
Planar Graphs

Marc Culler

Planar Graphs – p. 1/??



graphs

A (finite) graph G is a topological space with G = V ∪̇E where

V is a finite discrete set (vertices);

E is a finite disjoint union of open sets (edges);

For each edge e there is a continuous map [0, 1]→ G
mapping (0, 1) homeomorphically onto e and sending
{0, 1} to V .
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graphs

A (finite) graph G is a topological space with G = V ∪̇E where

V is a finite discrete set (vertices);

E is a finite disjoint union of open sets (edges);

For each edge e there is a continuous map [0, 1]→ G
mapping (0, 1) homeomorphically onto e and sending
{0, 1} to V .

A subgraph of a graph is a closed subspace which is a union of
edges and vertices.

The valence of a vertex v is the minimal number of components
of an arbitrarily small deleted neighborhood of v .

A cycle is a graph which is homeomorphic to a circle.

Lemma. A graph which is not a cycle is homeomorphic to a
graph without valence 2 vertices.
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topology of S2
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topology of S2

Theorem (Riemann Mapping). A connected open subset of S2

with (non-empty) connected complement is conformally
homeomorphic to the open unit disk.
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Theorem (Riemann Mapping). A connected open subset of S2

with (non-empty) connected complement is conformally
homeomorphic to the open unit disk.

Theorem (Jordan-Schönflies). A simple closed curve in S2 is
the common boundary of two disks with disjoint interiors.
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topology of S2

Theorem (Riemann Mapping). A connected open subset of S2

with (non-empty) connected complement is conformally
homeomorphic to the open unit disk.

Theorem (Jordan-Schönflies). A simple closed curve in S2 is
the common boundary of two disks with disjoint interiors.

Theorem. Suppose that f is a conformal homeomorphism from

the open unit disk onto an open set Ω ⊂ S2. If the boundary of
Ω is locally connected, then f extends to a continuous map
defined on the closed unit disk.
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planar graphs

A graph is planar if it can be embedded in S2.

If G is embedded in S2 then the regions in the complement of
G are faces. If G is connected the faces are open disks.
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planar graphs

A graph is planar if it can be embedded in S2.

If G is embedded in S2 then the regions in the complement of
G are faces. If G is connected the faces are open disks.

But the boundary of a face is not necessarily a cycle.
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cut vertices

A vertex v of a graph G is a cut vertex if G is the union of two
proper subgraphs A and B with A ∩ B = {v}.
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A vertex v of a graph G is a cut vertex if G is the union of two
proper subgraphs A and B with A ∩ B = {v}.

Proposition. Let G be a graph embedded in S2. Suppose F is
a face of G and ∂F is not a cycle. Then ∂F contains a cut
vertex of G.
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cut pairs

A pair {u, v} of vertices of a graph G is a cut pair if G is the
union of two proper subgraphs A and B, neither of which is an
edge, so that A ∩ B = {u, v}.
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cut pairs

A pair {u, v} of vertices of a graph G is a cut pair if G is the
union of two proper subgraphs A and B, neither of which is an
edge, so that A ∩ B = {u, v}.

If G has no cut vertex, then A and B are connected.
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cut pairs

A pair {u, v} of vertices of a graph G is a cut pair if G is the
union of two proper subgraphs A and B, neither of which is an
edge, so that A ∩ B = {u, v}.

If G has no cut vertex, then A and B are connected.

A graph is 3-connected if it is connected, has no cut vertex and
has no cut pair.
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boundaries of faces

Lemma. Let G be a planar graph and let C ⊂ G be a cycle.
The cycle C is the boundary of a face for every embedding of G

in S2 if and only if G − C is connected.
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boundaries of faces

Lemma. Let G be a planar graph and let C ⊂ G be a cycle.
The cycle C is the boundary of a face for every embedding of G

in S2 if and only if G − C is connected.

Proof. If G − C is connected, then for any embedding of G in

S2, the connected set G − C is contained in one of the two
disks bounded by C. The other disk must be a face.
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boundaries of faces

Lemma. Let G be a planar graph and let C ⊂ G be a cycle.
The cycle C is the boundary of a face for every embedding of G

in S2 if and only if G − C is connected.

Proof. If G − C is connected, then for any embedding of G in

S2, the connected set G − C is contained in one of the two
disks bounded by C. The other disk must be a face.

Suppose G − C is disconnected. Write G as A ∪ B where A and
B are subgraphs, neither one a cycle, such that A ∩ B = C.

Choose an embedding of G in S2. If C is not the boundary of a
face, then we are done. Otherwise, restrict the embeddings to
A and B, to obtain embeddings of A and B into disks, sending
C to the boundary of each disk. Gluing the boundaries of the

two disks together gives an embedding of G in S2 for which C is
not a face.

Planar Graphs – p. 7/??



unique embeddings

Theorem (Whitney). A 3-connected planar graph has a unique

embedding, up to composition with a homeomorphism of S2.
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unique embeddings

Theorem (Whitney). A 3-connected planar graph has a unique

embedding, up to composition with a homeomorphism of S2.

Proof. Say there are two embeddings of G in S2. Then some
cycle C ⊂ G is the boundary of a face for one embedding, but
not the other. By the Lemma, G − C has at least two
components.

Planar Graphs – p. 8/??



unique embeddings

Theorem (Whitney). A 3-connected planar graph has a unique

embedding, up to composition with a homeomorphism of S2.

Proof. Say there are two embeddings of G in S2. Then some
cycle C ⊂ G is the boundary of a face for one embedding, but
not the other. By the Lemma, G − C has at least two
components. Look at an embedding where C is a face.

A component of G − C is in the complement of the face
bounded by C. Planar Graphs – p. 8/??



unique embeddings

Theorem (Whitney). A 3-connected planar graph has a unique

embedding, up to composition with a homeomorphism of S2.

Proof. Say there are two embeddings of G in S2. Then some
cycle C ⊂ G is the boundary of a face for one embedding, but
not the other. By the Lemma, G − C has at least two
components.

The other components of G − C have to fit in the “gaps”.
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unique embeddings

Theorem (Whitney). A 3-connected planar graph has a unique

embedding, up to composition with a homeomorphism of S2.

Proof. Say there are two embeddings of G in S2. Then some
cycle C ⊂ G is the boundary of a face for one embedding, but
not the other. By the Lemma, G − C has at least two
components.

Here is a cut pair.
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Kuratowski’s Theorem

A minimal non-planar graph is not planar, but every proper
subgraph is planar.

Theorem (Kuratowski). Every minimal non-planar graph is
homeomorphic to either K(5) or K(3, 3).
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Euler characteristic

Suppose a connected graph in S2 has V vertices, E edges and
F faces. Then

2 = χ(S2) = V − E + F.
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Euler characteristic

Suppose a connected graph in S2 has V vertices, E edges and
F faces. Then

2 = χ(S2) = V − E + F.

If every face has at least k edges on its boundary then
kF ≤ 2E, so

2 = V − E + F ≤ V − E +
2

k
E ⇒ E ≤

k

k − 2
V −

2k

k − 2

If k = 3 then E ≤ 3V − 6. If k = 4 then E ≤ 2V − 4.
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Euler characteristic

Suppose a connected graph in S2 has V vertices, E edges and
F faces. Then

2 = χ(S2) = V − E + F.

If every face has at least k edges on its boundary then
kF ≤ 2E, so

2 = V − E + F ≤ V − E +
2

k
E ⇒ E ≤

k

k − 2
V −

2k

k − 2

If k = 3 then E ≤ 3V − 6. If k = 4 then E ≤ 2V − 4.

For K(5) we can take k = 3 and we have V = 5 but
E = 10 > 15− 6.

For K(3, 3) we can take k = 4 and we have V = 6 but
E = 9 > 12− 4.

So these are non-planar graphs.
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no cut vertex

Lemma. A minimal non-planar graph G has no cut vertex.

Proof. Suppose G = A∪B, A∩B = {v}. By minimality, A and
B are planar. Embed A in a closed disk, so that v lies on the
boundary. Do the same for B. Then embed the two disks so
they meet at v .
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no cut pair

Lemma. A minimal non-planar graph G has no cut pair.

Proof. Suppose G = A ∪ B, A ∩ B = {u, v}. Since G has no
cut vertex, A and B are connected. Claim: A can be embedded
in S2 so that u and v are in the boundary of the same face.
(Likewise for B.)
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no cut pair

Lemma. A minimal non-planar graph G has no cut pair.

Proof. Suppose G = A ∪ B, A ∩ B = {u, v}. Since G has no
cut vertex, A and B are connected. Claim: A can be embedded
in S2 so that u and v are in the boundary of the same face.
(Likewise for B.) Join u to v by an arc b ⊂ B.
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no cut pair

Lemma. A minimal non-planar graph G has no cut pair.

Proof. Suppose G = A ∪ B, A ∩ B = {u, v}. Since G has no
cut vertex, A and B are connected. Claim: A can be embedded
in S2 so that u and v are in the boundary of the same face.
(Likewise for B.) Join u to v by an arc b ⊂ B. By minimality

A ∪ b is planar. Embed A ∪ b in S2.
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no cut pair

Lemma. A minimal non-planar graph G has no cut pair.

Proof. Suppose G = A ∪ B, A ∩ B = {u, v}. Since G has no
cut vertex, A and B are connected. Claim: A can be embedded
in S2 so that u and v are in the boundary of the same face.
(Likewise for B.) Join u to v by an arc b ⊂ B. By minimality

A ∪ b is planar. Embed A ∪ b in S2. Now remove the arc b.
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no cut pair, cont’d

To finish the proof of the lemma, embed A in a disk so that u
and v lie on the boundary. Do the same for B.
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no cut pair, cont’d

To finish the proof of the lemma, embed A in a disk so that u
and v lie on the boundary. Do the same for B.

Then embed the two disks so they meet at u and v . This is a
contradiction since G is non-planar.

¤
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the graph G′

Let G be a minimal non-planar graph with no valence 2 vertices.
Remove an arbitrary edge e with endpoints x and y . Call the

resulting planar graph G′. Embed G′ in S2.
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The graph G′ has no cut vertex.
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the graph G′

Let G be a minimal non-planar graph with no valence 2 vertices.
Remove an arbitrary edge e with endpoints x and y . Call the

resulting planar graph G′. Embed G′ in S2.

The graph G′ has no cut vertex.

If x is a cut vertex for G′, then x is a cut vertex for G. Likewise
for y .
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the graph G′

Let G be a minimal non-planar graph with no valence 2 vertices.
Remove an arbitrary edge e with endpoints x and y . Call the

resulting planar graph G′. Embed G′ in S2.

The graph G′ has no cut vertex.

If G has a cut vertex v distinct from x and y , then x and y are
separated by v and {x, v} is a cut pair for G.
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the graph G′

Let G be a minimal non-planar graph with no valence 2 vertices.
Remove an arbitrary edge e with endpoints x and y . Call the

resulting planar graph G′. Embed G′ in S2.

The graph G′ has no cut vertex.

The graph G′ may have cut pairs, but no cut pair can contain x .

If {x, v} is a cut pair for G′ then it is a cut pair for G as well.
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the wheel

Consider the graph G′ ⊂ S2. Construct a graph G′′ ⊂ S2 by
erasing the vertex x and the edges that meet it. Let R be the
boundary of the face of G′′ containing the point x . Claim: R is
a cycle.
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the wheel

Consider the graph G′ ⊂ S2. Construct a graph G′′ ⊂ S2 by
erasing the vertex x and the edges that meet it. Let R be the
boundary of the face of G′′ containing the point x . Claim: R is
a cycle. Otherwise R would contain a cut vertex v for G′′.
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the wheel

Consider the graph G′ ⊂ S2. Construct a graph G′′ ⊂ S2 by
erasing the vertex x and the edges that meet it. Let R be the
boundary of the face of G′′ containing the point x . Claim: R is
a cycle. Otherwise R would contain a cut vertex v for G′′.

But then x and v would form a cut pair for G, a contradiction.
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the wheel

Consider the graph G′ ⊂ S2. Construct a graph G′′ ⊂ S2 by
erasing the vertex x and the edges that meet it. Let R be the
boundary of the face of G′′ containing the point x . Claim: R is
a cycle. Otherwise R would contain a cut vertex v for G′′.
We conclude that x ∪ R together with all the edges of G′

incident to x , form a wheel graph W inside of G′.
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the straddle

Let Y be the component of G′ −W which contains y .

Claim: Y meets at least two sectors of the wheel W .
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the straddle

Let Y be the component of G′ −W which contains y .

Claim: Y meets at least two sectors of the wheel W . Suppose

not. Then all of the points of Y ∩R are contained in one sector
S.
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the straddle

Let Y be the component of G′ −W which contains y .

Claim: Y meets at least two sectors of the wheel W . Suppose

not. Then all of the points of Y ∩R are contained in one sector
S. Consider the (planar) graph Z = S ∪ Y ∪ e.
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the straddle

Let Y be the component of G′ −W which contains y .

Claim: Y meets at least two sectors of the wheel W . Suppose

not. Then all of the points of Y ∩R are contained in one sector
S. Consider the (planar) graph Z = S ∪ Y ∪ e.

Since Z − S is connected, every embedding of Z has S as a
face. So we can embed Z inside of S. This gives a planar
embedding of G, a contradiction.
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case 1

Suppose Y meets R in a vertex which is not an endpoint of a
spoke.
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case 1

Suppose Y meets R in a vertex which is not an endpoint of a
spoke.
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case 2

Suppose Y meets R in exactly two endpoints of spokes.
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case 3

Suppose Y meets R in three or more endpoints of spokes.

Planar Graphs – p. 19/??



case 3
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