Planar Graphs

Marc Culler

A (finite) graph G is a topological space with $G=V \dot{U} E$ where

- V is a finite discrete set (vertices);
- E is a finite disjoint union of open sets (edges);
- For each edge e there is a continuous map $[0,1] \rightarrow G$ mapping $(0,1)$ homeomorphically onto e and sending $\{0,1\}$ to V.

A (finite) graph G is a topological space with $G=V \dot{U} E$ where

- V is a finite discrete set (vertices);
- E is a finite disjoint union of open sets (edges);
- For each edge e there is a continuous map $[0,1] \rightarrow G$ mapping $(0,1)$ homeomorphically onto e and sending $\{0,1\}$ to V.

A subgraph of a graph is a closed subspace which is a union of edges and vertices.

A (finite) graph G is a topological space with $G=V \dot{U} E$ where

- V is a finite discrete set (vertices);
- E is a finite disjoint union of open sets (edges);
- For each edge e there is a continuous map $[0,1] \rightarrow G$ mapping $(0,1)$ homeomorphically onto e and sending $\{0,1\}$ to V.

A subgraph of a graph is a closed subspace which is a union of edges and vertices.
The valence of a vertex v is the minimal number of components of an arbitrarily small deleted neighborhood of v.

A (finite) graph G is a topological space with $G=V \dot{U} E$ where

- V is a finite discrete set (vertices);
- E is a finite disjoint union of open sets (edges);
- For each edge e there is a continuous map $[0,1] \rightarrow G$ mapping $(0,1)$ homeomorphically onto e and sending $\{0,1\}$ to V.

A subgraph of a graph is a closed subspace which is a union of edges and vertices.
The valence of a vertex v is the minimal number of components of an arbitrarily small deleted neighborhood of v.

A cycle is a graph which is homeomorphic to a circle.

A (finite) graph G is a topological space with $G=V \dot{U} E$ where

- V is a finite discrete set (vertices);
- E is a finite disjoint union of open sets (edges);
- For each edge e there is a continuous map $[0,1] \rightarrow G$ mapping $(0,1)$ homeomorphically onto e and sending $\{0,1\}$ to V.

A subgraph of a graph is a closed subspace which is a union of edges and vertices.
The valence of a vertex v is the minimal number of components of an arbitrarily small deleted neighborhood of v.

A cycle is a graph which is homeomorphic to a circle.
Lemma. A graph which is not a cycle is homeomorphic to a graph without valence 2 vertices.
topology of S^{2}

Theorem (Riemann Mapping). A connected open subset of S^{2} with (non-empty) connected complement is conformally homeomorphic to the open unit disk.

Theorem (Riemann Mapping). A connected open subset of S^{2} with (non-empty) connected complement is conformally homeomorphic to the open unit disk.

Theorem (Jordan-Schönflies). A simple closed curve in S^{2} is the common boundary of two disks with disjoint interiors.

Theorem (Riemann Mapping). A connected open subset of S^{2} with (non-empty) connected complement is conformally homeomorphic to the open unit disk.

Theorem (Jordan-Schönflies). A simple closed curve in S^{2} is the common boundary of two disks with disjoint interiors.

Theorem. Suppose that f is a conformal homeomorphism from the open unit disk onto an open set $\Omega \subset S^{2}$. If the boundary of Ω is locally connected, then f extends to a continuous map defined on the closed unit disk.

planar graphs

A graph is planar if it can be embedded in S^{2}.
If G is embedded in S^{2} then the regions in the complement of G are faces. If G is connected the faces are open disks.

planar graphs

A graph is planar if it can be embedded in S^{2}.
If G is embedded in S^{2} then the regions in the complement of G are faces. If G is connected the faces are open disks.

But the boundary of a face is not necessarily a cycle.

A vertex v of a graph G is a cut vertex if G is the union of two proper subgraphs A and B with $A \cap B=\{v\}$.

A vertex v of a graph G is a cut vertex if G is the union of two proper subgraphs A and B with $A \cap B=\{v\}$.

Proposition. Let G be a graph embedded in S^{2}. Suppose F is a face of G and ∂F is not a cycle. Then ∂F contains a cut vertex of G.

A vertex v of a graph G is a cut vertex if G is the union of two proper subgraphs A and B with $A \cap B=\{v\}$.

Proposition. Let G be a graph embedded in S^{2}. Suppose F is a face of G and ∂F is not a cycle. Then ∂F contains a cut vertex of G.

A pair $\{u, v\}$ of vertices of a graph G is a cut pair if G is the union of two proper subgraphs A and B, neither of which is an edge, so that $A \cap B=\{u, v\}$.

cut pairs

A pair $\{u, v\}$ of vertices of a graph G is a cut pair if G is the union of two proper subgraphs A and B, neither of which is an edge, so that $A \cap B=\{u, v\}$.
If G has no cut vertex, then A and B are connected.

cut pairs

A pair $\{u, v\}$ of vertices of a graph G is a cut pair if G is the union of two proper subgraphs A and B, neither of which is an edge, so that $A \cap B=\{u, v\}$.
If G has no cut vertex, then A and B are connected.

A graph is 3-connected if it is connected, has no cut vertex and has no cut pair.

Lemma. Let G be a planar graph and let $C \subset G$ be a cycle. The cycle C is the boundary of a face for every embedding of G in S^{2} if and only if $G-C$ is connected.

Lemma. Let G be a planar graph and let $C \subset G$ be a cycle. The cycle C is the boundary of a face for every embedding of G in S^{2} if and only if $G-C$ is connected.

Proof. If $G-C$ is connected, then for any embedding of G in S^{2}, the connected set $G-C$ is contained in one of the two disks bounded by C. The other disk must be a face.

Lemma. Let G be a planar graph and let $C \subset G$ be a cycle. The cycle C is the boundary of a face for every embedding of G in S^{2} if and only if $G-C$ is connected.

Proof. If $G-C$ is connected, then for any embedding of G in S^{2}, the connected set $G-C$ is contained in one of the two disks bounded by C. The other disk must be a face.

Suppose $G-C$ is disconnected. Write G as $A \cup B$ where A and B are subgraphs, neither one a cycle, such that $A \cap B=C$. Choose an embedding of G in S^{2}. If C is not the boundary of a face, then we are done. Otherwise, restrict the embeddings to A and B, to obtain embeddings of A and B into disks, sending C to the boundary of each disk. Gluing the boundaries of the two disks together gives an embedding of G in S^{2} for which C is not a face.

unique embeddings

Theorem (Whitney). A 3-connected planar graph has a unique embedding, up to composition with a homeomorphism of S^{2}.

unique embeddings

Theorem (Whitney). A 3-connected planar graph has a unique embedding, up to composition with a homeomorphism of S^{2}.

Proof. Say there are two embeddings of G in S^{2}. Then some cycle $C \subset G$ is the boundary of a face for one embedding, but not the other. By the Lemma, $G-C$ has at least two components.

unique embeddings

Theorem (Whitney). A 3-connected planar graph has a unique embedding, up to composition with a homeomorphism of S^{2}.

Proof. Say there are two embeddings of G in S^{2}. Then some cycle $C \subset G$ is the boundary of a face for one embedding, but not the other. By the Lemma, $G-C$ has at least two components. Look at an embedding where C is a face.

A component of $G-C$ is in the complement of the face bounded by C.

unique embeddings

Theorem (Whitney). A 3-connected planar graph has a unique embedding, up to composition with a homeomorphism of S^{2}.

Proof. Say there are two embeddings of G in S^{2}. Then some cycle $C \subset G$ is the boundary of a face for one embedding, but not the other. By the Lemma, $G-C$ has at least two components.

The other components of $G-C$ have to fit in the "gaps".

unique embeddings

Theorem (Whitney). A 3-connected planar graph has a unique embedding, up to composition with a homeomorphism of S^{2}.

Proof. Say there are two embeddings of G in S^{2}. Then some cycle $C \subset G$ is the boundary of a face for one embedding, but not the other. By the Lemma, $G-C$ has at least two components.

Here is a cut pair.

A minimal non-planar graph is not planar, but every proper subgraph is planar.

Theorem (Kuratowski). Every minimal non-planar graph is homeomorphic to either $K(5)$ or $K(3,3)$.

A minimal non-planar graph is not planar, but every proper subgraph is planar.

Theorem (Kuratowski). Every minimal non-planar graph is homeomorphic to either $K(5)$ or $K(3,3)$.

$\mathrm{K}(3,3)$

K(5)

Euler characteristic

Suppose a connected graph in S^{2} has V vertices, E edges and F faces. Then

$$
2=\chi\left(S^{2}\right)=V-E+F .
$$

Euler characteristic

Suppose a connected graph in S^{2} has V vertices, E edges and F faces. Then

$$
2=\chi\left(S^{2}\right)=V-E+F .
$$

If every face has at least k edges on its boundary then $k F \leq 2 E$, so

$$
2=V-E+F \leq V-E+\frac{2}{k} E \Rightarrow E \leq \frac{k}{k-2} V-\frac{2 k}{k-2}
$$

If $k=3$ then $E \leq 3 V-6$. If $k=4$ then $E \leq 2 V-4$.

Suppose a connected graph in S^{2} has V vertices, E edges and F faces. Then

$$
2=\chi\left(S^{2}\right)=V-E+F .
$$

If every face has at least k edges on its boundary then $k F \leq 2 E$, so

$$
2=V-E+F \leq V-E+\frac{2}{k} E \Rightarrow E \leq \frac{k}{k-2} V-\frac{2 k}{k-2}
$$

If $k=3$ then $E \leq 3 V-6$. If $k=4$ then $E \leq 2 V-4$.
For $K(5)$ we can take $k=3$ and we have $V=5$ but $E=10>15-6$.
For $K(3,3)$ we can take $k=4$ and we have $V=6$ but $E=9>12-4$.

So these are non-planar graphs.

Lemma. A minimal non-planar graph G has no cut vertex.
Proof. Suppose $G=A \cup B, A \cap B=\{v\}$. By minimality, A and B are planar. Embed A in a closed disk, so that v lies on the boundary. Do the same for B. Then embed the two disks so they meet at v.

Lemma. A minimal non-planar graph G has no cut vertex.
Proof. Suppose $G=A \cup B, A \cap B=\{v\}$. By minimality, A and B are planar. Embed A in a closed disk, so that v lies on the boundary. Do the same for B. Then embed the two disks so they meet at v.

Lemma. A minimal non-planar graph G has no cut pair.
Proof. Suppose $G=A \cup B, A \cap B=\{u, v\}$. Since G has no cut vertex, A and B are connected. Claim: A can be embedded in S^{2} so that u and v are in the boundary of the same face.
(Likewise for B.)

Lemma. A minimal non-planar graph G has no cut pair.
Proof. Suppose $G=A \cup B, A \cap B=\{u, v\}$. Since G has no cut vertex, A and B are connected. Claim: A can be embedded in S^{2} so that u and v are in the boundary of the same face.
(Likewise for B.) Join u to v by an $\operatorname{arc} b \subset B$.

Lemma. A minimal non-planar graph G has no cut pair.
Proof. Suppose $G=A \cup B, A \cap B=\{u, v\}$. Since G has no cut vertex, A and B are connected. Claim: A can be embedded in S^{2} so that u and v are in the boundary of the same face.
(Likewise for B.) Join u to v by an $\operatorname{arc} b \subset B$. By minimality $A \cup b$ is planar. Embed $A \cup b$ in S^{2}.

Lemma. A minimal non-planar graph G has no cut pair.
Proof. Suppose $G=A \cup B, A \cap B=\{u, v\}$. Since G has no cut vertex, A and B are connected. Claim: A can be embedded in S^{2} so that u and v are in the boundary of the same face.
(Likewise for B.) Join u to v by an arc $b \subset B$. By minimality $A \cup b$ is planar. Embed $A \cup b$ in S^{2}. Now remove the arc b.

To finish the proof of the lemma, embed A in a disk so that u and v lie on the boundary. Do the same for B.

To finish the proof of the lemma, embed A in a disk so that u and v lie on the boundary. Do the same for B.

Then embed the two disks so they meet at u and v. This is a contradiction since G is non-planar.
the graph G^{\prime}
Let G be a minimal non-planar graph with no valence 2 vertices. Remove an arbitrary edge e with endpoints x and y. Call the resulting planar graph G^{\prime}. Embed G^{\prime} in S^{2}.
the graph G^{\prime}
Let G be a minimal non-planar graph with no valence 2 vertices. Remove an arbitrary edge e with endpoints x and y. Call the resulting planar graph G^{\prime}. Embed G^{\prime} in S^{2}.
The graph G^{\prime} has no cut vertex.
the graph G^{\prime}
Let G be a minimal non-planar graph with no valence 2 vertices. Remove an arbitrary edge e with endpoints x and y. Call the resulting planar graph G^{\prime}. Embed G^{\prime} in S^{2}.
The graph G^{\prime} has no cut vertex.

If x is a cut vertex for G^{\prime}, then x is a cut vertex for G. Likewise for y.
the graph G^{\prime}
Let G be a minimal non-planar graph with no valence 2 vertices. Remove an arbitrary edge e with endpoints x and y. Call the resulting planar graph G^{\prime}. Embed G^{\prime} in S^{2}.
The graph G^{\prime} has no cut vertex.

If G has a cut vertex v distinct from x and y, then x and y are separated by v and $\{x, v\}$ is a cut pair for G.

Let G be a minimal non-planar graph with no valence 2 vertices. Remove an arbitrary edge e with endpoints x and y. Call the resulting planar graph G^{\prime}. Embed G^{\prime} in S^{2}.

The graph G^{\prime} has no cut vertex.
The graph G^{\prime} may have cut pairs, but no cut pair can contain x.

If $\{x, v\}$ is a cut pair for G^{\prime} then it is a cut pair for G as well.

Consider the graph $G^{\prime} \subset S^{2}$. Construct a graph $G^{\prime \prime} \subset S^{2}$ by erasing the vertex x and the edges that meet it. Let R be the boundary of the face of $G^{\prime \prime}$ containing the point x. Claim: R is a cycle.

Consider the graph $G^{\prime} \subset S^{2}$. Construct a graph $G^{\prime \prime} \subset S^{2}$ by erasing the vertex x and the edges that meet it. Let R be the boundary of the face of $G^{\prime \prime}$ containing the point x. Claim: R is a cycle. Otherwise R would contain a cut vertex v for $G^{\prime \prime}$.

Consider the graph $G^{\prime} \subset S^{2}$. Construct a graph $G^{\prime \prime} \subset S^{2}$ by erasing the vertex x and the edges that meet it. Let R be the boundary of the face of $G^{\prime \prime}$ containing the point x. Claim: R is a cycle. Otherwise R would contain a cut vertex v for $G^{\prime \prime}$.

But then x and v would form a cut pair for G, a contradiction.

Consider the graph $G^{\prime} \subset S^{2}$. Construct a graph $G^{\prime \prime} \subset S^{2}$ by erasing the vertex x and the edges that meet it. Let R be the boundary of the face of $G^{\prime \prime}$ containing the point x. Claim: R is a cycle. Otherwise R would contain a cut vertex v for $G^{\prime \prime}$. We conclude that $x \cup R$ together with all the edges of G^{\prime} incident to x, form a wheel graph W inside of G^{\prime}.

Let Y be the component of $G^{\prime}-W$ which contains y.
Claim: \bar{Y} meets at least two sectors of the wheel W.

Let Y be the component of $G^{\prime}-W$ which contains y.
Claim: \bar{Y} meets at least two sectors of the wheel W. Suppose not. Then all of the points of $\bar{Y} \cap R$ are contained in one sector S.

Let Y be the component of $G^{\prime}-W$ which contains y.
Claim: \bar{Y} meets at least two sectors of the wheel W. Suppose not. Then all of the points of $\bar{Y} \cap R$ are contained in one sector S. Consider the (planar) graph $Z=S \cup Y \cup e$.

Let Y be the component of $G^{\prime}-W$ which contains y.
Claim: \bar{Y} meets at least two sectors of the wheel W. Suppose not. Then all of the points of $\bar{Y} \cap R$ are contained in one sector S. Consider the (planar) graph $Z=S \cup Y \cup e$.

Since $Z-S$ is connected, every embedding of Z has S as a face. So we can embed Z inside of S. This gives a planar embedding of G, a contradiction.

Suppose \bar{Y} meets R in a vertex which is not an endpoint of a spoke.

case 1

Suppose \bar{Y} meets R in a vertex which is not an endpoint of a spoke.

case 1

Suppose \bar{Y} meets R in a vertex which is not an endpoint of a spoke.

case 1

Suppose \bar{Y} meets R in a vertex which is not an endpoint of a spoke.

case 1

Suppose \bar{Y} meets R in a vertex which is not an endpoint of a spoke.

case 1

Suppose \bar{Y} meets R in a vertex which is not an endpoint of a spoke.

Suppose \bar{Y} meets R in exactly two endpoints of spokes.

case 2

Suppose \bar{Y} meets R in exactly two endpoints of spokes.

case 2

Suppose \bar{Y} meets R in exactly two endpoints of spokes.

case 2

Suppose \bar{Y} meets R in exactly two endpoints of spokes.

case 2

Suppose \bar{Y} meets R in exactly two endpoints of spokes.

Suppose \bar{Y} meets R in three or more endpoints of spokes.

case 3

Suppose \bar{Y} meets R in three or more endpoints of spokes.

case 3

Suppose \bar{Y} meets R in three or more endpoints of spokes.

case 3

Suppose \bar{Y} meets R in three or more endpoints of spokes.

case 3

Suppose \bar{Y} meets R in three or more endpoints of spokes.

case 3

Suppose \bar{Y} meets R in three or more endpoints of spokes.

