
NOTES ON ALGEBRA

Marc Culler - Fall 2004

1. Groups

Definition 1.1. A group is a set G together with a binary operation · : G × G → G such

that

G1 (g · h) · k = g · (h · k) for all g, h, k ∈ G;

G2 there exists an element e ∈ G such that e · g = g = g · e for all g ∈ G;

G3 there exists a function inv : G → G such that inv g ·g = g · inv g = e for all g ∈ G.

The element e is the identity of G and inv g is the inverse of g. Elements g and h of G

commute if g · h = h · g.

Definition 1.2. A group (G, ·) is said to be abelian if it satisfies

Ab g · h = h · g for all g, h ∈ G.

Proposition 1.3. Let (G, ·) be a group and let g ∈ G.

(1) If x is an element of G such that g · x = g or x · g = g then x = e;

(2) if x is an element of G such that g · x = e or x · g = e then x = inv g.

Exercise 1.1. Prove 1.3.

Proposition 1.4. Let (G, ·) be a group. Then

(1) inv(inv g) = g for all g ∈ G;

(2) inv(g · h) = inv h · inv g for all g, h ∈ G.

Exercise 1.2. Prove Proposition 1.4.

1.5. From now on we will omit the name of the operation and write “G is a group” when

we mean (G, ·) is a group. We will usually omit the operation in formulas, writing gh in
place of g · h. We may refer to a a set X of elements of a group G as a subset of G, and
write X ⊂ G.
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Exercise 1.3. Let (G, ·) be a group and suppose that g1, . . . , gn are elements of G. Define
what is meant by a “bracketing” of the expression g1g2 · · · gn, and by an “evaluation” of
a bracketing. Show that every bracketing of g1g2 · · · gn evaluates to the same element of
G.

1.6. Suppose that (G, ·) is a group and g ∈ G. Define g0 = e, g1 = g, and g−1 = inv g.
For any integer n with |n| > 1, define gn inductively as follows:

gn = gn−1 · g for n > 1

gn = gn+1 · g−1 for n < −1

Exercise 1.4. Let (G, ·) be a group and g ∈ G. Show that gn · gm = gn+m for all integers
m and n, and that (gn)−1 = g−n for all integers n.

Exercise 1.5. Let G be an abelian group. Show that (gh)n = gnhn for all g, h ∈ G and
all integers n.

Definition 1.7. If G is a group with a finite number of elements then G is a finite group.

The order of G is the number of elements of G, and is denoted |G|. If G has infinitely
many elements then G is an infinite group, and we write |G| =∞.

2. Subgroups

Proposition 2.1. Let (G, ·) be a group and let H be a non-empty subset of G such that

(i) a · b ∈ H for all a, b ∈ H;

(ii) inv a ∈ H for all a ∈ H.

Then · : G × G → G sends H × H into H, so the restriction of · to H × H (still denoted
by ·) is a binary operation on H, and (H, ·) is a group.

Exercise 2.1. Prove 2.1.

Definition 2.2. In the situation of Proposition 2.1 we say that H is a subgroup of G and

write H ≤ G, or H < G in case H ≤ G and H 6= G.

Exercise 2.2. Let G be a group. Show that the intersection of any nonempty family of

subgroups of G is a subgroup of G.

Definition 2.3. Let G be a group and let X be any set of elements of G. Define 〈X〉
to be the intersection of all subgroups of G that contain X. (This is a nonempty family

since G is a subgroup of G.) If X = {x1, . . . , xn} then we may denote 〈X〉 as 〈x1, . . . , xn〉
(instead of 〈{x1, . . . , xn}〉).
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Exercise 2.2 implies that 〈X〉 is a subgroup of G, and it is clearly the smallest subgroup
of G that contains X. Note that 〈∅〉 = {e}.

Exercise 2.3. Let G be a group and let X be any set of elements of G. Show that 〈X〉
consists of all elements g ∈ G such that g = g1 · · · gk , where g1, . . . , gk are elements of
X ∪ inv(X).

Definition 2.4. A group G is cyclic if G = 〈a〉 for some a ∈ G.

Definition 2.5. A set X of elements of G generates G if 〈X〉 = G.

Definition 2.6. A subgroup H of a group G is proper if H 6= {e} and H 6= G.

Exercise 2.4. Show that a group which has no proper subgroups is cyclic.

Problem 2.5. Show that a group cannot be the union of two proper subgroups. Give an

example of a group that is the union of three proper subgroups.

Definition 2.7. If a is an element of a group G then the order of a is defined to be the

order of the subgroup 〈a〉, and is written |a|.

Exercise 2.6. Let a be an element of a group G. Show that if |a| = ∞ then an = am

if and only if n = m. Show that if |a| = n < ∞ then an = e and a, a2, . . . , an−1 are all
distinct elements of G. Show that if am = e for some integer m then |n| divides m.

3. Group homomorphisms

Definition 3.1. Suppose that G and H are groups. A function φ : G → H is a homo-

morphism if φ(ab) = φ(a)φ(b) for all a, b ∈ G. A homomorphism φ : G → H is an

isomorphism if there exists a homomorphism ψ : H → G such that ψ ◦ φ = idG and
φ ◦ ψ = idH. An isomorphism from G to G is an automorphism of G.

Exercise 3.1. A homomorphism of groups φ : G → H is an isomorphism if and only if it

is a bijection.

Exercise 3.2. Show that if φ : G → H is a homomorphism of groups then φ(e) = e and

φ(g−1) = φ(g)−1 for all g ∈ G.

Exercise 3.3. Let G be a group and let AutG denote the set of all automorphisms of G

together with the composition operation. Show that AutG is a group.

3



Exercise 3.4. Let C be a category. If A and B are objects of C and α is a morphism
from A to B, we will say that α is an isomorphism if there exists a morphism β from B

to A such that β ◦ α = idA and α ◦ β = idB. An isomorphism from A to A is called an

automorphism of A. Let AutA denote the set of automorphims of A together with the

composition operation. Show that AutA is a group.

Definition 3.2. Suppose that G and H are groups and φ : G → H is a homomorphism.

Set
ker φ = {g ∈ G |φ(g) = e}

imφ = {h ∈ H | h = φ(g) for some g ∈ G}

Proposition 3.3. Let φ : G → H be a homomorphism of groups. Then ker φ is a subgroup

of G and imφ is a subgroup of H.

Exercise 3.5. Prove 3.3.

Problem 3.6. Let G be a group such that (ab)2 = a2b2 for all a, b ∈ G. Show that G is
abelian.

Problem 3.7. Let G be a group. Suppose there are three consecutive integers n such that

(ab)n = anbn for all a, b ∈ G. Show that G is abelian.

Problem 3.8. Show that all groups with 1, 2, 3 or 4 elements are abelian.

4. Cosets

Proposition 4.1. Let H be a subgroup of a group G. Define two relations on G as follows:

• a ∼
L
b if a−1b ∈ H;

• a ∼
R
b if ab−1 ∈ H.

Both ∼
L
and ∼

R
are equivalence relations. Moreover, the equivalence class of ∼

L
containing

a ∈ G is the set aH =̇ {ah | h ∈ H}, and the equivalence class of ∼
R
containing a ∈ G is

the set Ha =̇ {ha | h ∈ H}.

Exercise 4.1. Prove Proposition 4.1.

Definition 4.2. If H is a subgroup of a group G then the sets of the form aH =̇ {ah | h ∈
H} are called left cosets of H in G and the sets of the form Ha =̇ {ha | h ∈ H} are called
right cosets of H in G The set of left cosets of H in G is denoted G/H and the set of

right cosets of H in G is denoted H\G

Corollary 4.3. Let H be a subgroup of a group G. The left (right) cosets of H in G form

a partition of G into disjoint subsets.
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Definition 4.4. Suppose that H is a subgroup of a group G and that there are only finitely

many left cosets of H in G. Then the number of left cosets of H in G is denoted [G : H],

and is called the index of H in G. If there are infinitely many left cosets of H in G then

we say H has infinite index in G and write [G : H] =∞.

Proposition 4.5. Let H be a subgroup of G. Any two left (right) cosets of H in G are

in one-to-one correspondence.

Exercise 4.2. Prove Proposition 4.5.

Theorem 4.6. (Lagrange’s Theorem) If G is a finite group and H is a subgroup of G

then |G| = |H|[G : H]. In particular, |H| and [G : H] are divisors of |G|.

Proof. By Proposition 4.1 the left cosets of H in G form a partition of the elements

of G into disjoint subsets. By Proposition 4.5 each left coset has the same number of

elements. Moreover, since the coset eH is equal (as a set) to H, every left coset of H in

G has |H| elements. Thus |G| = n|H| where n = [G : H] is the number of left cosets of
H in G. �

Exercise 4.3. Suppose that H is a subgroup of G. Show that there is a one-to-one

correspondence between the left cosets of H in G and the right cosets of H in G. In

particular, the number of right cosets of H in G is also given by [G : H].

Exercise 4.4. Show that a group of prime order is cyclic.

Exercise 4.5. Let G be a group. Suppose that H1, . . . , Hk are subgroups of finite index

in G, for some positive integer k . Show that H1 ∩ · · · ∩ Hk is a subgroup of finite index
in G.

5. Normal subgroups and quotients

Definition 5.1. Suppose that φ : G → H is a homomorphism. If h ∈ imφ ≤ H then the
fiber of φ over h is the set

φ−1(h) =̇ {g ∈ G |φ(g) = h} ⊆ G.

5.2. Suppose that φ : G → H is a homomorphism. We have seen that ker φ and imφ are

subgroups of G and H respectively. Here are some observations about this situation that

should be kept in mind:

• The subgroup ker φ ≤ G has the following additional property: if x ∈ ker φ
then gxg−1 ∈ ker φ for all g ∈ G. (We have φ(gxg−1) = φ(g)φ(x)φ(g)−1 and

φ(g)φ(x)φ(g)−1 = e ⇔ φ(x) = e.)
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• There is a one-to-one correspondence h ↔ φ−1(h) between the set of elements

of the subgroup imφ ≤ H and the set of fibers of φ over elements of imφ.

• Two elements a and b of G lie in the same fiber of φ if and only if ab−1 ∈ ker φ.
(We have φ(a) = φ(b) ⇔ φ(ab−1) = e.)

Definition 5.3. A subgroup H of a group G is said to be normal if ghg−1 ∈ H for all
g ∈ G and all h ∈ H. If H is a normal subgroup of G we write H E G, or H C G if H 6= G.

Exercise 5.1. If G is an abelian group then every subgroup of G is normal.

Exercise 5.2. If N E G then gN = Ng for all g ∈ G.

5.4. In view of the previous exercise, we will not distinguish between left and right cosets

of a normal subgroup. Also, the exercise implies that the equivalence relations ∼
L
and ∼

R

are identical in the case of a normal subgroup.

Exercise 5.3. Show that N E G if and only if N = gNg−1
.
= {gng−1 | n ∈ N} for all

g ∈ G.

Problem 5.4. Show that any subgroup of index 2 is normal.

Problem 5.5. Suppose that a group G has a subgroup H of finite index. Show that G

has a normal subgroup of finite index which is contained in H.

Proposition 5.5. Suppose that N is a normal subgroup of a group G and let Q denote the

set of cosets of N in G. There is an operation · : Q×Q→ Q such that aN · bN = (ab)N
for all a, b ∈ G, and Q forms a group under this operation. In particular, the function
π : G → Q given by π(g) = gN is a surjective homomorphism.

Proof. Since the equivalence relations ∼
L
and ∼

R
are identical, according to 5.4, we drop

the subscripts and write x ∼ y if xy−1 ∈ N. We will show that if a1 ∼ a2 and b1 ∼ b2
then a1b1 ∼ a2b2. This implies that if a1N = a2N and b1N = b2N then a1b1N = a2b2N.
In particular we obtain a well-defined operation on cosets by setting aN · bN = abN.

Suppose that a1 ∼ a2 and b1 ∼ b2. Then a1 = a2n and b1 = b2n
′ for some n, n′ ∈ N.

Now

a1b1 = a2nb2n
′ = a2b2(b

−1
2 nbn

′).

Since b−12 nb ∈ N and n′ ∈ N we have a1b1 ∼ a2b2, as required.

It is clear from the definition that the operation · is associative. To show that Q forms a
group under the operation · we take the coset N to be the identity element e of Q and
we set inv aN = a−1N. Since aN · N = aN = N · aN, and aN · a−1N = N = a−1N · aN,
the group axioms hold with these choices of e and inv. �
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Definition 5.6. Let N E G. The group given by Proposition 5.5 is called the quotient

of G by N and is usually denoted G/N. (This is the same as the notation for the set of

left cosets, but in the case that N is normal the set of cosets is understood to comee

equipped with the operation given by Proposition 5.5.) The surjective homomorphism

π : G → G/N defined by π(g) = gN is called the quotient homomorphism or the natural

homomorphism.

6. Conjugacy, normalizers, centralizers, and centers

Definition 6.1. Let G be a group. Two elements a, b ∈ G are conjugate if gag−1 = b

for some g ∈ G.

Exercise 6.1. Conjugacy is an equivalence relation on the set of elements of any group. In

particular, the conjugacy classes form a partition of the elements of a group into disjoint

subsets.

Definition 6.2. The equivalence classes under the conjugacy relation are called conjugacy

classes.

Definition 6.3. If A is any nonempty set of elements of group G then the normalizer of

A in G is

NG(A) =̇ {g ∈ G | gAg−1 = A}.

Exercise 6.2. If A is any nonempty set of elements of a finite group G then

NG(A) = {g ∈ G | gAg−1 ⊂ A}.

Give an example of an infinite group where this fails.

Exercise 6.3. Suppose G is a group and H and K are subgroups of G such that H ≤ K ≤
G. Show that H E K if and only if K ≤ NG(H).

Definition 6.4. If A is any nonempty set of elements of a group G then the centralizer

of A in G is

CG(A) =̇ {g ∈ G | gag−1 = a for all a ∈ A}.

We use a different notation for the centralizer of a singleton: CG(a) =̇ CG({a}).

Exercise 6.4. If A is any non-empty set of elements of a group G then CG(A) is a subgroup

of G.
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Definition 6.5. The center of a group G is the subgroup

Z(G) =̇ CG(G) = {g ∈ G | gag−1 = a for all a ∈ G}.

That is, the center consists of all elements that commute with every element of G.

Exercise 6.5. The center of a group G is a normal subgroup of G.

7. Isomorphism Theorems

Theorem 7.1 (First Isomorphism Theorem). Let φ : G → H be a homomorphism of

groups. There is an isomorphism φ : G/kerφ→ imφ such that φ ◦π = φ, where π : G →
G/ ker φ denotes the quotient homomorphism. In other words, the following diagram

commutes:

G
φ

// //

π $$ $$HHHHHH imφ ≤ H

G/ker φ
77

φ

77 77ooooooo

Proof. Suppose that a and b are contained in the same coset of ker φ. Then a = bk

for some k ∈ ker φ and hence φ(a) = φ(bk) = φ(b)e = φ(b). We may therefore define
φ(a ker φ) = φ(a). It is clear that φ ◦ π = φ and that imφ = imφ. It remains to show
that φ is an injective homomorphism. To see that φ is a homomorphism, observe that

φ(a ker φ · b ker φ) = φ(ab ker φ) = φ(ab) = φ(a)φ(b) = φ(a ker φ) · φ(b ker φ).

To see that φ is injective, observe that

φ(a ker φ) = φ(b ker φ) ⇔ φ(a) = φ(b)

⇔ φ(ab−1) = e

⇔ ab−1 ∈ ker φ

⇔ a ker φ = b ker φ.

�

Exercise 7.1. Let Z denote the group of integers under addition. Show that Z/nZ is a
cyclic group, and that every cyclic group is isomorphic either to Z, or to Z/nZ for some
non-zero integer n. The name Cn will be reserved for a finite cyclic group of order n.

Definition 7.2. Suppose that G is a group and that X and Y are subsets of G. We define

the subset XY of G as

XY = {xy | x ∈ X and y ∈ Y }.

Exercise 7.2. Suppose that H is a normal subgroup of a group G. Let A = aH and

B = bH be two cosets of H. Show that AB = abH. (This gives an alternative definition

of the operation in the quotient group G/H.)
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If H and K are arbitrary subgroups of a group G, there is no reason to expect that HK

will be a subgroup of G. However, the following proposition shows that HK is a subgroup

if H normalizes K.

Proposition 7.3. Suppose that H and K are subgroups of a group G and that H ≤
NG(K). Then HK is a subgroup of G, and HK = 〈H ∪K〉.

Exercise 7.3. Prove Proposition 7.3

Theorem 7.4 (Second Isomorphism Theorem). Suppose that H and K are subgroups of

a group G and that H ≤ NG(K). Then K E HK, H ∩ K E H and HK/K is isomorphic
to H/H ∩K.

Proof. Since H ≤ NG(K) and K ≤ NG(K) it follows that HK ≤ NG(K) and hence that
K is a normal subgroup of HK. Similarly, it follows that hKh−1 = K and hHh−1 = H for

all h ∈ H, and hence that h(H∩K)h−1 = H∩K. Thus H∩K is a normal subgroup of H.

Clearly HK is the union of all cosets hK for h ∈ H. Given elements h ∈ H, k ∈ K, their
product hk is an element of H if and only if k ∈ H ∩ K. Therefore hK ∩ H = h(K ∩ H)
for every coset hK of K.

We define φ : HK/K → H/H ∩ K by φ(hK) = hK ∩ H = h(K ∩ H). It is easy to check
that φ is an isomorphism. �

Exercise 7.4. Let H and K be subgroups of a group G. Show that

|HK| =
|H| |K|
|H ∩K| ,

regardless of whether HK is a subgroup of G.

Theorem 7.5 (Third Isomorphism Theorem). Let G be a group and let N and K be

normal subgroups of G with N ≤ H ≤ G. Then H/N E G/N and G/H is isomorphic to
(G/N)/(H/N).

Proof. Define a homomorphism φ : G/N → G/H by φ(gN) = gH. The map is well-

defined since gN ⊂ gH and gH is the unique coset of H that contains gN. It is clear

from the definition that φ is a surjective homomorphism. Moreover, φ(gN) = H if and

only if g ∈ H, so ker φ = H/N. The result now follows from the First Isomorphism

Theorem. �

Theorem 7.6 (Correspondence Theorem). Let G be a group and N a normal subgroup

of G. There is a one-to-one correspondence between subgroups of G/N and subgroups

of G containing N, given by H ↔ H/N for N ≤ H ≤ G. This correspondence (in both
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directions) takes normal subgroups to normal subgroups and finite index subgroups to

subgroups of the same index.

Exercise 7.5. Prove the Correspondence Theorem.

8. Group Actions

Definition 8.1. If X is a set, we define S(X) to be the set of bijections from X to X,

together with the operation of composition. Note that S(X) is a group, by Exercise 3.4.

The group S(X) is called the group of permutations of X. As a shortcut, we write Sn for

the group of permutations of the set {1, . . . , n} ⊂ Z.

Definition 8.2. A left action of a group G on a set X is a homomorphism from G to

S(X). (More generally, a left action of a group G on an object X of a category C is a
homomorphism from G to AutX.)

When a homomorphism from G to S(X) is regarded as a left action of G on X, it is

customary to say that X is a left G-set, without giving a name to the homomorphism,

and to write g · x or gx in place of (φ(g))(x), for g ∈ G and x ∈ X.

Definition 8.3. An mohomorphism from a group G to a group H is is function ψ : G → H

such that ψ(gh) = ψ(h)ψ(g) for all g, h ∈ G. A right action of a group G on a set X
is an mohomorphism from G to S(X). When a mohomorphism ψ is regarded as a right

action we write x · g in place of ψ(g)(x), for g ∈ G and x ∈ X.

WARNING: The traditional terminology for a mohomorphism is antihomomorphism.

8.4. If X is a left G-set then

• e · x = x for all x ∈ X;

• (gh) · x = g · (h · x) for all g, h ∈ G and x ∈ X.

8.5. If X is a right G-set then

• x · e = x for all x ∈ X;

• x · (gh) = (x · g) · h for all g, h ∈ G and x ∈ X.

8.6. A G-set or an action will be understood to mean a left G-set or a left action, if no

side is specified. It is the reader’s job to reformulate statements about left actions as

statements about right actions.

Definition 8.7. Suppose that X is a G-set. The orbit of x ∈ X is the subset

G · x = {g · x | g ∈ G} ⊂ X.
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The stabilizer of x is the subgroup

Gx = {g ∈ G | g · x = x} ≤ G.

An action, or a G-set, is transitive if there is only one orbit.

The kernel of an action of G on X is, tautologically, the kernel of the action qua a

homomorphism: that is, {g ∈ G | g · x = x for all x ∈ X}. An action is faithful if it has a
trivial kernel.

An action of a group G on X is free if Gx = {e} for all x ∈ X.

Exercise 8.1. If G is a group and X is a G-set then the orbits form a partition of X.

Proposition 8.8. Let G be a group, let X be a G-set and let x ∈ X. There is a one-to-one
correspondence between the orbit G · x and the set G/Gx of left cosets of the stabilizer
of x , given by

g · x ↔ gGx .

Exercise 8.2. Prove Proposition 8.8

8.9. Here is a list of important G-sets that are naturally associated to a group G.

• The set of elements of a group G forms a left (right) G-set under left (right)

multiplication:

g · x = gx (x · g = xg) for all g, x ∈ G.

These are free, transitive actions.

• The set of elements of a group G forms a left (right) G-set under left (right)

conjugation:

g · x = gxg−1 (x · g = g−1xg) for all g, x ∈ G.

The orbits under either conjugation action are the conjugacy classes in G. The

stabilizer of an element x ∈ G is CG(x).

• If H ≤ G then the left (right) cosets of H form a left (right) G-set under left

(right) multiplication:

g · xH = gxH (Hx · g = Hxg) for all g, x ∈ G.

These are transitive actions. The stabilizer of xH (Hx) is xHx−1 (x−1Hx).

• The set of subgroups of G forms a left (right) G-set under left (right) conjugation:

g ·H = gHg−1 (H · g = g−1Hg) for all g, x ∈ G.

The orbit of H is the conjugacy class of H. The stabilizer of H is NG(H).

11



Exercise 8.3. Let G be a finite group. If g ∈ G then the number of elements in the
conjugacy class of g is equal to [G : CG(g)]. If H ≤ G then the number of conjugates of
H is equal to [G : NG(H)].

Theorem 8.10 (The Class Equation). Let G be a finite group and let {C1, . . . , Ck} be the
set of all conjugacy classes in G which contain more than one element. For i = 1, . . . , k ,

choose gi ∈ Ci . Then [G : CG(gi)] > 1 for each i and

|G| = |Z(G)|+
k∑
i=1

[G : CG(gi)].

Moreover, each term in the sum is a divisor of |G|.

Exercise 8.4. Interpret the fact that the orbits of the conjugation action form a partition

of G to prove Theorem 8.10.

Problem 8.5. Let G be a finite group of order pn where p is prime and n > 0. Prove that

Z(G) 6= {e}.

Problem 8.6. Let p be a prime number. Prove that every group of order p2 is abelian.

Problem 8.7. Let G be a group of order pn, where p is prime. Show that G has a normal

subgroup of order pk for every k with 0 ≤ k ≤ n.

9. Cauchy’s Theorem

Exercise 9.1. If G is a finite cyclic group and p is a prime which divides |G|, then G has
an element of order p.

Lemma 9.1. If G is a finite abelian group and p is a prime which divides |G| then G has
an element of order p.

Proof. The proof is by (strong) induction on |G|. The statement is vacuous if |G| = 1.
If |G| = 2 or |G| = 3 the conclusion follows from Exercise 9.1 together with Exercise 4.4.
For the induction step, suppose that G is a finite abelian group with |G| > 3 and assume
that the conclusion holds for any abelian group H with |H| < |G|.

Suppose that p is a prime that divides |G|. Let g 6= e be any non-trivial element of G and
consider the cyclic subgroup 〈g〉. If p divides |g| then there is an element of order p in
〈g〉 ≤ G, by Exercise 9.1. We may therefore assume that p does not divide |g|.

Since G is abelian, every subgroup of G is normal and we may form the quotient group

Q = G/〈g〉. We have |Q| = |G|/|g| < |G| and, since p does not divide |g|, we also have
that p divides |Q|. Thus our induction hypothesis implies that Q has an element q of order
p. Let a ∈ G be an element that maps to q under the natural homomorphism from G
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onto Q = G/〈g〉. Then the cyclic group 〈a〉 maps onto the cyclic group 〈q〉 ≤ Q. Since
|q| = p, the First Isomorphism Theorem implies that p divides the order of the cyclic

group 〈a〉. By Exercise 9.1 we conclude that there is an element of order p in 〈a〉 ≤ G.
This completes the induction step. �

Theorem 9.2 (Cauchy’s Theorem). If G is a finite group and p is a prime which divides

|G| then G has an element of order p.

Proof. The proof is based on the Class Equation (8.10). As in the lemma, the proof is

by induction on |G|. The same argument that was used in the proof of the lemma shows
that the conclusion holds if |G| < 4. For the induction step, suppose that G is a finite
group with |G| > 3 and assume that the conclusion holds for any finite group H with
|H| < |G|.

Suppose that p is a prime that divides |G|. If there is any proper subgroup H < G such

that the order of |H| is divisible by p, then the induction hypothesis implies that H, and
hence G, has an element of order p. We may therefore assume that no proper subgroup

of G has order divisible by p. In particular, every subgroup of G has index divisible by p.

Now consider the Class Equation. In the notation of 8.10, we have

|G| = |Z(G)|+
k∑
i=1

[G : CG(gi)],

where [G : CG(gi)] > 1 for each i = 1, . . . k . Our assumption implies that p divides

[G : CG(gi)] for each i = 1, . . . , k , and we are given that p divides |G|. It follows that p
divides |Z(G)|. We therefore conclude that Z(G) = G since otherwise Z(G) would be a
proper subgroup of G with order divisible by p, contrary to our assumption. If Z(G) = G

then G is abelian, and it follows from the lemma that G has an element of order p. This

completes the induction step. �

10. The Sylow Theorems

Definition 10.1. If p is a prime number, a group G is defined to be a p-group if the order

of every element is a power of p. A p-subgroup of a group G is a subgroup of G which is

a p-group.

Problem 10.1. Prove that a finite group G is a p-group if and only if |G| = pn for some
integer n.

Definition 10.2. A Sylow p-subgroup of a group G is a p-subgroup of G which is maximal

in the sense that it is not a subgroup of any p-subgroup other than itself. The set of Sylow

p-subgroups of G will be denoted Sp(G). If G is finite, the number of Sylow p-subgroups
of G will be denoted np(G).
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Problem 10.2. Show that any group has a Sylow p-subgroup for each prime p. (For

infinite groups, use Zorn’s Lemma.)

Exercise 10.3. Let P be a Sylow p-subgroup of a finite group G. Show that any conjugate

of P is a Sylow p-subgroup of G.

10.3. In view of Exercise 10.3 we will regard Sp(G) as a G-set under the conjugation
action. If H is any subgroup of G then H also acts on Sp(G). The theorems in this
section are proved by considering the P -orbits in Sp(G), where P ≤ G is a Sylow p-

subgroup. Recall that if P ∈ Sp(G), then the stabilizer of P under the conjugation action
by G is the normalizer NG(P ).

Problem 10.4. Let P be a Sylow p-subgroup of a finite group G. Show that [NG(P ) : P ]

is not divisible by p.

Problem 10.5. Let P1 and P2 be Sylow p-subgroups of a finite group G. Show that

P2 ≤ NG(P1) if and only if P2 = P1.

Lemma 10.4. Let P be a Sylow p-subgroup of a finite group G. The singleton {P} is a
P -orbit in Sp(G). Every other P -orbit in Sp(G) has pk elements for some k > 0.

Proof. Let Q ∈ Sp(G). Let O denote the P -orbit of Q. The size of O is the index in P of
the stabilizer of Q, which divides |P | by Lagrange’s Theorem. By Problem 10.1, we have
|P | = pn for some n. Thus O has size pk for some k ≥ 0. We must show that k = 0 if
and only if Q = P .

The stabilizer of Q under the P -action is P ∩ NG(Q). Thus

k = 0 ⇔ P = P ∩ NG(Q) ⇔ P ≤ NG(Q) ⇔ P = Q,

where the last equivalence was shown in Problem 10.5. �

Since a subset X ⊂ Sp(G) is invariant under the action of P if and only if it is a union of
P -orbits, we have the following.

Corollary 10.5. Let P be a Sylow p-subgroup of a finite group G. Suppose that the

subset X ⊂ Sp(G) is invariant under the action of P . Then #X ≡ 1 (mod p) if P ∈ X,
and #X ≡ 0 (mod p) if P 6∈ X

Theorem 10.6. Any two Sylow p-subgroups of a finite group G are conjugate. In partic-

ular, np(G) divides |G| and np(G) ≡ 1 (mod p).
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Proof. Let O ⊂ Sp(G) be a G-orbit. To prove that any two Sylow p-subgroups are

conjugate we will show thatO = Sp(G). Suppose not. Choose P ∈ O andQ ∈ Sp(G)−O.
Since O is a G-orbit, it is invariant under the action of both P and Q. Since P ∈ O,
Corollary 10.5 implies that #X ≡ 1 (mod p). Since Q 6∈ O, Corollary 10.5 also implies
that #X ≡ 0 (mod p). This contradiction shows that O = Sp(G).

Since np(G) = #Sp(G) = #O = [G : NG(P )] we see that np(G) divides |G|. Since O is
invariant under the action of P for any P ∈ Sp(G), Corollary 10.5 implies that

np(G) = #O ≡ 1 (mod p).

�

Theorem 10.7. Let G be a finite group of order pnq, where p does not divide q. Then

every Sylow p-subgroup of G has order pn.

Proof. Let P be a Sylow p-subgroup of G. We need only show that [G : P ] is not divisible

by p. We have [G : P ] = [G : NG(P )][NG(P ) : P ] and we have already seen in Problem

10.4 that [NG(P ) : P ] is not divisible by p. But [G : NG(P )] = np(G) and, according to

Theorem 10.6, np(G) ≡ 1 (mod p). Thus [G : P ] is not divisible by p. �

It is strange that one has to count the number of Sylow p-subgroups before counting the

number of elements in each Sylow p-subgroup.

Exercise 10.6. Let P be a Sylow p-subgroup of a finite group G. Show that P is a normal

subgroup if and only if np(G) = 1.

Exercise 10.7. Let G be an abelian group and let p be a prime number. Show that

P = {g ∈ G | |g| = pk for some k} is the unique Sylow p-subgroup of G.

11. Direct products and direct sums

Definition 11.1. Let G and H be groups. The direct product of G and H, denoted G×H,
is the set {(g, h) | g ∈ G and h ∈ H} with the operation (g1, h1) · (g2, h2) = (g1g2, h1h2).
More generally, if (Gα)α∈I is an indexed family of groups then the direct product

∏
α∈I Gα

is the set {(gα)α∈I | gα ∈ Gα} with the operation (gα)α∈I · (hα)α∈I = (gαhα)α∈I. If the
index set I is finite, say I = {1, . . . , n}, we may write G1× · · · ×Gn for

∏n
i=1 Gi . For each

β ∈ I the projection homomorphism πβ :
∏
α∈I Gα → Gβ is defined by πβ((gα)α∈I) = gβ.

It is easily checked that the direct product of any indexed family of groups is a group.

Exercise 11.1. If A is a group then {e} × A is isomorphic to A. If A and B are groups
then A × B is isomorphic to B × A. If A, B and C are groups then (A × B) × C and
A× (B × C) are both isomorphic to A× B × C.

15



Proposition 11.2. Let (Gα)α∈I be an indexed family of groups. The direct product∏
α∈I Gα has the following universal mapping property: if H is an arbitrary group and if

σα : H → Gα is a homomorphism for each α ∈ I then there exists a unique homomorphism
φ : H → ∏

α∈I Gα such that πα ◦ φ = σα for all α ∈ I.

Exercise 11.2. Prove Proposition 11.2.

Exercise 11.3. Let (Gα)α∈I be an indexed family of groups. Show that the subset

{(gα)α∈I | gα ∈ Gα and gα = e for all but finitely many α}

is a normal subgroup of
∏
α∈I Gα.

Definition 11.3. If (Gα)α∈I is an indexed family of groups then the direct sum
⊕
α∈I Gα is

the subgroup of
∏
α∈I Gα consisting of all sequences (gα)α∈I such that Gα = e for all but

finitely many α. For each β ∈ I the inclusion homomorphism ιβ : Gβ →
⊕
α∈I Gα sends

each element g ∈ Gβ to (gα)α∈I where gβ = g and gα = e for all α 6= β.

11.4. The notions of direct product and direct sum coincide in the case of a finite family

of groups:
⊕n
i=1 Gi =

∏n
i=1 Gi .

The next proposition can be paraphrased as saying that the direct sum is a co-product in

the category of abelian groups.

Proposition 11.5. Let (Gα)α∈I be an indexed family of abelian groups. The direct sum⊕
α∈I Gα has the following universal mapping property: if H is an abelian group and if

να : Gα → H is a homomorphism for each α ∈ I then there exists a unique homomorphism
φ :

⊕
α∈I Gα → H such that φ ◦ ια = να for all α ∈ I.

Exercise 11.4. Prove Proposition 11.5 and show that the statement would be false with-

out the assumption that H is abelian.

Proposition 11.6. Let G be a group. If H and K are normal subgroups of G such that

G = HK and H ∩ K = {e}, then G ∼= H × K. More generally, if H1, . . . , Hn are normal
subgroups of G such that G = 〈∪ni=1Hi〉, and Hj ∩ 〈∪i 6=jHj〉 = {e} for each j , then
G ∼=

∏n
i=1Hi .

Exercise 11.5. Prove Proposition 11.6

Proposition 11.7. Let G be a finite group. If H and K are normal subgroups of G such

that |G| = |H| |K| and |H ∩ K| = 1, then G ∼= H × K. More generally, if H1, . . . , Hn are
normal subgroups of G such that |G| = |H1| · · · |Hn|, and |Hj ∩ 〈∪i 6=jHj〉| = 1 for each j ,
then G ∼=

∏n
i=1Hi .
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Exercise 11.6. Prove Proposition 11.7

Exercise 11.7. Suppose that G is a group and that H and K are normal subgroups of G

such that H ∩K = {e}. Prove that hk = kh for all h ∈ H and k ∈ K.

Exercise 11.8. Give an example of a group G containing three normal subgroups H1, H2

and H3 such that (1) H1H2H3 = G; (2) Hi ∩ Hj = {e} when i 6= j , and (3) G is not

isomorphic to H1 ×H2 ×H3.

12. Finite abelian groups

Lemma 12.1. Let G be a finite abelian p-group. Let g ∈ G be an element of maximal
order. Then there exists a subgroup H < G such that 〈g〉 ·H = G and 〈g〉 ∩H = {e}.

Proof. We have |G| = pn for some non-negative integer n. The proof is by induction on
n. The cases n = 0 and n = 1 are clear. Assume that n > 1 and that the conclusion

holds for any group of order pk where k < n.

The conclusion clearly holds if 〈g〉 = G since then we can take H = {e}. Therefore we
focus on the case where 〈g〉 6= G. In this case we claim that G has an element x of order
p which is not contained in 〈g〉. To prove the claim consider the (non-trivial) quotient
group G/〈g〉. By Cauchy’s Theorem this group has an element of order p. Thus there
exists h ∈ G such that h 6∈ 〈g〉 but hp ∈ 〈g〉. Observe that hp cannot be a generator of
the cyclic group 〈g〉, because that would imply that |h| = p|g| > |g|, contradicting our
hypothesis that g has maximal order in G. Therefore h = gpm for some m > 0. Now

consider the element x = hg−m. We have x 6∈ 〈g〉 and xp = hpg−mp = e. This implies
the claim. Moreover, since x has prime order, we have 〈g〉 ∩ 〈x〉 = {e}.

Now form the quotient Ĝ =̇ G/〈x〉 and consider the natural homomorphism φ : G → Ĝ.

Since 〈g〉 ∩ 〈x〉 = {e}, we have |φ(g)| = |g|. But for any element h ∈ G we have

|φ(h)| ≤ |h|. Thus ĝ =̇ φ(g) has maximal order in Ĝ. By induction, there is a subgroup
K̂ < Ĝ such that 〈ĝ〉 · K̂ = Ĝ and 〈ĝ〉 ∩ K̂ = {e}. We set K = φ−1(K̂). Since

ker φ ≤ K ≤ K · 〈g〉, and since φ(K · 〈g〉) = K̂ · 〈ĝ〉 = Ĝ we conclude that K · 〈g〉 = G.
Also, since φ(K ∩ 〈g〉) = K̂ ∩ 〈ĝ〉 = {e}, we have K ∩ 〈g〉 ≤ ker φ = 〈x〉. Obviously
K ∩ 〈g〉 ≤ 〈g〉. Thus K ∩ 〈g〉 ≤ 〈x〉 ∩ 〈g〉 = {e}, which completes the induction step. �

Exercise 12.1. Prove that any finite abelian p-group is isomorphic to a direct sum of

cyclic p-groups.

Theorem 12.2. Any finite abelian group is isomorphic to a direct sum of cyclic groups

of prime power order.

Problem 12.2. Prove Theorem 12.2
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Exercise 12.3. Show that if m and n are relatively prime integers then Cn × Cm ∼= Cmn.

Problem 12.4. Let G be a finite abelian group. Suppose that for every prime p the number

of elements of order p in G is at most p − 1. Prove that G is cyclic.

Exercise 12.5. Classify the abelian groups of order 72.

13. Semi-direct products

Definition 13.1. A short exact sequence of groups is a diagram

N //
ι

// G
φ

// // Q ,

where ι is an injective homomorphism, φ is a surjective homomorphism and im ι = ker φ.

When such a short exact sequence exists, G is said to be an an extension of N by Q. In

particular, if N is a normal subgroup of G and the quotient G/N is isomorphic to Q then

G is an extension of N by Q.

If G is an extension of N byQ as above, and if there also exists a homomorphism σ : Q→ G

such that φ ◦ σ = idQ, then G is called a split extension and σ is called a section. This
situation is described by the following diagram:

N //
ι

// G
φ

// // Q
σ

tt
.

13.2. Not all extensions are split! An example is provided by the quaternion group Q8.

This group can be described as consisting of the eight invertible 2× 2 complex matrices
{±1,±i,±j,±k}, where 1 denotes the identity matrix and

i =

(
0 1

−1 0

)
, j =

(
0 i

i 0

)
, k =

(
i 0

0 −i

)
.

Observe that i2 = j2 = k2 = −1, ij = k and ji = −k. The center of Q8 is {±1} and the
quotient Q8/Z(Q8) is isomorphic to the Klein 4-group V . Thus Q8 is an extension of C2

by V . The only element of order 2 in Q8 is the central element −1, so there cannot exist
a section σ : V → Q8.

Definition 13.3. Suppose that H and K are groups and that φ : K → AutH is a ho-
momorphism. (Thus φ can be regarded as an action of K on H by automorphisms.)

Write φk to denote the automorphism φ(k), so we have φhk = φh ◦ φk . Define the
semi-direct product of H by K (via φ), denoted H oφ K, to be the set of ordered pairs
{(h, k) | h ∈ H and k ∈ K} together with the operation

(h1, k1) · (h2, k2) = (h1φk1(h2), k1k2).
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Exercise 13.1. Let H and K be groups and let φ : K → AutH be an action of K on H by
automorphisms. Show that HoφK is a group, and that HoφK is a split extension of H
by K.

Exercise 13.2. Let G be a group. Suppose that H and K are subgroups of G such that

H E G, G = HK, and H ∩ K = {e}. Define φ : K → AutH by φ(k) = φk , where

φk(h) = khk
−1. Show that φ is a homomorphism and that G ∼= H oφ K.

Exercise 13.3. Let N be a normal subgroup of a group G and let π : G → G/N be

the natural homomorphism. Suppose that there is a homomorphism σ : G/N → G with

π ◦ σ = idG/N (i.e. σ is a section). Prove that G ∼= N oφ Q for some homomorphism
φ : Q→ AutN.

Proposition 13.4. Let H and K be groups and let φ : K → AutH and ψ : K → AutH be
actions of K on H by automorphisms. Suppose that there exist automorphisms α ∈ AutH
and β ∈ AutK such that ψβ(k) = α ◦ φk ◦ α−1 for all k ∈ K. Then H oφ K ∼= H oψ K.

Exercise 13.4. Prove Proposition 13.4.

13.5. It is useful to consider groups of the form CnoφK. This requires understanding the
structure of the group AutCn. To give a concrete description of AutCn, choose a gener-

ator x of Cn, so Cn = {e, x, x2, . . . , xn−1}. For each integer k there is a homomorphism
φk : Cn → Cn defined by φk(x

i) = xki . Clearly φk = φk ′ if and only if k ≡ k ′ (mod n). If
φ : Cn → Cn and ψ : Cn → Cn are homomorphisms then φ = ψ if and only if φ(x) = ψ(x).

Thus every homomorphism from Cn to itself is equal to φk for some k . Finally, observe

that φj ◦ φk = φjk

Exercise 13.5. Show that φk is an automorphism of Ck if and only if k is a unit mod n

(i.e. if and only if k has a multiplicative inverse mod n). Conclude that the group Aut(Cn)

is isomorphic to the abelian group U(n), which is defined to be the multiplicative group

of units mod n.

Proposition 13.6. If p is prime then AutCp is a cyclic group of order p − 1.

Proof. The most natural proof of this takes us outside of group theory. So be it! The

fact that we need is this: a polynomial of degree n with coefficients in a field F has at

most n roots in F .

Identify AutCp with U(p), the multiplicative group of non-zero elements in the field

Fp = Z/pZ. We have |U(p)| = p − 1 since every non-zero element of Fp is a unit.

For any prime q the elements of order q in U(p) are roots of the polynomial xq−1. There
are at most q such roots. One of the roots is the multiplicative identity 1, which is not
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an element of order q. Thus there are at most q− 1 elements of order q in U(p). It now
follows from Problem 12.4 that U(p) is cyclic. �

Exercise 13.6. Let p be a prime and let G be a finite cyclic group. Let φ : G → AutCp and
ψ : G → AutCp be actions of G on Cp by automorphisms. Show that CpoφG ∼= Cpoψ G
if and only if |φ(G)| = |ψ(G)|.

Exercise 13.7. Let p > 2 be a prime. Show that a non-abelian extension of Cp by C2 is

isomorphic to the dihedral group D2p.

Exercise 13.8. Classify the semi-direct products C8 oφ C2 up to isomorphism.

14. Permutations

Recall that the permutation groups S(X) and Sn were defined in 8.1.

Definition 14.1. If σ ∈ S(X) is a permutation, we define the fixed set of σ to be

Fixσ = {x ∈ X |σ(x) = x}

and the support of σ to be the complement of the fixed set:

Suppσ = {x ∈ X |σ(x) 6= x}.

14.2. One (cumbersome) notation that is sometimes used to describe a permutation in

Sn is a 2× n matrix where the first row is 1, . . . , n and the second row is σ(1), . . . , σ(n).
For example, (

1 2 3 4 5

2 3 1 5 4

)
denotes the permutation that sends 1 to 2, 2 to 3, 3 to 1, 4 to 5 and 5 to 4.

Exercise 14.1. The order of Sn is n!.

Exercise 14.2. Suppose that X and Y are sets and that there exists a bijection φ : X → Y .

Show that S(X) is isomorphic to S(Y ).

Definition 14.3. Let σ ∈ Sn. A flip of σ is a subset {i , j} of {1, . . . , n} such that either

• i < j and σ(i) > σ(j); or

• j < i and σ(j) > σ(i).

We define Flipsσ to be the number of distinct flips of σ.
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14.4. Here is a graphical way to count the number of flips of a permutation σ ∈ Sn.
Write the integers 1, . . . , n in two rows, one above the other, and join each i to σ(i)

by a line segment. The number of crossing points is equal to Flipsσ. For example, the

diagram below shows that the permutation given in 14.2 has 3 flips:

1

>>
>>

>>
> 2

>>
>>

>>
> 3

ppppppppppppppp 4

>>
>>

>>
> 5

��
��

��
�

1 2 3 4 5

To understand how the number of flips behaves under composition it is helpful to juxtapose

the diagrams for two permutations. Here is an example. Suppose

σ =

(
1 2 3 4 5

2 3 1 5 4

)
and

τ =

(
1 2 3 4 5

5 3 2 4 1

)
, so

τσ =

(
1 2 3 4 5

3 2 5 1 4

)
.

Then Flipsσ = 3, Flips τ = 8, and Flips(τσ) = 5. If we juxtapose the diagrams for σ and

τ we have

1

>>
>>

>>
> 2

>>
>>

>>
> 3

ppppppppppppppp 4

>>
>>

>>
> 5

��
��

��
�

1

WWWWWWWWWWWWWWWWWWWWWWWWWWWWW 2

>>
>>

>>
> 3

��
��

��
�

4 5

ggggggggggggggggggggggggggggg

1 2 3 4 5

The diagram for τσ, shown below, is obtained by joining the segments of the juxtaposed

diagram along the center row and straightening.

1

NNNNNNNNNNNNNNN 2 3

NNNNNNNNNNNNNNN 4

jjjjjjjjjjjjjjjjjjjjjj 5

��
��

��
�

1 2 3 4 5

Some crossings are removed in the straightening process, but they are always removed in

pairs. For example, the segments 1—2—3 and 3—1—5 have a pair of crossings which are

removed by straightening. (In this example, a total of 3 pairs of crossings are removed.)

This suggests that the number of flips will be additive under composition, provided we

count flips modulo 2.
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Definition 14.5. For σ ∈ Sn we define Signσ ∈ {0, 1} by

Signσ ≡ Flipsσ (mod 2).

We say that σ is even if Signσ = 0 and σ is odd if Signσ = 1.

Proposition 14.6. For σ, τ ∈ Sn we have

Sign(τσ) ≡ Sign τ + Signσ (mod 2).

In particular, Sign defines a homomorphism from Sn to the group Z/2Z of integers modulo
2, under addition.

Proof. First, we observe that {i , j} is a flip for τσ if and only if one of the following
mutually exclusive possibilities holds:

(1) {i , j} is a flip for σ and {σ(i), σ(j)} is not a flip for τ ; or

(2) {i , j} is not a flip for σ and {σ(i), σ(j)} is a flip for τ .

Now consider the pairwise disjoint sets

A = {{i , j} | {i , j} is a flip for σ and {σ(i), σ(j)} is not a flip for τ};

B = {{i , j} | {i , j} is not a flip for σ and {σ(i), σ(j)} is a flip for τ};

C = {{i , j} | {i , j} is a flip for σ and {σ(i), σ(j)} is a flip for τ}.

Observe that A ∪B is the set of flips for τσ and A ∪ C is the set of flips for σ. Since A,
B and C are pairwise disjoint we have Flips(τσ) = #A+#B and Flips(σ) = #A+#C.

The set of flips for τ is equal to { {i , j} | {σ−1(i), σ−1(j)} ∈ B∪C }. Since σ is a bijection
and B and C are disjoint, we therefore have Flips τ = #B +#C.

Thus

Flips(τσ) = #A+#B

and

Flips τ + Flipsσ = #A+#C +#B +#C ≡ #A+#B (mod 2),

which shows that Sign(τσ) ≡ Sign τ + Signσ (mod 2). �

Corollary 14.7. The even permutations in Sn form a normal subgroup.

Definition 14.8. The alternating group An is the normal subgroup of Sn consisting of all

even permutations.
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Definition 14.9. Let k > 1 be an integer. A permutation σ ∈ S(X) is a k-cycle if there
exist distinct elements x1, . . . , xk of X such that

σ(xj) = xj+1 for j = 1, . . . , k − 1

σ(xk) = x1

σ(x) = x for x ∈ X − {x1, . . . , xk}

The k-cycle σ may be denoted (x1 . . . xk). Note that this notation is not unique:

(x1 . . . xk) = (x2 . . . xk x1) = · · · = (xk x1 . . . xk−1).

A permutation is a cycle if it is a k-cycle for some k > 1, or if it is the identity. A 2-cycle

is called a transposition.

Note that Supp(x1 . . . xk) = {x1, . . . , xk} ⊆ X. Two cycles σ, τ ∈ S(X) are said to be
disjoint if Suppσ ∩ Supp τ = ∅.

Exercise 14.3. Show that disjoint cycles in S(X) commute.

Proposition 14.10. If X is a finite set then any permutation in S(X) is a product of

finitely many disjoint cycles.

Proof. Let σ ∈ S(X). The proof is by induction on N(σ) = #Suppσ. If N(σ) = 0 then
σ is the identity permutation, which is a cycle by definition.

Suppose N(σ) = n > 0, and suppose that every permutation τ ∈ S(X) with N(τ) < n

is a product of disjoint cycles. Choose x ∈ X so that σ(x) 6= x . Set xi = σi(x) for

all non-negative integers i . The elements xi cannot be distinct for all i since X is finite.

Let k be the smallest positive integer such that xk ∈ {x0, . . . , xk−1}. We claim that
x0, . . . , xk−1 are distinct elements of X. If not, there exist 0 < i < j < k with xi = xj .

Thus σi(x) = σj(x), so σj−i(x) = x = x0. Since 0 < j − i < k , this contradicts the

minimality of k , proving the claim. Next we claim that xk = x0. We know that xk = xi for

some 0 ≤ i < k . Thus σi(x) = σk(x), so x = σk−i . This would contradict the minimality

of k unless i = 0. Therefore xk = x0 as claimed.

Now let γ denote the k-cycle (x0 . . . xk−1). Observe that γ
−1σ(xi) = xi for i = 0, . . . , k−

1. Since γσ(x) = σ(x) for x ∈ X − {x0, . . . , xk−1}, the support of σ is the disjoint union

Suppσ = Supp(γ−1σ) ∪̇ {x0, . . . , xk−1}.

In particular, N(γ−1σ) < N(σ) and, by induction, we may write γ−1σ = γ1 · · · γm where
γ1, . . . , γm are disjoint cycles for some m > 0. Since γ−1σ(xi) = xi for i = 0, . . . , k − 1
and Supp γ = {x0, . . . , xk−1}, the cycle γ is disjoint from γ1, . . . , γm. Thus σ = γγ1 · · · γm
is a product of disjoint cycles, completing the induction step. �
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Exercise 14.4. Suppose that σ = γ1 · · · γm and σ = δ1 · · · δn are two factorizations of σ
as products of disjoint cycles. Show that {γ1, . . . , γm} = {δ1, . . . , δn}.

Exercise 14.5. Show that a k-cycle can be written as a product of k + 1 transpositions.

Exercise 14.6. Show that any permutation in Sn is a product of transpositions.

Exercise 14.7. Show that a permutation in Sn is even if and only if it is a product of an

even number of transpositions.

Exercise 14.8. Show that a permutation in Sn is even if and only if it is a product of

3-cycles.

Definition 14.11. Suppose that σ ∈ Sn, and that σ = γ1 · · · γm is a factorization of σ as
a product of disjoint cycles. Suppose that γi is a ki -cycle. Since disjoint cycles commute,

we may assume after reordering that k1 ≥ k2 ≥ · · · ≥ km. By the cycle structure of σ we
will mean the m-tuple [k1, . . . , km], where k1 ≥ k2 ≥ · · · ≥ km. Exercise 14.4 implies that
the cycle structure of σ is well-defined, i.e. that every factorization of σ as a product of

disjoint cycles gives rise to the same m-tuple.

14.12. As an illustration, the permutation

σ =

(
1 2 3 4 5

2 3 1 5 4

)

has the disjoint cycle decomposition σ = (123)(45), and its cycle structure is [3, 2].

14.13. Suppose that γ = (x1 . . . xk) is a k-cycle in S(X) and that σ is an arbitrary

element of S(X). Then σγσ−1 = (σ(x1) . . . σ(xk)). In particular, a conjugate of a

k-cycle is a k-cycle.

Exercise 14.9. Show that two permutations in Sn are conjugate if and only if they have

the same cycle structure.

Exercise 14.10. Show that a permutation in Sn is even if and only if there are an even

number of even length cycles in its disjoint cycle decomposition.

Exercise 14.11. Suppose that σ ∈ Sn has cycle structure [k1, . . . , km]. Show that

|σ| = lcm(k1, . . . , km).

Problem 14.12. Show that the cycles (12) and (12 · · · n) generate Sn.
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Problem 14.13. In 1878 Sam Loyd invented his tremendously popular “14-15” sliding

block puzzle. Mr. Loyd offered a prize of $1000 to anyone who could interchange the

pieces labeled 14 and 15 by sliding the blocks:

1 2 3 4

5 6 7 8

9 10 11 12

13 15 14

−→

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Prove that Mr. Loyd was in no danger of losing his $1000. (According to Bill Wall

(http://www.geocities.com/siliconvalley/lab/7378/loyd.htm) the U.S. Patent

Office refused to issue a patent for the puzzle once it was shown to be impossible.)

15. Simplicity of alternating groups

Definition 15.1. A group G is simple if G has no proper normal subgroup.

15.2. Obviously the trivial group {e} is simple, and it follows from Lagrange’s Theorem
that a group of prime order is simple (and cyclic, by Exercise 4.4). The alternating groups

A2 and A3 are therefore simple.

Lemma 15.3. If n ≥ 5 then any two 3-cycles are conjugate in An.

Proof. It suffices to show that any 3-cycle is conjugate in An to (1 2 3). Let σ = (a b c) be

a 3-cycle in An and let x and y be two distinct elements of {1, . . . , n}−{a, b, c}. (There
exist two such elements because n ≥ 5.) Let τ0 be any permutation in Sn such that
τ0(1) = a, τ0(2) = b, τ0(3) = c . If τ0 is even set τ = τ0 and if τ0 is odd, set τ = (x y)τ0.

Then τ ∈ An and τ(i) = τ0(i) for i = 1, 2, 3. In particular, τ−1στ = (1 2 3). �

Lemma 15.4. Let N be a normal subgroup of An for n ≥ 5. If N contains a 3-cycle then
N = An.

Proof. Suppose that N E An and that N contains a 3-cycle σ. Since N is normal, it

contains all conjugates of σ in An. By Lemma 15.3, N contains all 3-cycles. By by

Exercise 14.8, this implies that N = An. �

Theorem 15.5. If n ≥ 5 then An is a simple group.

Proof. Let n ≥ 5 and suppose that {e} 6= N E An. We will show that N = An. We begin
by showing that N contains a 3-cycle.
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Suppose we are given an arbitrary element τ ∈ N and that σ ∈ An is any 3-cycle. Consider
the commutator

[τ, σ] =̇ τστ−1σ−1.

Since [τ, σ] = τ(στ−1σ−1), we see that [τ, σ] ∈ N. Since [τ, σ] = (τστ−1)σ−1 we see
that [τ, σ] is a product of two 3-cycles, and hence that the support of [τ, σ] contains at

most 6 elements of {1, . . . , n}.

Now suppose that τ has been chosen among all non-identity elements of N so that Supp τ

has the mimimal number of elements. We will show that Supp τ has 3 elements, which

implies that τ is a 3-cycle.

Since [τ, σ] ∈ N for any 3-cycle σ ∈ An, we may assume that Supp τ has at most 6
elements. Since τ is even, the only possible cycle structures for τ are the following:

[2, 2], [3], [3, 3], [4, 2], [5].

If τ = (a b)(c d) then, since n ≥ 5, there exists an element x ∈ {1, . . . , n} which is
distinct from a, b, c, d . Let σ = (a b x). Then we have

[τ, σ] = (τστ−1)σ−1 = (b a x)(x b a) = (a b x).

If τ = (a b c)(x y z) then take σ = (a b x). We have

[τ, σ] = (τστ−1)σ−1 = (b c y)(x b a) = (a x c y b).

If τ = (a b c d)(x y) then take σ = (a b c). We have

[τ, σ] = (τστ−1)σ−1 = (b c d)(c b a) = (a d b).

If τ = (a b c d f ) then take σ = (a b c). We have

[τ, σ] = (τστ−1)σ−1 = (b c d)(c b a) = (a d b).

In each case the support of [τ, σ] would be smaller than the support of τ , contradicting

our choice of τ . We conclude that the cycle structure of τ must be [3], i.e. that τ is a

3-cycle.

Since N contains a 3-cycle, we have N = An by Lemma 15.4. Since N was an arbitrary

non-trivial normal subgroup, we have shown that An has no proper normal subgroup. �

Exercise 15.1. Show that A4 contains a normal subgroup of order 4 in which every non-

identity element has order 2. This subgroup is called the Klein 4-group and is named V

(for vier, presumably).

Problem 15.2. Show that A4 does not have a subgroup of order 6. Thus A4 gives an

example of a group for which the converse of Lagrange’s Theorem is false.
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Exercise 15.3. Suppose that φ : Sn → G is a surjective homomorphism. Show that either

φ is an isomorphism or |G| ≤ 2.
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