpx, xq “ kπ˘P0
px, xq,

uniformly pointwise which is sufficient for our purposes.

Denote by %rε,8q the characteristic function for the interval rε,8q.

Lemma 5.6. For ` a non-neqative integer, there exists a constant C` ą 0 depending only on `, such that

||z`%rε,8qχ
tpzq%rε,8q||8 ď C`e

´1{64αptq ` ε`e´ε
2βptq{2 Ñ 0, exponentially as tÑ 1.

Proof. First note that,

||z`%rε,8qχ
t%rε,8q||8 ď ||z`%rε,8q

´

χt ´ e?
βptq

¯

%rε,8q||8 ` ||z
`%rε,8qe?βptq%rε,8q||8 ď

||z`%rε,8q

´

χt ´ e?
βptq

¯

%rε,8q||8 ` ε
`e´ε

2βptq{2,

since the maximum for the second term for t close enough to 1 will occur at z “ ε, as βptq Ñ 8 as tÑ 1.

Next, ||z`%rε,8q

´

χt ´ e?
βptq

¯

%rε,8q||8 is bounded by ||z`
´

χt ´ e?
βptq

¯

||8, which in turn is bounded by

the L1 norm of FT pz`
´

χt ´ e?
βptq

¯

q. Up to a constant depending only on `,

FT pz`
´

χt ´ e?
βptq

¯

q “
B`

Bz`
FT

´

χt ´ e?
βptq

¯

“

B`

Bz`

¨

˝

1
a

βptq
FT

˜

1
a

αptq
ψ̂

1{
?
αptq

˚ e

¸

1{
?
βptq

´
1

a

βptq
e

1{
?
βptq

˛

‚ “

B`

Bz`

˜

1
a

βptq

´

ψ?
αptq

e
¯

1{
?
βptq

´
1

a

βptq
e

1{
?
βptq

¸

“
B`

Bz`

˜

e
1{
?
βptq

a

βptq

´

ψb

αptq
βptq

´ 1
¯

¸

“

ÿ̀

k“0

`

`
k

˘ Bk

Bzk

˜

e
1{
?
βptq

a

βptq

¸

B`´k

Bz`´k

´

ψb

αptq
βptq

´ 1
¯

.

The function ψb

αptq
βptq

´ 1 “ 0 on |z| ď 1

4
?
αptq{βptq

, and the norms of its derivatives are globally bounded by

a constant depending only on `. Thus the L1 norm of FT
´

z`
´

χt ´ e?
βptq

¯¯

is bounded by a constant,

depending only on `, times

ÿ̀

k“0

ż

|z|ě 1

4
?
αptq{βptq

ˇ

ˇ

ˇ

ˇ

Bk

Bzk

´

e
1{
?
βptq

¯

ˇ

ˇ

ˇ

ˇ

dz
a

βptq
“

ÿ̀

k“0

ż

|z|ě 1

4
?
αptq{βptq

ˇ

ˇ

ˇ
pkp1{

a

βptq, z{
a

βq
ˇ

ˇ

ˇ

´

e
1{
?
βptq

¯ dz
a

βptq
“

ÿ̀

k“0

ż

|z|ě 1

4
?
αptq

ˇ

ˇ

ˇ
pkp1{

a

βptq, zq
ˇ

ˇ

ˇ
e´z

2
{2dz ď e´1{64αptq

ż

R

ÿ̀

k“0

ˇ

ˇ

ˇ
pkp1{

a

βptq, zq
ˇ

ˇ

ˇ
e´z

2
{4dz.

Here pk is a polynomial of degree k in both variables, so the integral is bounded by a constant depending
only on `. Since αptq Ñ 0 and βptq Ñ 8 as tÑ 1, we have the lemma. �

Denote by Qε the spectral projection for D2 for the interval rε,8q, that is Qε “ %rε,8qpD
2q. Since

I “ Pr0,εq `Qε, the operators Qε and δQε are transversely smooth and bounded, as the other two operators
are because of our assumption of transverse smoothness. The operators Pr0,εq, Qε, and At all commute as
they are functions of D, so

At exp
`

´pδAtq
2
˘

“ Pr0,εqAtPr0,εq exp
`

´pδAtq
2
˘

` QεAtQε exp
`

´pδAtq
2
˘

.
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Recall that δAt is nilpotent, in particular, exp
`

´pδAtq
2
˘

“

q{2
ÿ

k“0

p´pδAtq
2qk

k!
, see [BH08]. Lemma 5.6 gives

immediately that ||D2`Qεχ
tpDqQε|| Ñ 0 exponentially as tÑ 1. The fact that every element of At contains

at least one χtpDq, and that all the other terms are bounded, save D` (but RtD
` is covered by Lemma 5.6),

give that ||D2`QεAtQε|| Ñ 0 exponentially as tÑ 1. Thus, ||D2`QεAtQε exp
`

´pδAtq
2
˘

|| Ñ 0 exponentially
as tÑ 1. It follows from the proof of Theorem 2.3.9 and the statement of Theorem 2.3.13, both of [HL90],
that the Schwartz kernel of QεAtQε exp

`

´pδAtq
2
˘

Ñ 0 pointwise uniformly exponentially as tÑ 1. So,

lim
tÑ1

Tr
´

QεAtQε exp
`

´pδAtq
2
˘

¯

“ 0,

in A˚c pM{F q and similarly for Q1εA
1
tQ
1
ε. Thus we may ignore those terms. Note carefully that this is true for

fixed ε ą 0.

For the terms coming from Pr0,εqAtPr0,εq, note that for t near 1, 2%r0,εqpzq dominates %r0,εqχ
t%r0,εqpzq.

This follows from Remark 5.2, since limtÑ1 χ
tpzq “ e´z

2
{p2p1´tqq in the Schwartz topology, and for t near 1,

supz e
´z2

{p2p1´tqq “ 1. Thus, for ` a fixed positive integer and for t near 1,

2ε`||%r0,εqpzq||8 “ 2||z`%r0,εqpzq||8 ě ||z`%r0,εqχ
t%r0,εqpzq||8.

The fact that ||δAt|| and || exp
`

´pδAtq
2
˘

|| are bounded and the argument above imply that a multiple of

tr
`

kPr0,εqpx, xq
˘

dominates || tr
´

kPr0,εqAtPr0,εq expp´pδAtq2qpx, xq
¯

||. Since we can ignore QεAtQε exp
`

´pδAtq
2
˘

,

the Dominated Convergence Theorem implies

lim
tÑ1

Tr
´

At exp
`

´pδAtq
2
˘

¯

“ lim
tÑ1

Tr
´

Pr0,εqAtPr0,εq exp
`

´pδAtq
2
˘

¯

“

lim
tÑ1

ż

F

tr
´

Pr0,εqAtPr0,εq exp
`

´pδAtq
2
˘

¯

“

ż

F

lim
tÑ1

tr
´

Pr0,εqAtPr0,εq exp
`

´pδAtq
2
˘

¯

,

and similarly for A1t.

The proof of Theorem 4.2 in [BH08], which requires that F be Riemannian, shows that, under our
conditions on the Novikov-Shubin invariants, in degree 2k for 0 ď 2k ď 2` we have,

lim
tÑ1
pPr0,εqAtPr0,εqq “ Pr0,εqπ˘P0Pr0,εq “ π˘P0,

uniformly pointwise, and similarly for A1t. So, in degree 2k for 0 ď 2k ď 2`,
ż

F

lim
tÑ1

tr
´

Pr0,εqAtPr0,εq exp
`

´pδAtq
2
˘

¯

“

ż

F

tr
´

π˘P0 exp
`

´pδpπ˘P0qq
2
˘

¯

“ chapP0q.

So, we have proven Theorems 4.3 and 4.5.

It remains to prove Theorem 4.6, and we thus need to compute the limits as tÑ 0 and tÑ 1 of

lim
sÑ8

˜

ż

TrTs
Tr

`

At expp´pδAtq
2
˘

^ ωT ´

ż

T 1rT 1s
Tr

`

A1t expp´pδA1tq
2
˘

^ ω1T 1

¸

.

For limtÑ0, we may assume that the two integrands agree on Mp0q “ VM and M 1p0q “ V 1M 1 (actually on
fixed penumbras). Then we have,

lim
tÑ0

lim
sÑ8

˜

ż

TrTs
Tr

`

At expp´pδAtq
2
˘

^ ωT ´

ż

T 1rT 1s
Tr

`

A1t expp´pδA1tq
2
˘

¯

^ ω1T 1

¸

“

lim
tÑ0

˜

ż

MrMp0q
tr
`

At expp´pδAtq
2
˘

^ ω ´

ż

M 1rM 1p0q

tr
`

A1t expp´pδA1tq
2
˘

¯

^ ω1

¸

“

ż

K
ASpDF q ^ ω ´

ż

K1
ASpD1F 1q ^ ω

1 “

B

p

„
ż

F

ASpDF q,

ż

F 1
ASpDF 1qq



, pωT , ω
1
T 1q

F

.
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As above, limtÑ0 tr
`

At expp´pδAtq
2
˘

¯

“ ASpDF q, uniformly pointwise on M , and we have the same for

A1t. As we are integrating over compact subsets, we may interchange the limtÑ0 with the integrations.

For limtÑ1, note that the operators have propagations bounded by cA
a

βptq{αptq for some cA P R`. As
they are Φ compatible, we may assume that the two integrands agree on TcAp1´tq´1 and T 1cAp1´tq´1 . Thus,

lim
tÑ1

lim
sÑ8

˜

ż

TrTs
Tr

`

At expp´pδAtq
2
˘

^ ωT ´

ż

T 1rT 1s
Tr

`

A1t expp´pδA1tq
2
˘

¯

^ ω1T 1

¸

“

lim
tÑ1

¨

˝

ż

TrTcAp1´tq´1

Tr
`

At expp´pδAtq
2
˘

^ ωT ´

ż

T 1rT 1
cAp1´tq

´1

Tr
`

A1t expp´pδA1tq
2
˘

¯

^ ω1T 1

˛

‚.

Since the Schwartz kernel of QεAtQε exp
`

´pδAtq
2
˘

Ñ 0 pointwise exponentially as tÑ 1, the fact that ωT
is bounded, and the assumption that M has sub-exponential growth, give that

lim
tÑ1

˜

ż

TrTcAp1´tq´1

Tr
´

QεAtQε exp
`

´pδAtq
2
˘

¯

^ ωT

¸

“ 0,

and similarly for Q1εA
1
tQ
1
ε. Thus we may ignore those terms.

Next, we have that for t near 1, a multiple of

ż

M

tr
`

kPr0,εq
˘

dominates

||

ż

M

tr
´

kPr0,εqAtPr0,εq expp´pδAtq2q

¯

||.

But this latter equals ||

ż

M

tr
´

kPr0,εqAtPr0,εq expp´pδAtq2qPr0,εq

¯

||, since

ż

M

tr “

ż

T

ż

F

tr “

ż

T

Tr, and Tr is a

trace. Thus, we need only show that a multiple of

tr
`

Pr0,εqpx, xq
˘

dominates || tr
´

Pr0,εqAtPr0,εq exp
`

´pδAtq
2
˘

Pr0,εqpx, xq
¯

||.

This is due to the fact that, for a smoothing operator A, trpkAppx, xqq “
ř

ixApδ
x
viq, δ

x
viy. Here vi is an

orthonormal basis of the fiber over the point x, and δxvi is the Dirac delta section of the bundle supported
at x. Furthermore, everything is well defined on bounded geometry manifolds. See, for example, [HL90]
for details of such arguments. As the operators we are concerned with are bounded leafwise smoothing, we
have,

||xPr0,εqAtPr0,εq exp
`

´pδAtq
2
˘

Pr0,εqpδ
x
viq, δ

x
viy|| “ ||xAtPr0,εq exp

`

´pδAtq
2
˘

Pr0,εqpδ
x
viq, Pr0,εqpδ

x
viqy|| ď

||AtPr0,εq exp
`

´pδAtq
2
˘

|| ||Pr0,εqpδ
x
viq||

2 “ ||AtPr0,εq exp
`

´pδAtq
2
˘

|| xPr0,εqpδ
x
viq, δ

x
viy.

Summing over i, gives the result.

The fact that ||ω|| is bounded and the assumption that

ż

M

tr
`

Pr0,εq
˘

dx ă 8, imply that

ż

M

tr
`

Pr0,εq
˘

||ω|| dx ă 8.

Thus
ż

M

|| tr
´

Pr0,εqAtPr0,εq exp
`

´pδAtq
2
˘

px, xq
¯

^ ω|| dx ă 8,

so the integral

ż

M

tr
´

Pr0,εqAtPr0,εq exp
`

´pδAtq
2
˘

¯

^ ω converges. Notice that

ż

M

tr
´

Pr0,εqAtPr0,εq exp
`

´pδAtq
2
˘

¯

^ ω “

ż

T

Tr
´

Pr0,εqAtPr0,εq exp
`

´pδAtq
2
˘

¯

^ ωT .
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This fact, the fact that we can ignore QεAtQε exp
`

´pδAtq
2
˘

, and the Dominated Convergence Theorem
imply,

lim
tÑ1

ż

TrTcAp1´tq´1

Tr
´

At exp
`

´pδAtq
2
˘

¯

^ ωT “ lim
tÑ1

ż

TrTcAp1´tq´1

Tr
´

Pr0,εqAtPr0,εq exp
`

´pδAtq
2
˘

¯

^ ωT “

lim
tÑ1

ż

T

Tr
´

Pr0,εqAtPr0,εq exp
`

´pδAtq
2
˘

¯

^ ωT “

ż

T

lim
tÑ1

Tr
´

Pr0,εqAtPr0,εq exp
`

´pδAtq
2
˘

¯

^ ωT ,

and similarly for A1t. The proof of Theorem 4.2 in [BH08] shows that, as above, under our conditions on the
Novikov-Shubin invariants in Theorem 4.6,

lim
tÑ1

Tr
´

At exp
`

´pδAtq
2
˘

¯

^ ωT “ Tr
´

π˘P0 exp
`

´pδpπ˘P0qq
2
˘

¯

^ ωT ,

and similarly for A1t. So,

lim
tÑ1

¨

˝

ż

TrTcAp1´tq´1

Tr
´

At exp
`

´pδAtq
2
˘

¯

^ ωT ´

ż

T 1rT 1
cAp1´tq

´1

Tr
´

A1t exp
`

´pδA1tq
2
˘

¯

^ ω1T 1

˛

‚ “

ż

T

Tr
´

π˘P0 exp
`

´pδpπ˘P0qq
2
˘

¯

^ ωT ´

ż

T 1
Tr
´

π1˘P
1
0 exp

`

´pδpπ1˘P
1
0qq

2
˘

¯

^ ω1T 1 “

xpchapP0q, chapP
1
0qq, pωT , ω

1
T 1qy.

That is, xch IndapD,D
1q, rωT , ω

1
T 1sy “ xpchapP0q, chapP

1
0qq, pωT , ω

1
T 1qy. So we have proven Theorem 4.6.

Remark 5.7. Note that if M , so also M 1, grows exponentially, there are constants c0, cM P R`, so that
volpMtq ď c0e

cM t. This follows from the Bishop-Gromov inequality. Thus, if we used Lemma 5.6 as above
and integrated over M rM

cA
?
βptq{αptq

, we would get an estimate of the form,

pC`e
´1{64αptq ` ε`e´ε

2βptq{2qc0e
cMcA

?
βptq{αptq.

For the proof to work, we need this to Ñ 0 as t Ñ 1. Now
a

βptq{αptq “ βptq “ 1{αptq, as t Ñ 1. Thus

the two terms must Ñ 0 individually. This only happens if cMcA ă minpε2{2, 1
64 q. That is, the exponential

growth is not too robust.

6. Invertible near infinity operators

In this section, we assume that pM,F q is as in the first two paragraphs of Section 2.

6.1. Invertibility near infinity. Our new assumption here is that the zero-th order contribution RE
F in

the Bochner formula defined below is strictly positive on M near infinity. As RE
F is locally defined, this

implies that the same for RE1

F 1 .

For the leafwise Dirac operator DF “ pDLq, the canonical operator RE
F on sections of EM |L is given by

RE
F pϕq “

1

2

p
ÿ

i,j“1

ρpXiqρpXjqR
E
Xi,Xj pϕq,

where RE is the curvature operator of the Hermitian connection ∇F,E on EM |L, X1, . . . , Xp is a local oriented
orthonormal basis of TL, and ρpXiq is the Clifford action of Xi. Note that RE

F is well defined, smooth, and
that it is globally bounded because of the assumption of bounded geometry. The operators DL and RE

F are
related by the general leafwise Bochner Identity, [LM89]

6.1. D2
L “ p∇F,Eq˚∇F,E ` RE

F .
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As we work on G rather than M , D “ r˚pDF q also satisfies Equation 6.1, which, being local, is the same,
namely, D2 “ ∇˚∇ ` r˚pRE

F q. Note that in general, if RE
F is strictly positive near infinity, r˚pRE

F q is
not, due to the fact that r is not a proper map in general. However, r˚pRE

F q is G-invariant strictly positive
near infinity off some G-compact subspace, in particular when restricted to M Ă G, since it coincides with
RE
F there.

We have the following result from of [BH21]. Note that it does not need Pr0,εs to be transversely smooth.
It does need it to be transversely measurable, which it is by Lemma 4.10 of [BH21].

Theorem 6.2. (Theorem 5.2 of [BH21]) Assume that F admits a holonomy invariant transverse measure Λ.
Suppose RE

F is strictly positive near infinity. In particular, we may assume that κ0 “ suptκ P R |RE
F ´κ I ě

0 on M rKMu is positive. Then, for 0 ď ε ă κ0,
ż

M

trpPr0,εspx, xqq dxF dΛ ď
pκ0 ´ κ1q

pκ0 ´ εq

ż

KM
trpPr0,εspx, xqq dxF dΛ ă 8,

where κ1 “ suptκ P R |RE
F ´ κ I ě 0 on Mu.

Note that if F is Riemannian, it does admit holonomy invariant transverse measures, and we can insure
that dx is of the form dxF dΛ.

Proof. The proof of Theorem 5.2 in [BH21] works equally well here, mutatis mutandis. The changes in
notation needed are

DE
L Ñ D, kPr0,εspx, xq Ñ kPr0,εspx, xq, LÑ

rLx, σL Ñ σx,

ż

L

Ñ

ż

rLx

,

and so on. �

Proposition 5.5 in [BH21] still holds here, namely the following.

Proposition 6.3. Suppose the curvature operator RE
F is strictly positive on M , that is κ1 ą 0, so RE

F ě κ1 I
on M . Then for 0 ď ε ă κ1, Pr0,εs “ 0.

The relationship with the index bundle is not insured in general, [BHW14], and one needs to impose
additional spectral assumptions. We have, as in [BH21], the following immediate corollaries of Theorems
4.3, 4.6 and 6.2 which relate the pairings there to pairings with the index bundles.

Theorem 6.4. Suppose that pM,F,KM q and pM 1, F 1,KM 1q are bounded geometry foliations which are iden-
tified outside the compact subspaces KM and KM 1 as before and let pω, ω1q be a ϕ-compatible pair of closed
holonomy invariant forms of degree ` ď q. Assume the following:

‚ M , and so also M 1, has sub-exponential growth, and F and F 1 are Riemannian;
‚ the leafwise operators P0, P 10, Pp0,εq and P 1

p0,εq (for ε sufficiently small) are transversely smooth;

‚ NSpDq and NSpD1q are greater than `;

‚ RE
F , so also RE1

F 1 , is strictly positive near infinity in M and M 1 respectively.

Then

x

„
ż

F

ASpDF q,

ż

F 1
ASpDF 1q



, rωT , ω
1
T 1sy “ xpchpP0q, chpP

1
0q, pωT , ω

1
T 1qy.

Recall that pchapP0q, chapP
1
0q is not an element of A˚c pM{F,M 1{F 1;ϕq in general. Since ASpDF q and

ASpDF q are ϕ compatible, ASpDF q ^ ω and ASpD1F 1q ^ ω are ϕ compatible, say off the compact subsets pK
and pK1, and then we have

x

„
ż

F

ASpDF q,

ż

F 1
ASpDF 1q



, rωT , ω
1
T 1sy “

ż

pK
ASpDF q ^ ω ´

ż

pK1
ASpDF 1q ^ ω

1.

For a single foliated manifold we have the following, compare with [GL83].
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Theorem 6.5. Suppose that E and E1 are two Clifford bundles over the foliated manifold pM,F q, which
are isomorphic off the compact subset KM , with associated Dirac operators D and D1. Let ω be a bounded
closed holonomy invariant transverse form (or current) of degree ` ď q. Suppose that

‚ M has sub-exponential growth, and F is Riemannian;
‚ the leafwise operators P0, P 10, Pp0,εq and P 1

p0,εq (for ε sufficiently small) are transversely smooth;

‚ minpNSpDq, NSpD1qq is greater than `;

‚ RE
F , and hence also RE1

F , is strictly positive near infinity.

Then, since chpEq “ chpE1q off KM ,

xchpIndapD,D
1qq, rωT , ωT sy “

ż

KM
pASpDF qpchpEq ´ chpE1qq ^ ω “ xpchpP0q, chpP

1
0qq, pωT , ωT qy.

Remark 6.6. Note that if E1 is a leafwise almost flat bundle (actually a K-theory class) on M , then we
may twist the operators D and D1 by E1 to get the operators DE1

and D1E1
. Uniform positivity near infinity

is preserved when this is done, so we have the extension of Theorem 6.5 to DE1
and D1E1

. Theorem 6.4 also
extends in this way if we have leafwise almost flat bundles E1 Ñ M and E11 Ñ M 1 which are isomorphic
near infinity.

6.2. Reflective foliations. We now relate our definition of the relative index to the cut-and-paste definition
considered in Section 4 of [GL83]. For this paper to be self-contained, we paraphrase from [BH21]. For
simplicity, we assume that ω and ω1 are ϕ compatible off KM and K1M 1 .

We say that pM,F,KM q as above is reflective if there exists a compact submanifold H ĂM such that

KM Ă H and BH is transverse to F.

So F 1 is also reflective with corresponding H 1. Then there is δ ą 0, and a neighborhood of BH which is
diffeomorphic to BH ˆ r´δ, δs, and so that F restricted to BH ˆ r´δ, δs has leaves of the form pL X BHq ˆ
r´δ, δs. We may assume that the foliation preserving diffeomorphism ϕ extends to BH ˆ r´δ, δs, and that
ϕpBH ˆ r´δ, δsq is diffeomorphic to BH 1ˆ r´δ, δs, and that it has the same properties as BH ˆ r´δ, δs. Then
we may form the compact foliated manifold

xM “ H Y
pϕ H

1,

where pϕ : BH ˆ r´δ, δs Ñ BH 1 ˆ r´δ, δs is given by pϕpx, sq “ pϕpxq,´sq. We change the orientation of

F 1 to the opposite of what it was originally. The resulting foliation F Y
pϕ F

1 is denoted pF . Denote by π :
BHˆr´δ, δs Ñ BH the projection and note that E |BHˆr´δ,δs » π˚pE |BHq, and TF |BHˆr´δ,δs » π˚pTF |BHq.
(Note that dimpTF |BHq “ dimpTF q, not dimpTF q ´ 1 “ dimF |BH .) We may assume that ∇ and DF

are preserved under the maps px, sq Ñ px,´sq and Epx,sq Ñ Epx,´sq. This implies that DF and D1F 1 are
identified under the glueing map. In addition, ω and ω1 fit together, giving pω. This construction is the exact
translation of the Gromov-Lawson construction to foliations.

Finally, denote the leafwise operator on pF by pD
pF (and its associated projections by pP0 and pPp0,εq). Then

we have the following extension of Alain Connes’ celebrated index theorem, see [C79], which is very useful
in Section 7.

Theorem 6.7. With the above notations, suppose that F (and so also F 1) is reflective, but not necessarily
Riemannian. Suppose further that pC,C 1q is a compatible near infinity pair of closed holonomy invariant

currents, with associated current pC. Then

xchpIndapD,D
1q, pC,C 1qy “ xchpIndap pD pF qq,

pCy.

Proof. We prove the case where pC,C 1q “ rωT , ω
1
T 1s, since it is notationally simpler. The general case is left

to the reader. Theorems 4.2 and 5.5 give

xchpIndapD,D
1qq, rωT , ω

1
T 1sy “

ż

KM
ASpDF q ^ ω ´

ż

K1
M1

ASpD1F 1q ^ ω
1,
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since the differential forms ASpDF q ^ ω and ASpD1F 1q ^ ω
1 are ϕ compatible off KM and K1M 1 . Next,

ż

KM
ASpDF q ^ ω ´

ż

K1
M1

ASpD1F 1q ^ ω
1 “

ż

H

ASpDF q ^ ω ´

ż

H1
ASpD1F 1q ^ ω

1 “

ż

xM

ASp pD
pF q ^ pω “ x

ż

pF

ASp pD
pF q, pω pT y “ xchpIndap pD pF qq, pω pT y.

The last equality is from Theorem 6.2 of [BH04] applied to the closed foliated manifold pxM, pF q. The others
are obvious. �

Note that, since the integrands ASpDF q ^ ω and ASpD1F 1q ^ ω1 are ϕ compatible off KM and K1M 1 , this
result is actually independent of the choice of the transverse compact hypersurface BH and for simplicity we
may assume that H “ KM .

Theorem 6.8. Suppose that pM,F,Dq, pM 1, F 1, D1q are as in Theorem 6.7. Suppose furthermore that pF

is Riemannian, that pP0 and pPp0,εq are transversely smooth, and the Novikov-Shubin invariants of pD
pF are

greater than `{2, for some 0 ď ` ď q. Then for any ` homogeneous ϕ-compatible pair pω, ω1q as before,

xchpIndapD,D
1qq, rωT , ω

1
T 1sy “ xpchp

pP0q, pω pT y.

Moreover, if we impose on pM,F,Dq and pM 1, F 1, D1q the assumptions of Theorem 4.6, then we have

xpchpP0q, chpP0qq, pωT , ω
1
T 1qy “ xpchp pP0q, pω pT y.

This is a consequence of Theorem 6.7 using Theorem 4.1 of [BH08] to deduce the second equality, with

xpchp pP0q, pω pT y being well defined under our assumptions.

Remark 6.9. This result raises some interesting questions.

(1) Suppose that RF , so also RF 1 , is strictly positive near infinity, then xchpP0q, ωT y and xchpP 10qq, ω
1
T 1y

exist. Under what more general conditions than those in Theorems 4.6 and 6.8 does

xchpP0q, ωT y ´ xchpP
1
0q, ω

1
T 1y “ xchp

pP0q, pω pT y?

(2) In general, suppose that xchpP0q, ωT y ´ xchpP
1
0q, ω

1
T 1y ´ xchp

pP0q, pω pT y ‰ 0. What can be said about the

geometry or topology of pM,F,Dq, pM 1, F 1, D1q, and pxM, pF , pDq?

(3) How are the Novikov-Shubin invariants of D and D1 related to those of pD?

The previous construction extends to the following more general situation to yield the so called higher
Φ relative index theorem, see again [GL83]. In particular, we assume that pM,F q and pM 1, F 1q satisfy the
hypotheses of Theorem 4.6, with the following changes. In particular, M r K “ V` Y VΦ and M 1 r K1 “
V 1` Y V 1Φ, where the unions are disjoint. For this case, Φ “ pφ, ϕq is a bundle morphism from E Ñ VΦ to
E1 Ñ V 1Φ as in Section 2, our good covers U and U 1 are compatible on VΦ and V 1Φ, and ω and ω1 are ϕ
compatible on VΦ and V 1Φ. We assume that F is transverse to BVΦ, so F 1 is transverse to BV 1Φ. Finally,

we assume that RE
F and RE1

F 1 are strictly positive off K and K1, so we do not need the assumptions on the
integrals being finite.

Next, consider as above the manifold xM “ pM r VΦq Y pϕ pM
1 r V 1Φq, with the foliation

pF “ pF |MrVΦ
q Y

pϕ pF
1|M 1rV 1Φq,

where the orientation on pF |MrVΦ
is the one on F , and that on pF |M 1rV 1Φ is the opposite of the one on F 1.

We also have the bundle pE Ñ xM induced by E and E1, the leafwise operator pD
pF induced by DF and D1F 1 ,

and the differential form pω induced by ω and ω1.

Because of the positivity off compact subsets, all three operators have finite indices, and we have the
following.
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Theorem 6.10. [The higher foliated Φ-index formula]

xchpIndap pDqq, pω pT y “ xchpIndapDqq, ωT y ´ xchpIndapD
1qq, ω1T 1y.

The proof follows from our results here, by easily adapting the proof of Theorem 4.35 of [GL83].

7. Applications

7.1. Leafwise PSC and the higher Gromov-Lawson invariant. We further extend the Gromov-Lawson
construction in [GL83], Section 3, see also [LM89], IV.7, to get an invariant for the space of PSC metrics on
a foliation F whose tangent bundle admits a spin structure. We calculate this invariant for a large collection

of spin foliations whose Haefliger pA genus is zero, so the results of [BH21] do not apply. Using the higher
index results here, we show that the space of PSC metrics on each of these foliations has infinitely many path
connected components, thus verifying our claims that higher order index theorems allow for the extension of

results for manifolds with non-zero pA genus to arbitrary manifolds, and that the higher order terms of the
pA genus also carry geometric information.

For simplicity, we assume that M is compact. Denote by M the space of all smooth metrics on F with
the C8 topology, and by M`

sc ĂM the subspace of metrics with PSC along the leaves.

Scalar curvature and the so called Atiyah-Singer operator are intimately related. Recall that SF is the
bundle of spinors along the leaves of F , with the leafwise spin connection ∇F . The leafwise Atiyah-Singer
operator is the leafwise spin Dirac operator DS

F “ pD
S
Lq, which acts on SF , as usual, by

DS
L “

p
ÿ

i“1

ρpXiq∇F
Xi ,

where X1, . . . , Xp is a local oriented orthonormal basis of TL, and ρpXiq is the Clifford action of Xi on the
bundle SF |L. Denote by κ the leafwise scalar curvature of F , that is

κ “ ´
p
ÿ

i,j“1

xRXi,Xj pXiq, Xjy,

where R is the curvature operator associated to the metric on the leaves of F . In this case the Bochner
Identity, Equation 6.1, is quite simple, see [LM89], namely

7.1. pDS
Lq

2 “ p∇F q˚∇F ` 1
4κ.

Consider the foliation FR on MR “ M ˆ R with leaves LR “ L ˆ R and with the leafwise volume form
dxF ˆ dt. If U is a good cover of M , UR “ tpU

n
i , T

n
i q “ pUi ˆ p3n ´ 2, 3n ` 2q, Tiq| pUi, Tiq P U , n P Zu is

a good cover of MR. Denote by π : MR Ñ M the projection. Suppose that g0, g1 P M`
sc, and pgtqtPr0,1s

is a smooth family in M from g0 to g1. On FR, set G “ g0 ` dt2 for t ď 0, G “ g1 ` dt2 for t ě 1, and
G “ gt ` dt

2 for 0 ă t ă 1.

The leafwise spin Dirac operator DS
F extends to the leafwise spin Dirac operator DR on FR. Following

Gromov-Lawson, [GL83], Equation (3.13), we set

7.2. ipg0, g1q “ chpIndapDRqq P H˚c pMR{FRq.

Theorem 7.3. ipg0, g1q depends only on g0 and g1. If ipg0, g1q ‰ 0, then g0 and g1 are not in the same
path connected component of M`

sc.

Proof. Suppose that gt and pgt are two smooth families of metrics in M from g0 to g1, with associated

metrics G and pG and associated operators DR and pDR. A byproduct of Theorem 4.2 is that ipg0, g1q “
„
ż

FR

pApTFR, Gq



, where pApTFR, Gq is the Atiyah-Singer characteristic differential form, the so-called A-hat

form of F , on MR associated to the metric G, and similarly for pG. Thus we have

ipg0, g1qpGq ´ ipg0, g1qp pGq “

„
ż

FR

p pApTFR, Gq ´ pApTFR, pGqq



“

«

ż

F 0
R

p pApTFR, Gq ´ pApTFR, pGqq

ff

,
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where F 0
R is the foliation on

Ť

i U
0
i . The forms pApTFR, Gq and pApTFR, pGq are locally computable in terms of

their associated curvatures. Thus, off the compact subset M ˆ r0, 1s, they agree, which justifies the second
equality. By abuse of notation, we may write

ż

F 0
R

p pApTFR, Gq ´ pApTFR, pGqq “

ż

Fˆr0,1s

p pApTFR, Gq ´ pApTFR, pGqq.

Since the cohomology classes of the two forms are the same, pApTFR, Gq´ pApTFR, pGq is an exact form dMˆRΨ,
which is locally computable in terms of the curvatures and connections. In particular, Ψ “ 0 on the closure
of open sets where the connections agree. So off M ˆ p0, 1q, Ψ is zero, since the connections agree there.
Thus

ż

F 0
R

p pApTFR, Gq ´ pApTFR, pGqq “

ż

Fˆr0,1s

dMˆRΨ “ dH

ż

Fˆr0,1s

Ψ,

and ipg0, g1qpGq ´ ipg0, g1qp pGq “ 0 in H˚c pMR{FRq.

For the second part, assume that g0 and g1 are in the same path connected component of M`
sc, and that

gt, is a smooth family of metrics in M`
sc from g0 to g1. Then G restricted to each leaf of FR has PSC, and

since the family of metrics is smooth, it is strictly positive. Then, Proposition 6.3 gives that PR
r0,εs “ 0, for

some positive ε, so the Novikov -Shubin invariants are infinite and Remark 4.4 (1) gives that ipg0, g1q “ 0. �

Remark 7.4. Theorem 7.3 remains true if we consider concordance classes of PSC metrics, which a priori
is stronger. Recall that leafwise metrics are concordant if there is a metric G on TFR so that it agrees with
g0 ˆ dt2 near ´8 and with g1 ˆ dt2 near `8. The conclusion is that if ipg0, g1q ‰ 0, then g0 and g1 are
not in the same concordance class of metrics in M`

sc. The proof being essentially the same.

Remark 7.5. We could also extend this theory to concordance classes of leafwise flat connections ∇ on
an auxiliary bundle E. The invariant would become ippg0,∇0q, pg1,∇1qq. See [Be20]. The theorem would
then be that if g0 and g1 are concordant, and ∇0 and ∇1 can be joined by leafwise flat connections, then
ippg0,∇0q, pg1,∇1qq “ 0.

Next, we have a corollary of Theorem 6.10.

Corollary 7.6. Suppose g0, g1, g2 PM`
sc. Then

ipg0, g1q ` ipg1, g2q “ ipg0, g2q, so ipg0, g1q ` ipg1, g2q ` ipg2, g0q “ 0.

Proof. In the notation of Theorem 6.10, take pM,F q, pM 1, F 1q and pxM, pF q to be pMR, FRq, K “ K1 “
M ˆ r0, 1s, VΦ “ V 1Φ “M ˆ p´8, 0q, and V` “ V 1` “M ˆ p1,8q. To compute ipgi, gjq take

Gi,j “ gi ` dt
2 for t P p´8, 0s, and Gi,j “ gj ` dt

2 for t P r1,8q.

For the first, we have

ipg0, g1q ´ ipg0, g2q “ chpIndapDRpG0,1qqq ´ chpIndapDRpG0,2qqq “

chpIndapDRpG2,1qq “ ipg2, g1q “ ´ipg1, g2q.

The second equality is from Theorem 6.10, where pD
pE
L “ DRpG2,1q, D

E
L “ DRpG0,1q, and DE1

L “ DRpG0,2q.

The second equation is then obvious, as ipg0, g2q “ ´ipg2, g0q. �

Now suppose that M is the boundary of a compact manifold W with a spin foliation pF which is transverse

to M , and which restricts to F there. Extend pF as above to W YM pM ˆ r0,8qq. Given a metric g of PSC

on F , extend it to a complete leafwise metric pg on pF by making it g`dt2 on M ˆr´ε,8q, where M ˆr´ε, 0s
is a collar neighborhood of M ĂW , and extending it arbitrarily over the rest of the interior of W .

Definition 7.7. ipg,W q “ chpIndap pD pF qq.
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Note that Theorem 4.2 and the proof of Theorem 7.3, show that ipg,W q does not depend on the extension
of g over W . It does however depend on W in general.

In this situation, we have the following two corollaries of Theorem 4.2.

Corollary 7.8. Suppose that g0, g1 PM`
sc. Then

ipg0, g1q “ ipg1,W q ´ ipg0,W q,

as Haefliger classes. In addition, if pg0 has PSC, then ipg0,W q “ 0.

The reader may wonder how the classes in the first equality can be compared, since they are on different
manifolds. This is explained below.

Proof. Consider the following

‚ pMR, FRq with the metric G0,1 above, giving ipg0, g1q.
‚ M0 “W0 YM pM ˆ r0,8qq with the metric g0 ` dt

2 on M ˆ r0,8q, and the metric pg0 on W0 “W .
Take the opposite orientation on M0 by reversing the orientations on r0,8q and W0, so this gives
´ipg0,W q.

‚ M1 “ W1 YM pM ˆ r0,8qq with the metric G0,1 restricted to M ˆ r0,8q, and the metric pg0 on
W1 “W . As the metric on M ˆ r1,8q is g1 ˆ dt

2, this gives ipg1,W q.

The meaning of the first equality is that representatives of the classes on M0 9YM1 r W0 9YW1 equal
the representative on MR, while what remains on W0 and W1 cancel. It is useful to have a picture of the
situation. The arrows indicate the orientations.

ipg0, g1q : MR ¨ ¨ ¨ g0 ` dt
2

ÝÑ
gt
ÝÑ

g1 ` dt
2

ÝÑ
¨ ¨ ¨

M ˆ t0u M ˆ t1u

ipg1,W q : M1 pg0
ÝÑ
W1 gt

ÝÑ
g1 ` dt

2

ÝÑ
¨ ¨ ¨

´ipg0,W q : M0 pg0 W0
ÐÝ

g0 ` dt
2

ÐÝ
¨ ¨ ¨

We may use the pA-forms associated to the terms, since they are arbitrarily close to differential forms in

the Haefliger classes. We indicate them by pApMRq, pApM0q, and pApM1q. Then,

‚ pApM1q restricted to M1 rW1 equals pApMRq restricted to M ˆ p0,8q;

‚ pApM0q restricted to M0 rW0 equals pApMRq restricted to M ˆ p´8, 0s;

‚ pApM0q restricted to W0 cancels pApM1q restricted to W1.

For the second statment, Propsition 6.3 gives that there is ε ą 0 so that Pr0,εs “ 0. Then Theorem 4.5 gives
ipg0,W q “ 0. �

Corollary 7.9. Suppose that pg0 has PSC, and that g1 extends to pg1 with PSC over a compact manifold xW1

with the spin foliation pF1 extending F . Set

Xp0,1q “ W YM pM ˆ r0, 1sq YM xW1

with the metric pGp0,1q which is pg0 on W , G0,1 on M ˆ r0, 1s and pg1 on xW1. Denote the leafwise operator on
the foliation Fp0,1q of Xp0,1q by Dp0,1q. Then

ipg0, g1q “ chpIndapDp0,1qqq “

ż

Fp0,1q

pApTFp0,1qq.
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Proof. For ipg0, g1q “ chpIndapDp0,1qqq, set xM1 “ xW1YM pMˆr0,8qq with the metric g1`dt
2 on Mˆr0,8q,

and the metric pg1 on xW1, so the metric has PSC everywhere and ipg1,xW1q “ 0. Then, we have,

ipg0, g1q “ ipg1,W q ´ ipg0,W qq “ ipg1,W q “ ipg1,W q ´ ipg1,xW1q “ chpIndapDp0,1qqq.

The first three equalities are obvious. For the last, procede as in the first part, noting that

‚ pApM1q restricted to W1 YM pM ˆ r0, 1sq equals pApXp0,1qq restricted to W YM pM ˆ r0, 1sq;

‚ - pApxM1q restricted to xW1 cancels pApXp0,1qq restricted to xW1;

‚ - pApxM1qrestricted to xM1 r xW1 cancels pApM1q restricted to M1 r pM1 ˆ p1,8qq.

Finally, the fact that chpIndapDp0,1qqq “

ż

Fp0,1q

pApTFp0,1qq is a result from [BH04]. �

7.2. Some examples. To finish, we construct a large collection of spin foliations whose space of leafwise
PSC metrics has infinitely many path connected components.

Suppose we have the following data.

‚ A closed foliated manifold pM,F q, with F spin and

ż

F

pApTF q ‰ 0 in H˚c pM{F q.

‚ A closed manifold S and a family pgiq of PSC metrics on it, and compact spin manifolds Xi with
boundary S and metric pgi, which is gi ˆ dt

2 in a neighborhood of S, and pgi also has PSC. Set

Xpi,jq “ Xi Y pS ˆ r0, 1sq YXj ,

where the metric on S ˆ r0, 1s is gt ˆ dt
2, and gt is a path of metrics from gi to gj . Assume further

that ipgi, gjq is non-zero.

Proposition 7.10. The foliated manifold pM ˆ S, TF ˆ TSq has a family of PSC metrics pgiq, so that for
any i ‰ j, gi and gj do not belong to the same path component of the space of PSC metrics on TF ˆ TS.

Proof. Since M is compact, F admits a metric g of bounded scalar curvature. Set gi “ g ˆ cigi, where
ci P p0,8q is such that gi has PSC. For the manifold M ˆXpi,jq, with the foliation F ˆXpi,jq, Corollary 7.9
gives

ipgi, gjq “

ż

FˆXpi,jq

pApTF ˆ TXpi,jqq.

If gi and gj were in the same path component of the space of PSC metrics on TF ˆTS, then we would have
ipgi, gjq “ 0. However, if i ‰ j, then

ż

FˆXpi,jq

pApTF ˆ TXpi,jqq “

ż

FˆXpi,jq

pApTF q pApTXpi,jqq “

ż

F

pApTF q

ż

Xpi,jq

pApTXpi,jqq “ ipgi, gjq

ż

F

pApTF q ‰ 0.

�

Here are examples of this type.

Example 7.11. We adapt Example 1 of [H78]. In particular, let G “ SL2R ˆ ¨ ¨ ¨ ˆ SL2R (q copies) and
K “ SO2 ˆ ¨ ¨ ¨ ˆ SO2 (q copies). G acts naturally on R2q r t0u and is well known to contain subgroups Γ
with N “ ΓzG{K compact, (in fact a product of q surfaces of higher genus). Set

M “ ΓzGˆK ppR2q r t0uq{Zq » ΓzGˆK pS2q´1 ˆ S1q,

where n P Z acts on R2q r t0u by n ¨ z “ enz.
M has two transverse foliations, F which is given by the fibers S2q´1 ˆ S1 of the fibration M Ñ N , and

a transverse foliation coming from the foliation τ of Example 1 of [H78]. More precisely, τ is defined on the
vector bundle ΓzGˆK R2q, and the zero section is a leaf of it. In addition, the action of Z preserves τ , fixing
the zero section, so it descends to a foliation on M , also denoted τ .
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We work with F , noting that TF is orientable and spin since R2q ´ t0u has these structures and the
actions of K and Z preserve them. It also happens to admits a metric with PSC, namely the product of
the standard metrics on S2q´1 and S1, which is preserved by the action of K. The following proposition is
proven in the appendix.

Proposition 7.12.

ż

F

pApTF q is a nowhere zero 2q form on N . In particular, there is a non-zero constant

Cq so that

ż

N

ż

F

pApTF q “ Cq volpNq.

Thus,

ż

F

pApTF q ‰ 0 in H˚c pM{F q. Note that this also shows that the Haefliger pA genus of TF , i.e.
„
ż

F

pApTF q

0

P H0
c pM{F q, is zero, which is why we cannot use the results of [BH21] here.

In [C88], Carr constructs examples of “exotic” PSC metrics gi, i P Z` on S4k´1, for k ą 1, and compact
Riemannian 4k dimensional spin manifolds Xi with boundary S4k´1, so that the metric pgi on Xi is gi ˆ dt

2

in a neighborhood of S4k´1, and pgi also has PSC. Set

Xpi,jq “ Xi Y pS4k´1 ˆ r0, 1sq YXj ,

where the metric on S4k´1ˆr0, 1s is gtˆ dt
2, and gt is a path of metrics from gi to gj . These examples have

the property that ipgi, gjq ‰ 0. Thus we have all the elements required to apply Proposition 7.10

Remark 7.13. Note that the calculations in the examples in [H78] can be used to provide examples associated
to the groups G “ SL2n1

Rˆ¨ ¨ ¨ˆSL2nrR, and K “ SO2n1
ˆ¨ ¨ ¨ˆSO2nr , and G “ SL2n1

Rˆ¨ ¨ ¨ˆSL2nrRˆR
and K “ SO2n1 ˆ ¨ ¨ ¨ ˆ SO2nr ˆ Z. We leave the details and further extensions to the reader.

The next example is an easy corollary of the Kreck-Stolz result from [KS93][Corollary 2.15].

Proposition 7.14. Suppose that pM,F q is a closed foliated manifold with F spin. Let Y be a closed connected
spin manifold of dimension 4k´ 1 ą 3 with vanishing real Pontrjagin classes and such that H1pY ;Z{2q “ 0.
If Y admits a PSC metric, then the foliated manifold pM ˆ Y, TF ˆ TY q admits a sequence pgiq of leafwise
PSC metrics such that for any i ‰ j, gi and gj are not in the same path component of PSC metrics on
TF ˆ TY .

Notice that if Y is for instance simply connected, then it always admits a metric of PSC by [St92].

Proof. In [KS93], Kreck and Stolz produce an infinite sequence gi of PSC metrics on Y such that for any
i ‰ j, the Gromov-Lawson invariant iGLpgi, gjq ‰ 0. Note that iGLpgi, gjq is the difference of the dimensions
of the positive and negative parts of the kernel of DR on the manifold YR. Thus, there is a non-trivial L2

element ζ in the kernel of DR. On the foliated manifold pM ˆ Y, TF ˆ TY q there is the sequence of PSC
metrics (gi), where gi is as in Proposition 7.10. For i ‰ j, these metrics are not in the same path component
of leafwise PSC metrics. For if they were, then the foliation TF ˆ TYR, would have PSC everywhere. So,
by Proposition 6.3, there would not be any non-trivial L2 elements in the kernel of DR. But this is patently
false as p0, ζq is such a non-trivial L2 element. �

Appendix A. Proof of Proposition 7.12

We follow the proof of Theorem 5.4 in [H78]. Denote by px1, y1, .., xq, yqq the coordinates on R2q. Choose
nonzero numbers λ1, ...λq P R, and set

Xλ “

q
ÿ

i“1

λipxiB{Bxi ` yiB{ Byiq.

This vector field has an isolated singularity at the origin and it commutes with the actions of K and Z on
R2q r t0u. Thus it induces a nowhere zero vector field also denoted Xλ on the bundle M .
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Denote by ωλ the one-form on R2q r t0u defined by

ωλ “
q
ÿ

i“1

λi
x2
i ` y

2
i

pxidxi ` yidyiq.

Note carefully that this is different from the ωλ of [H78]. This change is necessary so that ωλ is invariant
under the action of Z. Note also that dωλ “ 0 still holds. The actions of K and Z on R2q r t0u preserve ωλ,
so it induces a one-form ωλ on M.

Let S be the sphere bundle in xM “ ΓzGˆK ppR2q r t0uqq given by the image of

tpg, px1, y1, ..., xq, yqqq P Gˆ pR2q r t0uq |
q
ÿ

i“1

λipx
2
i ` y

2
i q “ 1u.

S is invariant under Γ and K so it is well defined. Set

S0 “ S “ 0 ¨ S, and S1 “ 1 ¨ S.

Note that the condition on S1 is
řq
i“1 λipx

2
i ` y

2
i q “ e2, so its radius is e. Then we may write,

M “ ΓzGˆK pS2q´1 ˆ r1, esq,

where we identify the boundary components, S0 and S1, on the right, and we may do our computations, as
in [H78], using the coordinates on Gˆ S2q´1 ˆ p1, eq.

Denote by θ the unique basic connection (for the foliation τ !) on T pS2q´1 ˆ p1, eqq, which is the normal
bundle of τ , whose covariant derivative ∇ satisfies, for all Y P T pS2q´1 ˆ p1, eqq,

∇Y B{Bxi “ ωλpY qrXλ, B{Bxis, and ∇Y B{Byi “ ωλpY qrXλ, B{Byis.

The proof in [H78] works just as well here to show that θ is well defined.

The computation of the curvature Ω of ∇ proceeds just as in [H78]. In particular, we may assume that we
have a neighborhood U in N whose inverse image in M is of the form UˆpS2q´1ˆp1, eqq, and coordinates on
it, so that the local form of Ω with respect to the local basis B{Bx1, B{By1, ...B{Bxq, B{Byq of T pS2q´1ˆp1, eqq,
is given by

Ω2i´1
2i´1 “ Ω2i

2i “ λidpλδq,

and all other terms are zero. Here, for i “ 1, ..., q,

‚ λδ “ λ1δ1 ` ¨ ¨ ¨ ` λqδq;
‚ δi “ xiyiωi `

1
2 px

2
i ´ y

2
i qγi;

‚ ω1, γ1, ..., ωq, γq is a basis of the one-forms on U with dωi “ ´ωi ^ γi and dγi “ 0.

Recall that pApξ1, ..., ξ2qq “
2q
ź

j“1

ξj{2

sinhpξj{2q
. We want to compute

ż

F

pApT pS2p´1 ˆ S1qq “

ż

S2q´1ˆS1

pApT pS2p´1 ˆ S1qq “

ż

S2q´1ˆp1,eq

pApΩq.

As pdδiq
3 “ 0 and pdδiq

2 “ 2px2
i `yiq

2dxi^dyi^ωi^γi, the only term of pApΩq which will be non-zero when
integrated over F is, just as in [H78],

pA2qpΩq “ pA2qpλ1, λ1, ..., λq, λqqpdpλδqq
2q “ pA2qpλ1, λ1, ..., λq, λqqp2qq!

q
ź

i“1

pλ2
i px

2
i ` y

2
i qdxi ^ dyi ^ ωi ^ γi,

where pA2qpξ1, ..., ξ2qq is the term in pApξ1, ..., ξ2qq of degree 2q. Thus,

ż

S2q´1ˆp1,eq

pA2qpΩq “ pA2qpλ1, λ1, ..., λq, λqq

«

p2qq!

ż

S2q´1ˆp1,eq

q
ź

i“1

pλ2
i px

2
i ` y

2
i qdxi ^ dyiq

ff

q
ź

i“1

pωi ^ γiq “
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πqpe4q ´ 1q pA2qpλ1, λ1, ..., λq, λqq

pλ1 ¨ ¨ ¨λqq2

q
ź

i“1

pωi ^ γiq,

by Lemma 5.8 of [H78], which is a nowhere zero 2q form on N . Note that pA2qpλ1, λ1, ..., λq, λqq is a non-zero
constant times pλ1 ¨ ¨ ¨λqq

2. Thus, there is a non-zero constant Cq so that
ż

N

ż

S2q´1ˆp1,eq

pApΩq “

ż

N

ż

F

pApTF q “ Cq volpNq.
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