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1. tensor products over commutative rings

Definition 1.1. Suppose that R is a commutative ring (possibly a field) and that A, B

and C are R-modules. A function f : A× B → C is bilinear if

• f (a1 + a2, b) = f (a1, b) + f (a1, b),

• f (a, b1 + b2) = f (a, b1) + f (a, b2), and

• f (ra, b) = f (a, rb) = r f (a.b).

1.2. The most basic examples of bilinear functions are the functions R×R→ R given by

homogeneous quadratic polynomials of degree 2 (also known as a quadratic forms). For

example, the function f (x, y) = xy is a bilinear function from R×R→ R. If F is a field,

and V = F n then the dot product gives an example of a bilinear function f : V × V → F .

Theorem 1.3. Let R be a commutative ring and let A and B be R-modules. There exists

an R-module, denoted A⊗R B, and a bilinear function ⊗ : A× B → A⊗R B, which has
the following universal property with respect to bilinear functions:

If C is any R-module and f : A×B → C is any bilinear function then there exists a unique

homomorphism φ : A⊗R B → C which makes the following diagram commute

A× B
⊗ //

f

%%KKKKKKKKKKK
A⊗R B

φ

��
C

.

Moreover, any R-module which has this universal property is isomorphic to A⊗R B.

Proof. Let F be a free R-module with a basis that corresponds one-to-one with the

elements of A × B. If a ∈ A and b ∈ B then we will denote the basis element that
corresponds to (a, b) by [a, b]. Thus a typical element of F can be written as

r1[a1, b1] + · · · rn[an, bn].

Now let N be the submodule of F generated by all elements of the following three types:
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• [a1 + a2, b]− [a1, b]− [a2, b],

• [a, b1 + b2]− [a, b1]− [a, b2],

• [ra, b]− [a, rb],

where a1, a2 ∈ A, b1, b2 ∈ B and r ∈ R.

We define A ⊗R B to be the quotient F/N and we denote the coset of [a, b] by a ⊗ b.
Clearly A ⊗R B is generated by the elements a ⊗ b, where a ranges over all elements of
A and b ranges over all elements of B. The definition of N implies that the function

⊗ : A×B → A⊗R B defined by ⊗(a, b) = a⊗ b is bilinear. For example, (a1+ a2)⊗ b =
a1 ⊗ b+ a2 ⊗ b in A⊗R B, since the element [a1 + a2, b]− [a1, b]− [a2, b] is contained in
N.

Suppose we are given a bilinear function f : A × B → C. Since F is free we can

define a homomorphism φ̂ : F → C by specifying the images of the basis elements as

φ̂([a, b]) = f (a, b). The condition that f is bilinear implies that each generator of N is

contained in the kernel of φ̂. Thus φ̂ determines a homomorphism φ : A ⊗R B → C

which satisfies φ(a⊗ b) = f (a, b). There can only be one such homomorphism since the
elements of the form a ⊗ b generate A ⊗ B. This shows that F/N = A ⊗R B has the
required universal property.

Suppose M were another R-module with this universal property, where the bilinear map

from A×B → M is denoted by θ. Then there would exist homomorphisms φ : A⊗RB → M

and ψ : M → A⊗R B making the following diagram commute:

A× B
⊗ //

θ

%%KKKKKKKKKKK

⊗

��9
99

99
99

99
99

99
99

99
A⊗R B

φ

��
M

ψ
��

A⊗R B

.

The uniqueness part of the universal property guarantees that ψ ◦φ = idA⊗RB and φ◦ψ =
idM. Thus M is isomorphic to A⊗R B. �

1.4. One could take the view that the purpose of the tensor product is to simplify working

bilinear maps. A bilinear map defined on A×B can be replaced by an ordinary homomor-
phism defined on A⊗R B. However, it may be hard to recognize this in one of the most
common situations where tensor products are used, namely to accomplish “extension of

scalars”.

Example 1.5. To illustrate what is meant by extending scalars, we will show thatQ⊗Zn ∼=
Qn. This is an isomorphism of Z-modules, i.e. of abelian groups. But we will also see that

2



there is a natural way to define scalar multiplication of elements of Q ⊗ Zn by elements
of Q so that it extends the scalar multiplication by elements of Z. Thus tensoring with
Q transforms a free Z-module into a vector space over Q.

We use the universal property to compute this tensor product. Define a function θ :

Q× Zn → Qn by
θ(r, (a1, . . . , an)) = (ra1, . . . , ran).

It is easy to check that θ is bilinear.

Let e1, . . . , en be a basis of Zn. Then θ(1, e1), . . . , θ(1, en) is a basis of Qn. Now suppose
that C is a Z-module and f : Q × Zn → C is any bilinear function. Given any element

v = (s1, . . . , sn) of Qn there is an integer m such that ms1, . . . , msn are all integers. In
fact, the set of all such m is an ideal in Z, which has the form (d) for some d ∈ Z. We
define φ(v) = f (1/m, (ms1, . . . , msn)). Note that this does not depend on which element

m of (d) we use. If m is an arbitrary element of the ideal (d), say with m = kd then

f (1/m, (ms1, . . . , msn)) = f (k/m, ((m/k)s1, . . . , (m/k)sn)) = f (1/d, (ds1, . . . , mdsn)).

Thus we have a well-defined homomorphism φ : Qn → C such that φ ◦ θ = f . There is
only one such homomorphism since the condition φ(θ(1, ei)) = f (1, ei) determines the

images of the elements of a basis.

Exercise 1.1. Suppose that R is a subring of a ring S. Regard S as an R-module. Let A

be another R module. Consider the tensor product S ⊗R A. Show that S ⊗R A has the
structure of an S-module in which

s(
n∑
i=1

si ⊗ ai) =
n∑
i=1

ssi ⊗ ai

whenever s1, . . . , sn ∈ S and a1, . . . , an ∈ A. (That is, show that the formula above gives
a well-defined scalar multiplication.)

Exercise 1.2. Let R be a commutative ring. Show that R ⊗R R ∼= R.

Exercise 1.3. If A, B and C are R-modules, define A⊗R B ⊗R C and show that

(A⊗R B)⊗R C ∼= A⊗R B ⊗R C ∼= A⊗R (B ⊗R C).

Exercise 1.4. Let p and q be relatively prime integers. Let A = Z/pZ and B = Z/qZ.
Show that A⊗ B =̇ A⊗Z B = {0}.

Exercise 1.5. Let F be a field and V a vector space of dimension 3 over F . Show that

V ⊗F V is a vector space of dimension 9 over F . Find an element of V ⊗F V that is not
contained in the image of the bilinear function ⊗ : V × V → V ⊗F V .
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2. tensor products over non-commutative rings

Now we suppose that Λ is a ring, but is not necessarily commutative. When considering

Λ-modules we must distinguish between left and right modules. (Although when we state

a result about left modules we usually will not bother to give the corresponding statement

about right modules.)

Recalling the basic example of a bilinear function in the commutative case, we consider the

function f : Λ× Λ→ Λ given by f (x, y) = xy . In the non-commutative setting, it is not
true in general that f (λx, y) = f (x, λy). It is true, however, that f (xλ, y) = f (x, λy). It

seems that the only way to view f as a bilinear function would be to treat the first factor

of Λ× Λ as a right Λ-module, and the second factor as a left Λ-module.

This suggests that we cannot even get started in defining a tensor product of two left (or

two right) Λ-modules. Instead, we should consider a right Λ-module and a left Λ-module.

This is not the full extent of the difficulty, however. If we could define A ⊗ B in this
setting, should the (unique) result be a left Λ-module or a right Λ-module? Our answer

will be “neither.” It will just be an abelian group, with no Λ-module structure.

Definition 2.1. Suppose that R is a ring, not necessarily commutative. Let A be a left

Λ-module and B a right Λ-module. Let G be an abelian group. A function f : A×B → G

is Λ-bilinear if

• f (a1 + a2, b) = f (a1, b) + f (a1, b),

• f (a, b1 + b2) = f (a, b1) + f (a, b2), and

• f (aλ, b) = f (a, λb).

Note that it does not make sense here to “take scalars out” since there is no Λ-action on

G.

Theorem 2.2. Let Λ be a ring, let A be a left Λ-module and let B be a right Λ-module.

There exists an abelian group, denoted A ⊗Λ B, and a Λ-bilinear function ⊗ : A × B →
A⊗Λ B, which has the following universal property with respect to Λ-bilinear functions:

If G is any abelian group and f : A × B → G is any Λ-bilinear function then there exists

a unique group homomorphism φ : A ⊗Λ B → G which makes the following diagram

commute

A× B
⊗ //

f

%%KKKKKKKKKKK
A⊗Λ B

φ

��
G

.

Moreover, any abelian group which has this universal property is isomorphic to A⊗Λ B.

Exercise 2.1. Prove Theorem 2.2.
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3. the tensor product functor

3.1. Let Λ be a ring, not necessarily commutative, and suppose that A is a right Λ-module.

We can assign an abelian group to each left Λ-module X by the rule X 7→ A ⊗Λ X. It
is important to realize that this defines a covariant functor from the category of left Λ-

modules to the category of abelian groups. That is, given a homomorphism f : X → Y

we obtain a homomorphism of abelian groups f⊗ : A ⊗ X → A ⊗ Y . (Also, id⊗ is the
identity homomorphism and (f ◦ g)⊗ = f⊗ ◦ g⊗.) The definition of f⊗ depends on the
universal property, of course. The following diagram illustrates the situation:

A×X
⊗ //

f×id
��

A⊗Λ X
f⊗

��
A× Y

⊗ // A⊗Λ Y

.

The map f⊗ is constructed by applying the universal property to the multilinear function

A×X → A⊗Λ X that we get by composing the left arrow and the bottom arrow.

Needless to say, if A is a left Λ-module then X 7→ X⊗ΛA is a functor from right Λ-modules
to abelian groups.

Theorem 3.2. Let A be a right Λ-module. Suppose that

0 // X
i // Y

p
// Z // 0

is a short exact sequence of left Λ-modules. Then

A⊗X
i⊗ // A⊗ Y

p⊗ // A⊗ Z // 0

is an exact sequence (but i⊗ need not be injective).

Proof. Since the homomorphism f × id : A× Y → A×Z is onto, and since the image of
the bilinear function ⊗ : A × Z → A ⊗Λ Z generates A ⊗Λ Z, it follows that the image
of the homomorphism p⊗ is a subgroup and generates A⊗Λ Z. Thus the homomorphism
p⊗ must be surjective.

Since p ◦ i is the 0-map, it follows from naturality and the universal property of tensor
products that p⊗ ◦ i⊗ is the 0-map. In other words we have im i⊗ ⊆ ker p⊗, and therefore
the homomorphism p⊗ determines a homomorphism p̂ : A ⊗Λ Y/ im i⊗ → A ⊗Λ Z. We
must show that p̂ is an isomorphism. We will do this by constructing an inverse. The

construction will be based on the universal property, of course.

First we construct a function from f : A × Z → A ⊗Λ Y/ im i⊗ by defining f (a, z) to be
the coset of a ⊗ y whenever p(y) = z . This is well defined since

p(y1) = p(y2) ⇒ y1− y2 ∈ im i ⇒ a ⊗ (y1− y2) ∈ im i⊗.
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We then use the universal property to construct a homomorphism f⊗ : A⊗ΛZ → A⊗Λ Y .
Naturality implies that p̂ ◦ f is the identity. �

4. the Hom functors

4.1. If X and Y are left Λ-modules, we let HomΛ(X, Y ) denote the left Λ-module whose

elements are Λ-module homomorphisms from X to Y , with pointwise addition and Λ-

multiplication. Thus (f + g)(x) = f (x) + g(x) and (λf )(x) = λ(f (x)). It is easy to

see that X 7→ Hom(X,A) is a covariant functor. If f : X → Y then f∗ : Hom(A,X) →
Hom(A, Y ) is just given by composition: f∗(g) = f ◦g for g ∈ Hom(A,X). Similarly, X 7→
Hom(A,X) is a contravariant functor. If f : X → Y then f ∗ : Hom(Y, A) → Hom(X,A)
is also given by composition: f ∗(g) = g ◦ f for g ∈ Hom(Y, A). (Since we are not forced
to mix left and right modules, we avoid the issue that forced the tensor product functor

to take values in the category of abelian groups.)

Theorem 4.2. Let A be a left Λ-module. Suppose that

0 // X
i // Y

p
// Z // 0

is a short exact sequence of left Λ-modules. Then

0 // HomΛ(A,X)
i∗ // HomΛ(A, Y )

p∗ // HomΛ(A,Z)

and

0 // HomΛ(Z,A)
p∗

// HomΛ(Y, A)
i∗ // HomΛ(X,A)

are exact sequences (but the maps on the right may not be surjective).

Proof. Given f ∈ HomΛ(A,X) we have i∗(f ) = i ◦ f . Since i is injective, the composition
i ◦ f is non-zero if im f 6= {0}. This shows that i∗ is injective. Similarly, if f ∈ Hom(Z,A)
then, since p is surjective, the composition f ◦ p is non-zero if f is non-zero. this shows
that p∗ is injective.

Naturality implies that p∗ ◦ i∗ and i∗ ◦ p∗ are zero maps. Thus we have im i∗ ⊆ ker p∗ and
im p∗ ⊆ ker i∗.

Suppose that f ∈ HomΛ(A, Y ) is in the kernel of p∗. We have

f ∈ ker p∗ ⇔ p ◦ f = 0 ⇔ im f ⊆ ker p = im i .

Since i is injective there is a homomorphism j : im i → X such that i ◦ j is the identity on
im i . Thus i∗(j ◦ f ) = f . This shows that ker p∗ ⊆ im i∗.

Suppose that f ∈ HomΛ(Y, A) is in the kernel of i∗. Construct g ∈ HomΛ(Z,A) by
defining g(z) = f (y) whenever p(y) = z . This is well-defined when f ∈ ker i∗, since

f ∈ ker i∗ ⇔ i ◦ f = 0 ⇔ im i ⊆ ker f .
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This shows that ker i∗ ⊆ im p∗. �

5. projective and injective modules

Definition 5.1. A functor F from left Λ-modules to left Λ-modules is exact if

0 // F(X)
F(i)

// F(Y )
F(p)

// F(Z) // 0

is exact whenever

0 // X
i // Y

p
// Z // 0

is exact.

It is natural to ask when the functors X 7→ HomΛ(X,A) and X 7→ HomΛ(A,X) are exact.

Definition 5.2. A left Λ-module P is projective if for every surjective homomorphism

X → Y of left Λ-modules, and every homomorphism P → Y , there exists a homomorphism

P → X that makes the following diagram commute

P

���� �?
�?

�?
�?

X // Y // 0

Exercise 5.1. Show that X 7→ HomΛ(A,X) is exact if and only if A is projective.

Exercise 5.2. Show that any free Λ-module is exact.

Definition 5.3. A left Λ-module Q is injective if for every injective homomorphism X → Y

of left Λ-modules, and every homomorphism X → Q, there exists a homomorphism

Y → Q that makes the following diagram commute

Q
OO __

�_
�_

�_
�_

0 // X // Y

Exercise 5.3. Show that X 7→ HomΛ(X,A) is exact if and only if A is injective.

Exercise 5.4. Show that Q is an injective Z-module.

Theorem 5.4. The following are equivalent for a left Λ-module P :

• P is projective;

• Every short exact sequence 0→ X → Y → P → 0 splits;

• P is a direct summand of a free module;
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Exercise 5.5. Show that a direct sum of left Λ-modules is projective if and only if each

summand is projective.

Theorem 5.5. The following are equivalent for a left Λ-module Q:

• Q is injective;

• Every short exact sequence 0→ Q→ Y → Z → 0 splits;

• Given any q ∈ Q and λ ∈ Λ there exists x ∈ Q such that λx = q.

Exercise 5.6. Show that a direct product of left Λ-modules is injective if and only if each

factor is injective.

6. chain complexes

Definition 6.1. A chain complex C is a sequence of abelian groups and homomorphisms

· · · d4 // C3
d3 // C2

d2 // C1
d1 // C0

d0 // 0

such that di ◦ di+1 = 0 for i = 0, 1, . . .. For n = 0, 1, . . . The homology groups of
C are defined to be the quotients Hn(C) = Zn(C)/Nn(C), where Zn(C) = ker dn and

Bn(C) = im dn+1.

A cochain complex C is a sequence of abelian groups and homomorphisms

· · · oo d
4

C3 oo d
3

C2 oo d
2

C1 oo d
1

C0 oo d
0

0

such that d i+1 ◦ d i = 0 for i = 0, 1, . . .. For for n = 0, 1, . . . the cohomology groups of C
are defined to be the quotient groups Hn(C) = Zn(C)/Bn(C), where Zn(C) = ker dn+1

and Bn(C) = im dn.

Definition 6.2. A chain map from a chain complex C to a chain complex D is a sequence

of homomorphisms fn : Cn → Dn such that dn+1 ◦ fn+1 = fn ◦ dn+1 for n = 0, 1, 2, . . .. In
other words, the following diagram commutes:

· · · d4 // C3
d3 //

f3
��

C2
d2 //

f2
��

C1
d1 //

f1
��

C0
d0 //

f0
��

0

· · · d4 // D3
d3 // D2

d2 // D1
d1 // D0

d0 // 0

If C and D are chain complexes we will write f : C → D to indicate that f = (fn) is a

chain map from C toD.

A cochain map from a cochain complex C to a cochain complex D is a sequence of

homomorphisms f n : Cn → Dn such that dn+1 ◦ f n = f n+1 ◦ dn+1 for n = 0, 1, 2, . . .. In
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other words, the following diagram commutes:

· · · oo d
4

D3 oo d
3

OO

f 3

D2 oo d
2

OO

f 2

D1 oo d
1

OO

f 1

D0 oo d
0

OO

f 0

0

· · · oo d
4

C3 oo d3

C2 oo d2

C1 oo d1

C0 oo d
0

0

If C and D are cochain complexes we will write f : C → D to indicate that f = (f n) is a

cochain map from C toD.

Exercise 6.1. Show that a homomorphism between two chain complexes (cochain com-

plexes) determines a natural homomorphism between their homology (cohomology) groups.

That is, Hn and H
n are functors from (co)chain complexes to abelian groups.

Definition 6.3. Suppose that C and D are chain complexes and that f : C → D is

a homomorphism. A null homotopy for f is a sequence (hn) of homomorphisms, for

n = 0, 1, 2, . . ., such that hn : Cn → Dn+1 satisfies fn = dn+1 ◦ hn + hn−1 ◦ dn for n > 0.
The following diagram (which is not commutative) illustrates the situation.

· · · d4 // C3
d3 //

f3
��

h3

~~||
||

||
||

C2
d2 //

f2
��

h2

~~||
||

||
||

C1
d1 //

f1
��

h1

~~||
||

||
||

C0
d0 //

f0
��

h0

~~||
||

||
||

0

· · · d4 // D3
d3 // D2

d2 // D1
d1 // D0

d0 // 0

Two chain maps f : C → D and g : C → D are homotopic if the homomorphism f − g
is null homotopic.

Similarly, a null homotopy for a cochain map is a sequence (hn) of homomorphisms, for

n = 0, 1, 2, . . ., such that hn : C
n+1 → Dn satisfies f n = dn ◦ hn−1 + dn+1 ◦ hn for n > 0.

The following diagram illustrating the situation:

· · · oo d
4

D3 oo d
3

f 3

��

==
h3

||
||

||
||

D2 oo d
2

f 2

��

==
h2

{{
{{

{{
{{

D1 oo d
1

f 1

��

==
h1

{{
{{

{{
{{

D0 oo d
0

f 0

��

==
h0

{{
{{

{{
{{

0

· · · oo d
4

C3 oo d3

C2 oo d2

C1 oo d1

C0 oo d
0

0

Two cochain maps f : C → D and g : C → D are homotopic if the homomorphism f − g
is null homotopic.

Proposition 6.4. Suppose that f : C → D and g : C → D are homotopic chain maps.

Then the homomorphism f∗ : Hn(C)→ Hn(D) is equal to g∗ : Hn(C)→ Hn(D).

Proof. It suffices to show that if k = f − g is null-homotopic then k∗ is the zero ho-
morphism. Let h be a null-homotopy for k . We will show that fn(Zn(C)) ⊆ Bn(D). If
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x ∈ Zn(C) then dn(x) = 0, so

fn(x) = dn+1(hn(x)) + hn−1(dn(x)) = dn+1(hn(x)) ∈ Bn(D).

�

7. projective resolutions

Definition 7.1. Let A be a Λ-module. A projective resolution of Λ is an exact sequence

of projective left Λ-modules

· · ·
p3 // P2

p2 // P1
p1 // P0

p0 // A // 0

If we think of the modules Pi as abelian groups then a projective resolution is a chain

complex. However, since the sequence is exact, the homology groups are all trivial.

7.2. A projective resolution of an arbitrary Λ-module A can be constructed inductively.

Since A is a quotient of a projective module, there is a surjective homomorphism p0 :

P0 → A for some projective module P0. Let K0 be the kernel of p0, so we have a short

exact sequence 0→ K0 → P0 → A→ 0. Since K0 is itself a quotient of some projective
module P1, we have another short exact sequence 0 → K1 → P1 → K0 → 0. If we
compose the homorphism from P1 onto K0 with the inclusion of K0 into P0, we obtain

an exact sequence

0→ K1 → P1 → P0 → A→ 0.

We may continue inductively, to construct a projective resolution of A.

Proposition 7.3. Suppose that P and Q are projective resolutions of the left Λ-modules

A and B. Let f : A → B be any homomorphism. Then f extends to a chain map

(f , f0, f1, . . .) making the following diagram commute.

· · ·
p3 // P2

p2 //

f2
��

P1
p1 //

f1
��

P0
p0 //

f0
��

A //

f

��

0

· · ·
q3 // Q2

q2 // Q1
q1 // Q0

q0 // B // 0

Proof. We construct the chain map by induction. Consider the composite homomorphism

f ◦p0 : P0 → B. Since the homomorphism q0 : Q0 → B is surjective, and P0 is projective,

there is a homomorphism f0 : P0 → Q0 such that q0 ◦ f0 = f ◦ p0. This is the base case
of the induction. For the induction step, suppose that we have constructed fi : Pi → Qi

such that qi ◦ fi = fi−1 ◦ pi . Then qi ◦ fi ◦ pi+1 = fi−1 ◦ pi ◦ pi+1 = 0. It follows that the
image of fi ◦ pi+1 is contained in ker qi = im qi+1. By the projective property of Pi+1 there
exists fi+1 : Pi+1 → Qi+1 such that qi ◦ fi+1 = fi ◦ pi+1. This completes the proof �
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Definition 7.4. A chain map satisfying the conclusion of Proposition 7.3 is a chain ex-

tension of f .

Obviously any two chain extensions of f induce the same (trivial) homomorphism on the

homology groups of a projective resolution, since all of the homology groups are 0 to

begin with. However, the following proposition says a little bit more.

Proposition 7.5. Suppose that P and Q are projective resolutions of left Λ-modules A

and B and that f : A→ B is a homomorphism. Then any two chain extensions of f are

chain homotopic.

Proof. It suffices to show that any chain extension of the zero homomorphism is null-

homotopic. Suppose that (fi) is a chain extension of the zero homomorphism from A to B.

We will inductively construct homomorphisms hi : Pi → Qi+1 so that qi+1◦hi+hi−1◦pi = fi ,
for i = 1, 2, . . .. We have that q0 ◦ f0 = 0, so im f0 ⊆ ker q0 = im q1. Therefore the
projective property of P0 implies that there is a homomorphism h0 : P0 → Q1 such that

q1 ◦ h0 = f0. It follows that q1 ◦ h0 ◦ p1 = f0 ◦ p1 = q1 ◦ f1. Thus q1 ◦ (f1 − h0 ◦ p1) = 0,
so the image of f1 − h0 ◦ p1 is contained in ker q0 = im q1. The projective property of P1
then guarantees the existence of h1 : P1 → Q1 such that q2 ◦ h1 = f1 − h0 ◦ p1.

For i > 0, suppose we are given hi : Pi → Qi+1 such that qi+1◦hi = fi−hi−1◦pi . Consider
fi+1 − hi ◦ pi+1. Composing with qi+1 we have

qi+1 ◦ fi+1 − qi+1 ◦ hi ◦ pi+1 = fi ◦ pi+1 − fi ◦ pi+1 = 0.

Thus the image of fi+1 − hi ◦ pi+1 is contained in ker qi+1 = im qi+2. Now the projective
property of Pi+1 guarantees the existence of a homomorphism hi+1 : Pi+1 → Qi+2 such

that qi+2 ◦ hi+1 = fi+1 − hi ◦ pi+1. This completes the induction step. �

Corollary 7.6. Suppose that P and Q are projective resolutions of a left Λ-module A and

that f : A→ A is a homomorphism. IfM is a left Λ-module then any two chain extensions

of f induce the same homomorphism between the cohomology groups H∗(Hom(Q,M))

and H∗(Hom(P,M)). Similarly, if N is a right Λ-module then any two chain extensions of

f : A → A induce the same homomorphisms between the homology groups Hn(N ⊗Λ P )
and Hn(N ⊗Λ Q).

Corollary 7.7. Suppose that P and Q are projective resolutions of a left Λ-module A. If

M is a left Λ-module then Hn(Hom(Q,M)) ∼= Hn(Hom(P,M)) for all n ≥ 0. If N is a
left Λ-module then H∗(N ⊗Λ P ) ∼= H∗(N ⊗Λ Q) for all n ≥ 0.

8. group cohomology

Definition 8.1. Let R be a commutative ring and G a group. The group ring RG is the

direct product of copies of R, indexed by elements of G, with a multiplication operation to
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be defined below. We can represent an element of RG as a formal sum a1g1+ · · ·+ angn
where ai ∈ R and gi ∈ G for i = 1, . . . , n. Alternatively, we may write an element of RG
as a sum

∑
g∈G agg, where ag = 0 for all but a finite number of elements of G. In terms

of this notation the multiplication is given by the rule

(
∑
g∈G

ag g)(
∑
g∈G

bg g) =
∑
g∈G

cg g

where

cg =
∑
xy=g

axby .

8.2. We will immediately specialize to the case R = Z. To define a ZG-module structure
on an abelian group A it suffices to specify the scalar multiplication by elements of G. In

other words, any group action G → Aut(A) (denoted by ·) corresponds to a ZG-module
structure on A, where ga = g · a, and

(n1g1 + · · ·+ nkgk)a = n1(g1 · a) + · · · nk(gk · a).

A ZG-module is trivial if it corresponds to the trivial homomorphism from G to Aut(A)

which sends each element of G to the identity automorphism. That is, A is a trivial

ZG-module if and only if ga = g · a = a for all g ∈ G and a ∈ A.

Definition 8.3. Suppose that G is a group. Regard Z as a trivial ZG-module and suppose
that P is a projective resolution of Z, so we have an exact sequence of projective left
ZG-modules

· · · → P3 → P2 → P1 → P0 → Z → 0.
If A is a right ZG-module then we can construct a chain complex by tensoring with A:

· · · → A⊗ZG P3 → A⊗ZG P2 → A⊗ZG P1 → A⊗ZG P0 → 0.

The homology groups of this chain complex are denoted by Hn(G;A), and are called

homology groups of G with coefficients in A. If A is a left ZG-module then we can form
a cochain complex by applying the functor X 7→ Hom(X,A):

· · · ← Hom(P3, A)← Hom(P2, A)← Hom(P1, A)← Hom(P0, A)← 0.

The cohomology groups of this cochain complex are denoted by Hn(G;A) and are called

the cohomology groups of G with coefficients in A.

Note that Corollary 7.7 shows that the homology and cohomology groups of G do not

depend on the choice of projective resolution. In particular, we could use a free resolution

if we want.

8.4. In order to get some idea of what sort of thing the cohomology of G might be telling

us about G, we will specialize to the case where A is a trivial ZG-module, and we will
concentrate on the groups H1(G;A) and H2(G;A). As observed above, we may use a

12



free resolution to compute these groups. We will start by describing a very concrete free

resolution, which is called the homogeneous bar resolution.

We introduce some special symbols (with bars in them) that will be used to denote the

basis elements of our (left) free modules. The first module B0 will have rank 1, making

it isomorphic to ZG, and its basis element will be denoted [ ]. There is a surjective
homomorphism ε : ZG → Z (called the augmentation map) which is determined by the
property that it sends each element of G to 1. Thus ε(a1g1 + · · · angn) = a1 + · · · an.
The augmentation map is the homomorphism B0 → Z that is used at the end of the
bar resolution. The basis elements for Bn, n > 0, are in one-to-one correspondence

with n-tuples of non-identity elements of G, and will be denoted by [g1| · · · |gn]. Thus the
elements of Bn are ZG-linear combinations of these symbols. We will make the convention

that the symbol [g1| · · · |gn] represents the element 0 if gi = 1 for some i ∈ {1, . . . , n}.

For n > 0 we define dn : Bn → Bn−1 by the following formula

dn([g1| · · · |gn]) = g1[g2| · · · |gn]−[g1g2| · · · |gn]+· · · (−1)n−1[g1| · · · |gn−1gn]+(−1)n[g1| · · · |gn−1].

(Of course, it suffices to specify the homomorphism dn on the basis elements.) We will

let B(G) denote the sequence of free ZG-modules and maps

· · · d3 // B2
d2 // B1

d1 // B0
ε // Z // 0

where Bn, dn and d0 = ε are as defined above.

Proposition 8.5. The sequence B(G) is a free ZG-resolution of Z.

Proof. By construction the modules Bn are free left ZG-modules and the maps dn are
ZG-module homomorphisms. It remains to show that ker dn = im dn+1. For this purpose
we are allowed to forget about the module structure and treat the Bn as abelian groups

and the dn as homomorphisms of abelian groups. (The kernel and image are the same

sets.)

As an abelian group Bn is free with a basis consisting of all elements g[g1| · · · gn]. We may
therefore construct a homomorphism of abelian groups hn : Bn → Bn+1 for each n ≥ 0
by defining its values on this basis by the formula

hn(g[g1| · · · gn]) = [g|g1| · · · gn].

We claim that dn+1 ◦ hn + hn−1 ◦ dn is the identity for all n ≥ 0. We have

dn+1 ◦ hn(g[g1| · · · |gn]) = dn+1([g|g1| · · · |gn])

= g[g1| · · · |gn]− [gg1| · · · |gn] + · · ·+ (−1)n[g|g1| · · · |gn−1gn] + (−1)n+1[g|g1| · · · |gn]
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while

hn−1 ◦ dn(g[g1| · · · |gn]) = hn−1(gdn([g1| · · · |gn))

= hn−1(g(g1[g2| · · · |gn]− [g1g2| · · · |gn] + · · ·+ (−1)n−1[g1| · · · |gn−1gn] + (−1)n[g1| · · · |gn−1]))

= [gg1|g2| · · · |gn]− [g|g1g2| · · · |gn] + · · ·+ (−1)n−1[g|g1| · · · |gn−1gn] + (−1)n[g|g1| · · · |gn−1].

Careful inspection reveals that when these two expressions are added all of the terms

cancel except for g[g1| · · · |gn]. (And it is easy to check the case n = 0 directly. This
proves the claim.

Next we show by induction that dn−1 ◦ dn = 0. For n = 1 we have d0(d1([g])) =
ε(g[ ]− [ ]) = 0. For n > 1 we have

dn◦dn+1◦hn = dn◦(id−hn−1◦dn) = dn−dn◦hn−1◦dn = dn−(id−hn−2◦dn−1)◦dn = dn−dn+0 = 0

Since hn is surjective, this shows that dn ◦ dn+1 = 0, and hence that B(G) is a chain
complex. But we have also shown that (hn) is a null-homotopy of the identity map from

B(G) to itself. In other words, the homology groups of B(G) are all zero, and B(G) is

hence an exact sequence. �

8.6. We can use the bar resolution to determine the cohomology group H1(G;A) where

A is a trivial ZG-module. We consider the cochain complex

· · · oo δ3

Hom(B3, A) oo δ
2

Hom(B2, A) oo δ
1

Hom(B1, A) oo δ
0

Hom(B0, A) oo 0

where δi(f ) = f ◦ di+1.

An element φ of Hom(B1, A) is a 1-cocycle if and only if φ(d2([g1|g2])) = 0 for all elements
g1, g2 ∈ G. This means

0 = φ(g1[g2]−[g1g2]+[g1]) = g1φ([g2])−φ([g1g2])+φ([g1]) = φ([g2])−φ([g1g2])+φ([g1])

where the last step uses that A is a trivial ZG-module. Thus φ is a 1-cocycle if and only
if φ([g1g2]) = φ([g1]) + φ([g2]). In other words the 1-cocyles can be naturally identified

with the group of homomorphisms from G to A. On the other hand, if ψ ∈ Hom(B0, A)
then d0(ψ) = ψ ◦ d1 ∈ Hom(B1, A), and

ψ ◦ d1([g]) = ψ(g[ ]− [ ]) = gψ([ ])− ψ([ ]) = ψ([ ])− ψ([ ]) = 0.

Thus the subgroup of 1-coboundaries is trivial, and H1(G;A) ∼= Hom(G,A) (as abelian
groups). Incidentally, this also shows that H0(G;A) ∼= Hom(B0, A) ∼= A, since an element
of Hom(B0, A) is determined by the image of [ ], which can be arbitrary.

Exercise 8.1. Describe H1(G;A) if A is a non-trivial ZG-module.
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Problem 8.2. Suppose that F is a field and G is a finite group of automorphisms of F .

Show that the abelian group F× can be given the structure of a FG-module in which

σ · x = σ(x) for σ ∈ G. Show that H1(G;F×) = {0}.

8.7. Next we will describe H2(G;A), where A is a trivial ZG-module.
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