Planar Graphs

Marc Culler

A (finite) graph G is a topological space with $G = V \dot{\cup} E$ where

- *V* is a finite discrete set (*vertices*);
- E is a finite disjoint union of open sets (edges);
- For each edge *e* there is a continuous map $[0, 1] \rightarrow G$ mapping (0, 1) homeomorphically onto *e* and sending $\{0, 1\}$ to *V*.

A (finite) graph G is a topological space with $G = V \dot{\cup} E$ where

- V is a finite discrete set (vertices);
- E is a finite disjoint union of open sets (edges);
- For each edge *e* there is a continuous map [0, 1] → G mapping (0, 1) homeomorphically onto *e* and sending {0, 1} to *V*.

A *subgraph* of a graph is a closed subspace which is a union of edges and vertices.

A (finite) graph G is a topological space with $G = V \dot{\cup} E$ where

- V is a finite discrete set (vertices);
- E is a finite disjoint union of open sets (edges);
- For each edge *e* there is a continuous map [0, 1] → G mapping (0, 1) homeomorphically onto *e* and sending {0, 1} to *V*.

A *subgraph* of a graph is a closed subspace which is a union of edges and vertices.

The valence of a vertex v is the minimal number of components of an arbitrarily small deleted neighborhood of v.

A (finite) graph G is a topological space with $G = V \dot{\cup} E$ where

- V is a finite discrete set (vertices);
- E is a finite disjoint union of open sets (edges);
- For each edge *e* there is a continuous map [0, 1] → G mapping (0, 1) homeomorphically onto *e* and sending {0, 1} to *V*.

A *subgraph* of a graph is a closed subspace which is a union of edges and vertices.

The valence of a vertex v is the minimal number of components of an arbitrarily small deleted neighborhood of v.

A cycle is a graph which is homeomorphic to a circle.

A (finite) graph G is a topological space with $G = V \dot{\cup} E$ where

- V is a finite discrete set (vertices);
- E is a finite disjoint union of open sets (edges);
- For each edge *e* there is a continuous map [0, 1] → G mapping (0, 1) homeomorphically onto *e* and sending {0, 1} to *V*.

A *subgraph* of a graph is a closed subspace which is a union of edges and vertices.

The valence of a vertex v is the minimal number of components of an arbitrarily small deleted neighborhood of v.

A cycle is a graph which is homeomorphic to a circle.

Lemma. A graph which is not a cycle is homeomorphic to a graph without valence 2 vertices.

Theorem (Riemann Mapping). A connected open subset of S^2 with (non-empty) connected complement is conformally homeomorphic to the open unit disk.

Theorem (Riemann Mapping). A connected open subset of S^2 with (non-empty) connected complement is conformally homeomorphic to the open unit disk.

Theorem (Jordan-Schönflies). A simple closed curve in S^2 is the common boundary of two disks with disjoint interiors.

Theorem (Riemann Mapping). A connected open subset of S^2 with (non-empty) connected complement is conformally homeomorphic to the open unit disk.

Theorem (Jordan-Schönflies). A simple closed curve in S^2 is the common boundary of two disks with disjoint interiors.

Theorem. Suppose that f is a conformal homeomorphism from the open unit disk onto an open set $\Omega \subset S^2$. If the boundary of Ω is locally connected, then f extends to a continuous map defined on the closed unit disk.

planar graphs

A graph is *planar* if it can be embedded in S^2 .

If G is embedded in S^2 then the regions in the complement of G are *faces*. If G is connected the faces are open disks.

planar graphs

A graph is *planar* if it can be embedded in S^2 .

If G is embedded in S^2 then the regions in the complement of G are *faces*. If G is connected the faces are open disks.

But the boundary of a face is not necessarily a cycle.

cut vertices

A vertex v of a graph G is a *cut vertex* if G is the union of two proper subgraphs A and B with $A \cap B = \{v\}$.

cut vertices

A vertex v of a graph G is a *cut vertex* if G is the union of two proper subgraphs A and B with $A \cap B = \{v\}$.

Proposition. Let G be a graph embedded in S^2 . Suppose F is a face of G and ∂F is not a cycle. Then ∂F contains a cut vertex of G.

cut vertices

A vertex v of a graph G is a *cut vertex* if G is the union of two proper subgraphs A and B with $A \cap B = \{v\}$.

Proposition. Let G be a graph embedded in S^2 . Suppose F is a face of G and ∂F is not a cycle. Then ∂F contains a cut vertex of G.

cut pairs

A pair $\{u, v\}$ of vertices of a graph G is a *cut pair* if G is the union of two proper subgraphs A and B, neither of which is an edge, so that $A \cap B = \{u, v\}$.

cut pairs

A pair $\{u, v\}$ of vertices of a graph G is a *cut pair* if G is the union of two proper subgraphs A and B, neither of which is an edge, so that $A \cap B = \{u, v\}$.

If G has no cut vertex, then A and B are connected.

cut pairs

A pair $\{u, v\}$ of vertices of a graph G is a *cut pair* if G is the union of two proper subgraphs A and B, neither of which is an edge, so that $A \cap B = \{u, v\}$.

If G has no cut vertex, then A and B are connected.

A graph is 3-*connected* if it is connected, has no cut vertex and has no cut pair.

boundaries of faces

Lemma. Let G be a planar graph and let $C \subset G$ be a cycle. The cycle C is the boundary of a face for every embedding of G in S^2 if and only if G - C is connected.

boundaries of faces

Lemma. Let G be a planar graph and let $C \subset G$ be a cycle. The cycle C is the boundary of a face for every embedding of G in S² if and only if G - C is connected.

Proof. If G - C is connected, then for any embedding of G in S^2 , the connected set G - C is contained in one of the two disks bounded by C. The other disk must be a face.

boundaries of faces

Lemma. Let G be a planar graph and let $C \subset G$ be a cycle. The cycle C is the boundary of a face for every embedding of G in S² if and only if G - C is connected.

Proof. If G - C is connected, then for any embedding of G in S^2 , the connected set G - C is contained in one of the two disks bounded by C. The other disk must be a face.

Suppose G - C is disconnected. Write G as $A \cup B$ where A and B are subgraphs, neither one a cycle, such that $A \cap B = C$. Choose an embedding of G in S^2 . If C is not the boundary of a face, then we are done. Otherwise, restrict the embeddings to A and B, to obtain embeddings of A and B into disks, sending C to the boundary of each disk. Gluing the boundaries of the two disks together gives an embedding of G in S^2 for which C is not a face.

Theorem (Whitney). A 3-connected planar graph has a unique embedding, up to composition with a homeomorphism of S^2 .

Theorem (Whitney). A 3-connected planar graph has a unique embedding, up to composition with a homeomorphism of S^2 .

Proof. Say there are two embeddings of G in S^2 . Then some cycle $C \subset G$ is the boundary of a face for one embedding, but not the other. By the Lemma, G - C has at least two components.

Theorem (Whitney). A 3-connected planar graph has a unique embedding, up to composition with a homeomorphism of S^2 .

Proof. Say there are two embeddings of G in S^2 . Then some cycle $C \subset G$ is the boundary of a face for one embedding, but not the other. By the Lemma, G - C has at least two components. Look at an embedding where C is a face.

A component of G - C is in the complement of the face bounded by C.

Planar Graphs – p. 8/?

Theorem (Whitney). A 3-connected planar graph has a unique embedding, up to composition with a homeomorphism of S^2 .

Proof. Say there are two embeddings of G in S^2 . Then some cycle $C \subset G$ is the boundary of a face for one embedding, but not the other. By the Lemma, G - C has at least two components.

The other components of G - C have to fit in the "gaps".

Theorem (Whitney). A 3-connected planar graph has a unique embedding, up to composition with a homeomorphism of S^2 .

Proof. Say there are two embeddings of G in S^2 . Then some cycle $C \subset G$ is the boundary of a face for one embedding, but not the other. By the Lemma, G - C has at least two components.

Here is a cut pair.

A *minimal non-planar graph* is not planar, but every proper subgraph is planar.

Theorem (Kuratowski). Every minimal non-planar graph is homeomorphic to either K(5) or K(3,3).

A *minimal non-planar graph* is not planar, but every proper subgraph is planar.

Theorem (Kuratowski). Every minimal non-planar graph is homeomorphic to either K(5) or K(3,3).

Suppose a connected graph in S^2 has V vertices, E edges and F faces. Then

$$2 = \chi(S^2) = V - E + F.$$

Euler characteristic

Suppose a connected graph in S^2 has V vertices, E edges and F faces. Then

$$2 = \chi(S^2) = V - E + F.$$

If every face has at least k edges on its boundary then $kF \leq 2E$, so

$$2 = V - E + F \le V - E + \frac{2}{k}E \implies E \le \frac{k}{k-2}V - \frac{2k}{k-2}$$

If $k = 3$ then $E \le 3V - 6$. If $k = 4$ then $E \le 2V - 4$.

Suppose a connected graph in S^2 has V vertices, E edges and F faces. Then

$$2 = \chi(S^2) = V - E + F.$$

If every face has at least k edges on its boundary then $kF \leq 2E$, so

$$2 = V - E + F \le V - E + \frac{2}{k}E \implies E \le \frac{k}{k-2}V - \frac{2k}{k-2}$$

If k = 3 then $E \leq 3V - 6$. If k = 4 then $E \leq 2V - 4$.

For K(5) we can take k = 3 and we have V = 5 but E = 10 > 15 - 6.

For K(3, 3) we can take k = 4 and we have V = 6 but E = 9 > 12 - 4.

So these are non-planar graphs.

Lemma. A minimal non-planar graph G has no cut vertex.

Proof. Suppose $G = A \cup B$, $A \cap B = \{v\}$. By minimality, A and B are planar. Embed A in a closed disk, so that v lies on the boundary. Do the same for B. Then embed the two disks so they meet at v.

no cut vertex

Lemma. A minimal non-planar graph G has no cut vertex.

Proof. Suppose $G = A \cup B$, $A \cap B = \{v\}$. By minimality, A and B are planar. Embed A in a closed disk, so that v lies on the boundary. Do the same for B. Then embed the two disks so they meet at v.

Lemma. A minimal non-planar graph G has no cut pair.

Proof. Suppose $G = A \cup B$, $A \cap B = \{u, v\}$. Since G has no cut vertex, A and B are connected. *Claim:* A can be embedded in S^2 so that u and v are in the boundary of the same face. (Likewise for B.)

Lemma. A minimal non-planar graph G has no cut pair.

Proof. Suppose $G = A \cup B$, $A \cap B = \{u, v\}$. Since G has no cut vertex, A and B are connected. *Claim:* A can be embedded in S^2 so that u and v are in the boundary of the same face. (Likewise for B.) Join u to v by an arc $b \subset B$.

Lemma. A minimal non-planar graph G has no cut pair.

Proof. Suppose $G = A \cup B$, $A \cap B = \{u, v\}$. Since G has no cut vertex, A and B are connected. *Claim:* A can be embedded in S^2 so that u and v are in the boundary of the same face. (Likewise for B.) Join u to v by an arc $b \subset B$. By minimality $A \cup b$ is planar. Embed $A \cup b$ in S^2 .

Lemma. A minimal non-planar graph G has no cut pair.

Proof. Suppose $G = A \cup B$, $A \cap B = \{u, v\}$. Since G has no cut vertex, A and B are connected. *Claim:* A can be embedded in S^2 so that u and v are in the boundary of the same face. (Likewise for B.) Join u to v by an arc $b \subset B$. By minimality $A \cup b$ is planar. Embed $A \cup b$ in S^2 . Now remove the arc b.

no cut pair, cont'd

To finish the proof of the lemma, embed A in a disk so that u and v lie on the boundary. Do the same for B.

no cut pair, cont'd

To finish the proof of the lemma, embed A in a disk so that u and v lie on the boundary. Do the same for B.

Then embed the two disks so they meet at u and v. This is a contradiction since G is non-planar.

Let G be a minimal non-planar graph with no valence 2 vertices. Remove an arbitrary edge e with endpoints x and y. Call the resulting planar graph G'. Embed G' in S^2 .

Let G be a minimal non-planar graph with no valence 2 vertices. Remove an arbitrary edge e with endpoints x and y. Call the resulting planar graph G'. Embed G' in S^2 .

The graph G' has no cut vertex.

Let G be a minimal non-planar graph with no valence 2 vertices. Remove an arbitrary edge e with endpoints x and y. Call the resulting planar graph G'. Embed G' in S^2 .

The graph G' has no cut vertex.

If x is a cut vertex for G', then x is a cut vertex for G. Likewise for y.

Let G be a minimal non-planar graph with no valence 2 vertices. Remove an arbitrary edge e with endpoints x and y. Call the resulting planar graph G'. Embed G' in S^2 .

The graph G' has no cut vertex.

If G has a cut vertex v distinct from x and y, then x and y are separated by v and $\{x, v\}$ is a cut pair for G.

Let G be a minimal non-planar graph with no valence 2 vertices. Remove an arbitrary edge e with endpoints x and y. Call the resulting planar graph G'. Embed G' in S^2 .

The graph G' has no cut vertex.

The graph G' may have cut pairs, but no cut pair can contain x.

If $\{x, v\}$ is a cut pair for G' then it is a cut pair for G as well.

Consider the graph $G' \subset S^2$. Construct a graph $G'' \subset S^2$ by erasing the vertex x and the edges that meet it. Let R be the boundary of the face of G'' containing the point x. Claim: R is a cycle.

Consider the graph $G' \subset S^2$. Construct a graph $G'' \subset S^2$ by erasing the vertex x and the edges that meet it. Let R be the boundary of the face of G'' containing the point x. Claim: R is a cycle. Otherwise R would contain a cut vertex v for G''.

Consider the graph $G' \subset S^2$. Construct a graph $G'' \subset S^2$ by erasing the vertex x and the edges that meet it. Let R be the boundary of the face of G'' containing the point x. Claim: R is a cycle. Otherwise R would contain a cut vertex v for G''.

But then x and v would form a cut pair for G, a contradiction.

Consider the graph $G' \subset S^2$. Construct a graph $G'' \subset S^2$ by erasing the vertex x and the edges that meet it. Let R be the boundary of the face of G'' containing the point x. Claim: R is a cycle. Otherwise R would contain a cut vertex v for G''. We conclude that $x \cup R$ together with all the edges of G' incident to x, form a wheel graph W inside of G'.

Let Y be the component of G' - W which contains y. Claim: \overline{Y} meets at least two sectors of the wheel W.

Let Y be the component of G' - W which contains y.

Claim: \overline{Y} meets at least two sectors of the wheel W. Suppose not. Then all of the points of $\overline{Y} \cap R$ are contained in one sector S.

Let Y be the component of G' - W which contains y.

Claim: \overline{Y} meets at least two sectors of the wheel W. Suppose not. Then all of the points of $\overline{Y} \cap R$ are contained in one sector S. Consider the (planar) graph $Z = S \cup Y \cup e$.

Let Y be the component of G' - W which contains y.

Claim: \overline{Y} meets at least two sectors of the wheel W. Suppose not. Then all of the points of $\overline{Y} \cap R$ are contained in one sector S. Consider the (planar) graph $Z = S \cup Y \cup e$.

Since Z - S is connected, every embedding of Z has S as a face. So we can embed Z *inside* of S. This gives a planar embedding of G, a contradiction.

