NOTES ON ALGEBRA (FIELDS)

Marc Culler - Spring 2005

The most familiar examples of fields are $\mathbb{F}_{p} \doteq \mathbb{Z} / p \mathbb{Z}$, where p is a prime, the field \mathbb{Q} of rational numbers, the field \mathbb{R} of real numbers and the field \mathbb{C} of complex numbers. Another example to keep in mind is the field $F(t)$ of rational functions with coefficients in some field F.

1. The characteristic of a field

Definition 1.1. The characteristic of a commutative ring is either the smallest positive integer n such that $n \cdot 1=0$, or 0 if no such integer exists. The characteristic of a commutative ring R is denoted Char R.

Exercise 1.1. Let F be a field of characteristic p. Show that $p \cdot x=0$ for all $x \in F$.
Exercise 1.2. Show that if the characteristic of a field is not 0 then it is prime.
Exercise 1.3. Show that a finite field has non-zero characteristic.

Exercise 1.4. Let F be a field. Show that the intersection of any family of subfields of F is a subfield of F.

Proposition 1.2. Let F be any field. The intersection of all subfields of F is a subfield which is isomorphic to \mathbb{Q} if $\operatorname{Char} f=0$, and isomorphic to \mathbb{F}_{p} if Char $F=p$.

Proof. The intersection P of all subfields of F is a field by Exercise 1.4. Consider the ring homomorphism $\phi: \mathbb{Z} \rightarrow F$ given by $\phi(n)=n \cdot 1$. Since any subfield contains 1 and is closed under addition, $\operatorname{im} \phi$ is contained in P. If Char $F=p \neq 0$ then $\operatorname{im} \phi$ is isomorphic to $\mathbb{Z} / p \mathbb{Z}=\mathbb{F}_{p}$. Since this is a field, we have $P=\operatorname{im} \phi \cong \mathbb{F}_{p}$. If Char $F=0$ then ϕ is injective. Define $\hat{\phi}: \mathbb{Q} \rightarrow F$ by $\hat{\phi}(m / n)=\phi(m) / \phi(n)$ for any $m, n \in \mathbb{Z}$ with $n \neq 0$. It is easy to check that $\hat{\phi}$ is well-defined, and is an injective homomorphism. Moreover, $\hat{\phi}(\mathbb{Q}) \subseteq P$ since P is closed under the field operations. Thus $P=\operatorname{im} \hat{\phi} \cong \mathbb{Q}$ if Char $F=0$.

Definition 1.3. The intersection of all subfields of a field F is the prime subfield of F.
Date: September 2, 2005.

2. Extensions

Definition 2.1. Let F and K be fields with $F \subseteq K$. Then F is a subfield of K, and K is an extension of F. Observe that K is a vector space over F. If K is a finite dimensional vector space over F of dimension d then d is the degree of the extension, and is denoted $[K: F]$. We write $[K: F]<\infty$ to indicate that K is a finite extension of F.

Proposition 2.2. Let F, K and L be fields with $F \subseteq K \subseteq L$. If $[L: F]<\infty$ then $[K: F]<\infty,[L: K]<\infty$, and $[L: F]=[K: F][L: K]$.

Proof. Let $\mathcal{L}=\left(I_{1}, \ldots, I_{m}\right)$ be an ordered basis of L as a vector space over F. Since \mathcal{L} is a spanning set of L as a vector space over F, it is also a spanning set for L as a vector space over K. Thus $[L: K] \leq[L: F]$, and in particular L is a finite extension of K. Since K, viewed as a vector space over F, is a subspace of the finite dimensional vector space L, it follows that K is a finite extension of F. Choose an ordered basis $\mathcal{K}=\left(k_{1}, \ldots, k_{n}\right)$ of K over F.

We will show that $\left(k_{i} l_{j}\right)$ is a basis of L over F, where i runs from 1 to n and j runs from 1 to m. To show that it is a spanning set, choose an arbitrary element $/$ of L. Write $I=a_{1} I_{1}+\cdots+a_{m} I_{m}$, where $a_{1}, \ldots, a_{m} \in K$. For each $i=1, \ldots, m$, write $a_{i}=b_{i 1} k_{1}+\cdots+b_{i n} k_{n}$. Then we have

$$
I=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} b_{i j} k_{i}\right) I_{j}=\sum_{i=1}^{m} \sum_{j=1}^{n} b_{i j} k_{i} I_{j} .
$$

This shows that \mathcal{L} is a spanning set. To show that \mathcal{L} is independent, suppose that

$$
0=\sum_{i=1}^{m} \sum_{j=1}^{n} b_{i j} k_{i} l_{j}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} b_{i j} k_{i}\right) l_{j} .
$$

Since L is independent over K, we have $b_{i 1} k_{1}+\cdots+b_{i n} k_{n}=0$ for $i=1, \ldots, m$. Since \mathcal{K} is a basis for K over F, this implies that $b_{i j}=0$ for $i=1, \ldots, m$ and $j=1, \ldots, n$.

Thus we have $[K: F]=m,[L: K]=n$ and $[L: F]=m n$.

Definition 2.3. Let F and K be fields with $F \subseteq K$ and let $\alpha_{1}, \ldots, \alpha_{k} \in K$. The intersection of all subfields of K which contain F and $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$ is denoted $F\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ and, according to Exercise 1.4, is a subfield of K.

Exercise 2.1. Let F and K be fields with $F \subseteq K$ and let α and β be elements of K. Show that $F(\alpha)(\beta)=F(\beta)(\alpha)=F(\alpha, \beta)$.

3. Algebraic extensions

Definition 3.1. Let F and K be fields with $F \subseteq K$. Let $f(x)=a_{0}+\cdots+a_{n} x^{n} \in F[x]$. If $\alpha \in K$ then we define

$$
f(\alpha)=a_{0}+a_{1} \alpha+\cdots+a_{n} \alpha^{n}
$$

If $f(x) \neq 0$ and $f(\alpha)=0$ then α is a root of f.
Exercise 3.1. Let F and K be fields with $F \subseteq K$. A polynomial of degree n in $F[x]$ has at most n roots in K.

Proposition 3.2. Let F and K be fields with $F \subseteq K$ and let α be an element of K. If $[K: F]<\infty$ then there is a non-zero polynomial $f(x)$ with degree at most $[K: F]$ such that $f(\alpha)=0$.

Proof. Set $n=[K: F]$. The $n+1$ elements $1, \alpha, \ldots, \alpha^{n}$ of the K must be linearly dependent over F, since K has dimension n as a vector space over F. Thus there exist elements a_{0}, \ldots, a_{n} of F, not all equal to 0 , such that $a_{0}+a_{1} \alpha+\cdots+a_{n} \alpha^{n}=0$. If we set $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ then we have $f(\alpha)=0$.

Definition 3.3. Suppose that F and K are fields with $F \subseteq K$ and that α is an element of K. If there exists $f(x) \in F[x]$ such that $f(\alpha)=0$ then α is algebraic over F. We may sometimes omit reference to the field K when referring to algebraic elements over F.
3.4. The set

$$
A=\{f(x) \in F[x] \mid f(\alpha)=0\}
$$

is an ideal in the polynomial ring $F[x]$. Since $F[x]$ is a PID, the ideal A is generated by a single polynomial $g(x)$, which is unique up to multiplication by units. Thus there is a unique monic polynomial $g(x)$ which generates A. (A polynomial is monic if the non-zero coefficient of highest degree is equal to 1.) The unique monic generator of A is called the minimal polynomial of α over F. It may also be described as the monic polynomial of least degree having α as a root.

Exercise 3.2. Let F be a field and suppose that α is algebraic over F. Prove that the minimal polynomial if α is irreducible.

Proposition 3.5. Suppose that α is algebraic over the field F. The degree of the minimal polynomial of α over F is equal to $[F(\alpha): F]$.

Exercise 3.3. Prove Proposition 3.5
Exercise 3.4. Let F and K be fields with $F \subseteq K$ and let $f \in F[x]$. For each $\alpha \in K$ the function $\phi_{\alpha}: F[x] \rightarrow K$ defined by $\phi_{\alpha}(f)=f(\alpha)$ is a ring homomorphism.
3.6. If F is a field and $f(x) \in F[x]$ is an irreducible polynomial then the quotient $F[x] /(f)$ is a field, and we have maps

$$
F \longrightarrow F[x] \longrightarrow F[x] /(f)
$$

where the map on the left sends each element a in F to the degree 0 polynomial a, and the map on the right is the natural surjection. The composition of these two maps is an injection from F to the field $F[x] /(f)$. We will always identify F with its image under this injection, so that the field $F[x] /(f)$ can be regarded as an extension of F.

Definition 3.7. An embedding of a field F into a field K is a non-zero homomorphism from F to K. (Any non-zero field homomorphism is injective since a field has no proper ideals.) If K is an extension of a field F and $\eta: F \rightarrow L$ is an embedding, then an embedding $\hat{\eta}: K \rightarrow L$ is called an extension of η provided that $\left.\hat{\eta}\right|_{F}=\eta$.

Exercise 3.5. Suppose that $\eta: F \rightarrow K$ is an embedding of fields. Let $\tilde{\eta}: F[x] \rightarrow K[x]$ be defined by

$$
\tilde{\eta}\left(a_{0}+\cdots+a_{n} x^{n}\right)=\eta\left(a_{0}\right)+\cdots+\eta\left(a_{n}\right) x^{n} .
$$

Prove that $\tilde{\eta}$ is an injective ring homomorphism.
Exercise 3.6. Suppose that F is a field and $f(x) \in F[x]$ is irreducible, so that $F[x] /(f)$ is a field. Let \bar{x} denote the coset of the polynomial x in the quotient $F[x] /(f)$. Prove that \bar{x} is a root of f in the field $F[x] /(f)$.

Proposition 3.8. Let F be a field. Let $f(x) \in F[x]$ be an irreducible polynomial and let \bar{x} denote the coset of the polynomial x in the extension field $F[x] /(f)$ of F (see 3.6). Suppose that $\eta: F \rightarrow K$ is an embedding of F into a field K. Any extension of η to an embedding of $F[x] /(f)$ into L must send \bar{x} to a root of $f(x)$. If α is any root of $f(x)$ in L then there exists an extension $\eta_{\alpha}: F[x] /(f) \rightarrow L$ such that $\eta_{\alpha}(\bar{x})=\alpha$ and the image of η_{α} is $\eta(F)(\alpha)$.

Proof. We use the notation of Exercise 3.5.
Suppose that $\hat{\eta}$ is an extension of η to an embedding of $F[x] /(f)$ into K. If $f(x)=$ $a_{0}+\cdots a_{n} x^{n}$ then, since \bar{x} is a root of $f(x)$ in $F[x] /(f)$,

$$
0=\hat{\eta}\left(a_{0}+\cdots a_{n} \bar{x}^{n}\right)=\hat{\eta}\left(a_{0}\right)+\cdots+\hat{\eta}\left(a_{n}\right) \hat{\eta}(\bar{x})=\eta\left(a_{0}\right)+\cdots+\eta\left(a_{n}\right) \eta(\bar{x})
$$

Thus any extension of η must send \bar{x} to some root of $\tilde{\eta}(f)$.
For any $\alpha \in K$ we can consider the homomorphism $\tilde{\eta} \circ \phi_{\alpha}: F[x] \rightarrow K$. That is, $\tilde{\eta} \circ \phi_{\alpha}(f)$ is the element of K obtained by evaluating the polynomial $\tilde{\eta}(f)$ at α. Observe that $\tilde{\eta} \circ \phi_{\alpha}(\bar{x})=\alpha$. If we assume, in addition, that the element $\alpha \in K$ is a root of $\tilde{\eta}(f)$ then the kernel of $\tilde{\eta} \circ \phi_{\alpha}$ is the ideal (f). Thus, by the first isomorphism theorem, we obtain an embedding η_{α} of the field $F[x] /(f)$ into K such that $\eta_{\alpha}(\bar{x})=\alpha$ and $\left.\eta_{\alpha}\right|_{F}=\eta$, where
we are regarding F as a subfield of $F[x] /(f)$ as in 3.6. Since the image of η_{α} contains α, and is clearly contained in the field generated by $\eta(F)$ and α, we see that the image of η_{α} is $\eta(F)(\alpha)$.

Corollary 3.9. Let F be a field and K an extension of F. Suppose that $\alpha \in K$ is algebraic over the field F. Let $f(x)$ be the minimal polynomial of α over F. Then the field $F(\alpha) \subseteq K$ is isomorphic to $F[x] /(f(x))$ by an isomorphism that restricts to the identity on F.

Definition 3.10. Suppose the field K is an extension of the field F. Then K is an algebraic extension of F if every element of K is algebraic over F.

Exercise 3.7. Show that any finite extension is algebraic.

Proposition 3.11. Suppose that F, K and L are fields, with $F \subseteq K \subseteq L$. If K is an algebraic extension of F and L is an algebraic extension of K, then L is an algebraic extension of F.

Proof. Let α be an element of the field L. Since α is algebraic over K, there is a polynomial $f(x) \in K[x]$ such that $f(\alpha)=0$. Suppose that $f(x)=a_{0}+\cdots+a_{n} x^{n}$, where $a_{0}, \ldots, a_{n} \in K$. Consider the field $H=F\left(a_{0}, \ldots, a_{n}\right)$. Clearly α is algebraic over H, and H is a finite extension of F since each of a_{0}, \ldots, a_{n} is algebraic over F. Thus $H(\alpha)$ is a finite extension of F. Since any element of a finite extension is algebraic, we have shown that α is algebraic over F. Since α was arbitrary, L is an algebraic extension of F.

Proposition 3.12. Suppose that F and K are fields with $F \subseteq K$. The set of elements of K which are algebraic over F forms a subfield of K.

Proof. We need only show that the set of algebraic elements is closed under the operations. If α is algebraic over F then $F(\alpha)$ is a finite extension of F, and hence any element of $F(\alpha)$ is algebraic over F. In particular, if $\alpha \neq 0$ then α^{-1} is algebraic. Similarly, if α and β are algebraic over F then $\alpha+\beta$ and $\alpha \beta$ are elements of the finite extension $F(\alpha, \beta)$ of F, and consequently are algebraic.

4. Splitting fields

Definition 4.1. Let F be a field and let $f(x)$ be a non-constant polynomial in $F[x]$. The polynomial f splits over K if f factors as a product of linear polynomials in $K[x]$.

Theorem 4.2. Given any field F and any non-constant polynomial $f(x) \in F[x]$, there exists a finite extension K of F such that f splits over K.

Proof. Let $n \geq 1$ be the degree of f. Let K be chosen among all finite extensions F so that the number k of irreducible factors of $f(x)$ in $K[x]$ is as large as possible. If $k=n$ then each factor must be linear, so f splits over K. If $k<n$ then there is an irreducible factor $g(x) \in K[x]$ of $f(x)$ such that the degree of g is at least 2 . The field $L=K[x] /(g)$ is a finite extension of K in which g has a root, and hence in which g factors. But then f has more irreducible factors in $L[x]$ than it has in $F[x]$, contradicting the choice of K.

Definition 4.3. An extension K of F is a splitting field for f provided that f splits over K and f does not split over any proper subfield of K.
4.4. Every non-constant polynomial in $F[x]$ has a splitting field K. Specifically, if L is a finite extension of K such that $f(x)$ splits over L, then we may take K to be the intersection of all subfields of L over which f splits.

Proposition 4.5. Let F be a field and let $f(x)$ be a non-constant polynomial in $F[x]$. Suppose that L is an extension of F such that f splits over L. Let $\alpha_{1}, \ldots, \alpha_{n}$ be the roots of f in L. Then $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a splitting field for f, and any splitting field for f is isomorphic to $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

Proof. Clearly f splits over $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. On the other hand, if H is any proper subfield of L containing F, then there exists some index i such that α_{i} is not contained in H. The minimal polynomial of α_{i} over H is an irreducible factor of f in $H[x]$ and also has degree greater than 1. Therefore f does not split over H. This shows that $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a splitting field for f.

Now let K be a splitting field for f. Let C be an algebraic closure of L. We know from Proposition 6.8 that there exists an embedding σ of K / F into C. We need only show that $\sigma(K)=F\left(\alpha_{1}, \ldots, \alpha_{k}\right) \subseteq L$.
Any root of f in K must map to a root of f in C. Thus $F\left(\alpha_{1}, \ldots, \alpha_{k}\right) \subseteq \sigma(K)$. Since σ is an isomorphism from K to $\sigma(K)$, we know that f cannot split over any proper subfield H of $\sigma(K)$. On the other hand, f does split over $F\left(\alpha_{1}, \ldots, \alpha_{k}\right)$. It follows that $\sigma(K)=F\left(\alpha_{1}, \ldots, \alpha_{k}\right)$.

Corollary 4.6. Let F be a field and let $f(x)$ be a non-constant polynomial in $F[x]$. Any two splitting fields for f are isomorphic.

Corollary 4.7. If F and F^{\prime} are finite fields of the same order then F is isomorphic to F^{\prime}

Proof. Let F be a finite field. The order of F is p^{k} for some prime p and some positive integer k. Since the multiplicative group of non-zero elements of F has order $p^{k}-1$, every element of F is a root of the polynomial $f(x)=x^{p^{k}}-x$. On the other hand, since
f has degree p^{k}, it has at most p^{k} roots. This shows that F is a splitting field for f. So is F^{\prime}. Therefore $F \cong F^{\prime}$.

Exercise 4.1. Let G be a finite abelian group. Use the structure theorem for finite abelian groups to show that if there are at most n elements of order n in G, for all positive integers n, then G is cyclic.

Exercise 4.2. Let F be a field and let G be a finite subgroup of F^{\times}, the multiplicative group of non-zero elements of F. Show that G is cyclic. In particular, if F is a finite field then F^{\times}is a cyclic group.

5. Algebraic closures

We will first prove the Fundamental Theorem of Algebra, assuming that the field of real numbers has been constructed, and is known to be a connected topological space. Specifically, we assume the result from calculus, based on the Intermediate Value Theorem, which says that every odd degree polynomial in $\mathbb{R}[x]$ has a real root. We define the complex numbers \mathbb{C} to be $\mathbb{R}(i)$ where i is a root of $x^{2}+1$; no topological properties of \mathbb{C} will be needed for this proof.

Lemma 5.1. Suppose that F and K are fields with $F \subseteq K$. Let α and β be elements of an extension L of K. If there exist two distinct elements $s, t \in F$ such that $\alpha+s \beta \in K$ and $\alpha+t \beta \in K$ then $F(\alpha, \beta) \subseteq K$.

Proof. Subtracting, we have $(s-t) \beta \in K$. Since $s \neq t$, this implies that $\beta \in K$. But then $s \beta \in K$, so $\alpha=(\alpha+s \beta)-s \beta \in K$.

Theorem 5.2 (The Fundamental Theorem of Algebra). Every non-constant polynomial in $\mathbb{C}[x]$ splits over \mathbb{C}.

Proof. It suffices to show that every polynomial of positive degree in $\mathbb{C}[x]$ has a root in \mathbb{C}. For this, it suffices to show that every polynomial in $\mathbb{R}[x]$ has a root in \mathbb{C}, since if $f(x) \in \mathbb{C}[x]$ had no roots in \mathbb{C}, then $\bar{f}(x)$ would also have no roots in \mathbb{C}, and hence $f(x) \bar{f}(x)$, being equal to its own conjugate, would be a polynomial in $\mathbb{R}[x]$ with no roots in \mathbb{C}.

We show by induction on n that any real polynomial of degree $2^{n} m$, m odd, has a root in \mathbb{C}. The case $n=0$ follows from the calculus theorem mentioned above. For the induction step, suppose that $f(x) \in \mathbb{R}[x]$ has degree $2^{n} m$, m odd. Let K be a splitting field for f over \mathbb{C}. Let $\alpha_{1}, \ldots, \alpha_{k}$ be the roots of f in K. For any real number t, let

$$
g_{t}(x)=\prod_{0<i<j \leq k}\left(x-\left(\alpha_{i}+\alpha_{j}+t \alpha_{i} \alpha_{j}\right)\right) .
$$

Notice that the degree of g_{t} is $2^{n} m\left(2^{n} m-1\right) / 2=2^{n-1}\left(2^{n} m-1\right)$, and $2^{n} m-1$ is odd. Therefore, by induction, each g_{t} has a root in \mathbb{C}. So for any real number t there exist integers $0<i<j \leq k$ such that $\alpha_{i}+\alpha_{j}+t \alpha_{i} \alpha_{j} \in \mathbb{C}$. Since there are infinitely many real numbers and only finitely many pairs i, j, there must exist real numbers s and t, with $s \neq t$, and a pair i, j so that both of the elements $\alpha_{i}+\alpha_{j}+s \alpha_{i} \alpha_{j}$ and $\alpha_{i}+\alpha_{j}+t \alpha_{i} \alpha_{j}$ of K are contained in \mathbb{C}. By Lemma 5.1, this implies that $\alpha_{1}+\alpha_{2} \in \mathbb{C}$ and $\alpha_{1} \alpha_{2} \in \mathbb{C}$. In particular the coefficients of the polynomial $\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)$ are contained in \mathbb{C}. But the quadratic formula shows that any quadratic polynomial in $\mathbb{C}[x]$ has roots in \mathbb{C}. That is, α_{1} and α_{2} are in \mathbb{C}. This completes the induction step.

Theorem 5.3 (Artin's construction). Let F be a field. There exists an extension F_{1} of F such that every polynomial in $F[x]$ has a root in F_{1}.

Proof. It suffices to construct an extension F_{1} such that every monic irreducible polynomial has a root in F_{1}.

Let P be the set of monic irreducible polynomials in $F[x]$. For each $f(x) \in P$, let x_{f} be an indeterminate, and set $\mathcal{X}=\left\{x_{f} \mid f(x) \in P\right\}$. Let $F[\mathcal{X}]$ denote the ring of polynomials in the indeterminates \mathcal{X}. For each $f(x) \in P$, let \hat{f} be the polynomial in $F[\mathcal{X}]$ obtained by substituting x_{f} for x. Let A be the ideal generated by $\{\hat{f} \mid f(x) \in P\}$. We claim that A is a proper ideal. Otherwise, we could write $1=g_{1} \hat{f}_{1}+\cdots g_{k} \hat{f}_{k}$ where $f_{1}(x), \ldots, f_{k}(x) \in P$ and $g_{1}, \ldots, g_{k} \in R[\mathcal{X}]$. Let K be a finite extension of F which contains a root α_{i} of $f_{i}(x)$ for $1, \ldots, k$. Then $F[\mathcal{X}]$ is a subring of $K[\mathcal{X}]$. Since the equation $1=g_{1} \hat{f}_{1}+\cdots g_{k} \hat{f}_{k}$ holds in $K[\mathcal{X}]$, if we substitute elements of K for indeterminates we will obtain a valid equation in K. But if we substitute α_{i} for $x_{f_{i}}$ and 0 for each of the other indeterminates in \mathcal{X} then we obtain the absurd equation $1=0$ in K. This contradiction shows that A is a proper ideal and therefore, by Zorn's Lemma, is contained in a maximal ideal M. Consider the field $F_{1}=F[\mathcal{X}] / M$. For each polynomial $f(x) \in P$ the element x_{f} is sent under the natural map to a root of f in F_{1}. We may embed F into F_{1} as the image of the degree 0 polynomials under the natural map. Thus F_{1} is an extension of F which contains a root of every polynomial in $F[x]$.

Definition 5.4. A field K is algebraically closed if every polynomial in $K[x]$ has a root in K.

In particular, \mathbb{C} is algebraically closed.

Exercise 5.1. Show that if K is algebraically closed, then every polynomial in $K[x]$ factors as a product of linear polynomials.

Proposition 5.5. Let F be a field. Then F has an algebraically closed extension.

Proof. Let F_{1} be the extension given by Artin's construction. Thus every polynomial in $F[x]$ has a root in F_{1}. It is not necessarily the case that every polynomial in $F_{1}[x]$ has a root in F_{1}. So we may apply Artin's construction to F_{1} to obtain an extension F_{2} of F_{1} such that every polynomial in $F_{1}[x]$ has a root in F_{2}. Repeating, we obtain an infinite sequence of fields $F=F_{0} \subseteq F_{1} \subseteq \cdots$ such that every polynomial in $F_{i}[x]$ has a root in F_{i+1}. Let \mathcal{F} be the union of the F_{i}. If x and y are elements of \mathcal{F} then there exists an integer i such that x and y are both contained in F_{i}; the sum and product of x and y are defined to be their sum and product as elements of F_{i}. It is not hard to see that this makes \mathcal{F} into an extension field of F.

If $f(x)$ is any polynomial in $\mathcal{F}[x]$ then there exists an integer i such that all of the coefficients of $f(x)$ are contained in F_{i}. Thus $f(x)$ has a root in $F_{i+1} \subseteq \mathcal{F}$. This shows that \mathcal{F} is algebraically closed.

Definition 5.6. An extension K of a field F is an algebraic closure of F if K is an algebraic extension of F and K is algebraically closed.
5.7. Observe that if C is an algebraic closure of F then no proper subfield of C can be an algebraic closure of F. If K is a proper subfield of C and $\alpha \in C-K$ then K clearly does not contain all of the roots of the minimal polynomial of α, so it is not algebraically closed.

On the other hand, if C is an algebraic closure of F and K is a subfield of C with $F \subseteq K \subseteq C$ then C is an algebraic closure of K.

The field \mathbb{C} is the algebraic closure of \mathbb{R}, since any algebraically closed extension of \mathbb{R} must contain a root of $x^{2}+1$.

Theorem 5.8. Any field has an algebraic closure.

Proof. Let \mathcal{F} be an algebraically closed extension of F. Let $K \subseteq \mathcal{F}$ denote the set of elements of \mathcal{F} which are algebraic over F. This is a subfield of \mathcal{F} by Proposition 3.12, and is clearly an algebraic extension of F. To show that K is algebraically closed, consider a polynomial $f(x)=a_{0}+\cdots+a_{n} x^{n}$ in $K[x]$. Let $\alpha \in \mathcal{F}$ be a root of f. Since $K(\alpha)$ is an algebraic extension of K and K is an algebraic extension of F, Proposition 3.11 shows that $K(\alpha)$ is algebraic over F. In particular, α is algebraic over F and hence is contained in K. This shows that K is algebraically closed.

Proposition 5.9. Let F be field. Suppose that K and K^{\prime} are extensions of F and that $\phi: K \rightarrow K^{\prime}$ is an isomorphism which restricts to the identity on F. Let $f(x) \in K[x]$ be an irreducible polynomial and define $\tilde{\phi}(f) \in K^{\prime}[x]$ as in Exercise 3.5. Suppose that L and L^{\prime} are extensions of K and K^{\prime} respectively, such that L contains a root α of f and
L^{\prime} contains a root α^{\prime} of $\tilde{\phi}(f)$. Then there is an isomorphism $\hat{\phi}: K(\alpha) \rightarrow K^{\prime}\left(\alpha^{\prime}\right)$ which restricts to ϕ on K.

Exercise 5.2. Use Proposition 3.8 to Prove Proposition 5.9.

Theorem 5.10. If C and C^{\prime} are two algebraic closures of a field F then there is an isomorphism from C to C^{\prime} which fixes F.

Proof. The proof is based on Zorn's Lemma. Let X be the set of all injective homomorphisms $\phi: K \rightarrow C^{\prime}$ where $K \subseteq C$ is an extension of F and where ϕ restricts to the identity on F. If $\phi: H \rightarrow C^{\prime}$ and $\psi: K \rightarrow C^{\prime}$ are elements of X, define $\phi \leq \psi$ if $H \subseteq K$ and $\left.\psi\right|_{H}=\phi$. This is easily seen to be a partial ordering on X.

We claim that any chain in X has an upper bound. If $Y \subseteq X$ is a chain, then the family $\{\operatorname{dom} \phi \mid \phi \in Y\}$ is a nested family of subfields of C. Let H denote the union of all of these subfields, which is a subfield of C. Define $\Phi: H \rightarrow C^{\prime}$ as follows. If $\alpha \in H$ then there is an element $\phi: K \rightarrow C^{\prime}$ in Y such that $\alpha \in K$. Set $\Phi(\alpha)=\phi(\alpha)$. Since any two homomorphisms in Y agree on the intersection of their domains, the homomorphism Φ is well defined, and is clearly an upper bound for Y.

Thus by Zorn's lemma there exists a maximal element $\phi: K \rightarrow C^{\prime}$ in Y. We will show that $K=C$. If not, choose $\alpha \in C-K$. Since C is an algebraic extension of F, it is also an algebraic extension of K; set $K^{\prime}=\phi(K) \subseteq C^{\prime}$. Let $f(x) \in K[x]$ be the minimal polynomial of α and define $\tilde{\phi}(f) \in K^{\prime}[x]$ as in Exercise 3.5. Let $\alpha^{\prime} \in C^{\prime}$ be a root of $\tilde{\phi}(f)$. By Proposition 5.9 there is an isomorphism $\hat{\phi}$ from $K(\alpha)$ to $K^{\prime}\left(\alpha^{\prime}\right)$ which restricts to ϕ on K. But then $\phi: K \rightarrow C^{\prime}$ is less than $\hat{\phi}: K(\alpha) \rightarrow C^{\prime}$ in the ordering of Y, which contradicts the maximality of ϕ. Thus we have $K=C$. Since $\phi(K)$ is isomorphic to K it is also algebraically closed, so we must have $\phi(K)=C^{\prime}$.

6. Embeddings

Definition 6.1. If the field L is an extension of F, then an embedding of K / F into L is an embedding of K in L which restricts to the identity on F. The set of all embeddings of K / F into L will be denoted $\operatorname{Emb}(K / F, L)$.

The goal of this section is to count the number of embeddings of K / F into C in the case where K is a finite extension of F and C is an algebraically closed extension of F.

Theorem 6.2. Let F be a field and let C be an algebraically closed extension of F. Suppose that K and L are finite extensions of F with $F \subseteq K \subseteq L$ Then every embedding of K / F into C extends to an embedding of L / F into C.

Proof. The proof is by strong induction on $[L: K]$. The case $[L: K]=1$ is obvious since $K=L$ in that case. Suppose that σ is an embedding of K / F in C. Choose an element $\alpha \in L-K$. Proposition 5.9 implies that σ extends to an embedding σ^{\prime} of $K(\alpha) / F$ into C. Since $[L: K(\alpha)]<[L: K]$, the induction hypothesis implies that σ^{\prime} extends to an embedding of L / F into C. This is also an extension of σ, since σ^{\prime} is an extension of σ.
6.3. Suppose that F is a field and K is any finite extension of F. We can construct K from F by forming a finite sequence of simple algebraic extensions. Choose $\alpha_{1} \in K-F$. Since $\alpha_{1} \notin K$, we have $\left[F\left(\alpha_{1}\right): F\right]>1$. (The minimal polynomial of α_{1} has degree 1 only if $\alpha_{1} \in F$.) Thus $\left[K: F\left(\alpha_{1}\right)\right]=[K: F] /\left[F\left(\alpha_{1}\right)\right]<[K: F]$. Next choose $\alpha_{2} \in K-F\left(\alpha_{1}\right)$. Continuing this process we obtain fields

$$
F \subseteq F\left(\alpha_{1}\right) \subseteq F\left(\alpha_{1}, \alpha_{2}\right) \subseteq \cdots
$$

Since $\left[K: F\left(\alpha_{1}, \ldots, \alpha_{i}\right)\right]<\left[K: F\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)\right]$, we must have $F\left(\alpha_{1}, \ldots, \alpha_{k}\right)=K$ for some $k \leq[K: F]$. (In fact, since each of these degrees divides $[K: F]$, we have $k<[K: F]$.)

Lemma 6.4. Let F be a field and let $f(x)$ be an irreducible polynomial in $F[x]$. Suppose that $\eta: F \rightarrow K$ is an embedding of F into K. The number of distinct extensions of η to embeddings of $F[x] /(f)$ into K is equal to the number of distinct roots of $f(x)$ in K.

Proof. This follows immediately from Proposition 3.8.

Proposition 6.5. Suppose that K is a finite extension of a field F. Let C be an algebraically closed extension of F. Suppose that $K=F\left(\alpha_{1}, \ldots, \alpha_{k}\right)$. For each $i=1, \ldots, k$ let $f_{i}(x) \in F\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)[x]$ be the minimal polynomial of α_{i}. Suppose that f_{i} has n_{i} roots in C. Then $|\operatorname{Emb}(K / F, C)|=n_{1} \cdots n_{k} \leq[K: F]$.

Proof. The proof is by induction on k. For the case $k=1$ observe that Proposition 3.8 shows that the number of embeddings of $F[x] /\left(f_{1}\right)$ into K which restrict to the identity on F is equal to the number of distinct roots of $f_{1}(x)$ in K. Fix an isomorphism from $\phi: F\left(\alpha_{1}\right) \rightarrow F[x] /\left(f_{1}\right)$. A homomorphism $\eta: F[x] /\left(f_{1}\right) \rightarrow K$ is an embedding of $F[x] /\left(f_{1}\right)$ into K which restricts to the identity on F if and only if $\eta \circ \phi$ is an embedding of $F\left(\alpha_{1}\right) / F$ into K. Thus there are n_{1} of these.

By Theorem 6.2, each of the n_{1} embeddings of $F\left(\alpha_{1}\right) / F$ into C extends to an embedding of K / F into C. Suppose that η is an embedding of $F\left(\alpha_{1}\right) / F$ into C and that $\hat{\eta}$ is an extension of η to an embedding of K / F into C. If we set $\alpha_{i}^{\prime}=\hat{\eta}\left(\alpha_{i}\right)$ then, since $\hat{\eta}$ is an isomorphism, the minimal polynomial of α_{i}^{\prime} over the field $F\left(\alpha_{1}^{\prime}, \ldots, \alpha_{i-1}^{\prime}\right)$ has the same number of roots in $\hat{\eta}(K)$ as f_{i} has in K. Thus, by induction, there are $n_{2} \cdots n_{k}$ embeddings of $\hat{\eta}(K) / \eta\left(F\left(\alpha_{1}\right)\right)$ into C. But a homomorphism τ is an embedding of $\hat{\eta}(K) / \eta\left(F\left(\alpha_{1}\right)\right)$
into C if and only if $\tau \circ \eta$ is an embedding of K / F into C which restricts to eta on $F\left(\alpha_{1}\right)$. Thus there are $n_{2} \cdots n_{k}$ extensions of η to embeddings of K / F into C. Since there are n_{1} choices for η, It follows that there are a total of $n_{1} \cdots n_{k}$ embeddings of K / F in C.

Definition 6.6. Let F be a field. A polynomial $f(x)$ of degree n in $F[x]$ is separable if it has n distinct roots in some extension of F. An algebraic extension K of F is separable if every element of K has a separable minimal polynomial over F.

Exercise 6.1. Show that a polynomial $f(x) \in F[x]$ of degree n is separable if and only if f has n distinct roots in any algebraic closure of F.

With the notion of a separable polynomial in hand we can state the following corollary of Proposition 6.5.

Corollary 6.7. Let F be a field and suppose that $f(x) \in F[x]$ is a separable polynomial of degree n. Let $\alpha_{1}, \ldots, \alpha_{n}$ be the distinct roots of f in some extension C of F, and set $K=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. Then $|\operatorname{Emb}(K / F, C)|=[K: F]$.

Proof. Since the degree $[K: F]$ is equal to the product of the degrees of the polynomials f_{i} in the Proposition, it suffices to show that each f_{i} is separable, since we will then know that its degree is equal to the number n_{i} of its roots. Each polynomial f_{i} is contained in $H[x]$ for some field H with $F \subseteq H \subseteq K$, and f_{i} divides f in $H[x]$. Thus f_{i} divides f in $K[x]$. But the prime power factors of f in $K[x]$ are the distinct linear polynomials $x-\alpha_{i}$, for $i=1, \ldots, n$, each appearing with exponent 1 in the factorization of f. Since the monic polynoial f_{i} divides f, it cannot have repeated roots.

Exercise 6.2. Let F, K and L be fields, with $F \subseteq K \subseteq L$. Show that if L is a separable extension of F then L is a separable extension of K.

Theorem 6.8. If K is a finite separable extension of F and C is an algebraically closed extension of F then $|\operatorname{Emb}(K / F, C)|=[K: F]$.

Proof. Write $K=F\left(\alpha_{1}, \ldots, \alpha_{k}\right)$. Let $f_{i}(x)$ be the minimal polynomial of α_{i} over $F\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)$. By Exercise 6.2 each f_{i} is separable. Let n_{i} be the degree of f_{i}, which is equal to the number of roots of f_{i} in C. Now we have
$[K: F]=\left[F\left(\alpha_{1}\right): F\right] \cdots\left[F\left(\alpha_{1}, \ldots, \alpha_{k}\right): F\left(\alpha_{1}, \ldots, \alpha_{k-1}\right)\right]=n_{1} \cdots n_{k}=|\operatorname{Emb}(K / F, C)|$, where the last equality follows from Proposition 6.5.

7. Separability

Definition 7.1. A field F is perfect if every algebraic extension of F is separable.
The key to understanding how an algebraic extension can fail to be separable is the algebraic notion of the derivative of a polynomial.

Definition 7.2. Let F be a field and let $f(x)=a_{0}+a_{1} x+\cdots a_{n} x^{n}$ be a polynomial in $F[x]$. The derivative of f is the polynomial $f^{\prime}(x)=a_{1}+\cdots n a_{n} x^{n-1}$.

Exercise 7.1. Let F be a commutative ring. Show that if $f(x)$ and $g(x)$ are two polynomials in $F[x]$ then $(f+g)^{\prime}=f^{\prime}+g^{\prime}$ and $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$.
7.3. Observe that if F is field with non-zero characteristic then it is possible for a nonconstant polynomial in $F[x]$ to have derivative 0 . For example, consider $f(x)=x^{2}+1 \in$ $\mathbb{F}_{2}[x]$. We have $f^{\prime}(x)=2 x=0$. On the other hand, if Char $f=0$ then a polynomial of degree at least 1 cannot have derivative 0 .

Proposition 7.4. Let F be field and let $f(x) \in F[x]$ be an irreducible polynomial. If $f(x)$ is not separable then $f^{\prime}(x)=0$.

Proof. Suppose that $f(x)$ is not separable and that $f^{\prime}(x) \neq 0$. Since $f(x)$ is irreducible, and $f^{\prime}(x)$ has lower degree than $f(x)$, the greatest common divisor of f and f^{\prime} is 1 . Let $a(x)$ and $b(x)$ be polynomials in $F[x]$ such that $a(x) f(x)+b(x) f^{\prime}(x)=1$.

Since f is not separable, there is an extension K of F such that f has a repeated root $\alpha \in K$. Thus in $K[x]$ we have $f(x)=(x-\alpha)^{2} h(x)$. By the product rule, $f^{\prime}(x)=$ $2(x-\alpha) h(x)+(x-\alpha)^{2} h^{\prime}(x)$. Thus $f(\alpha)=f^{\prime}(\alpha)=0$.
Since the equation $a(x) f(x)+b(x) f^{\prime}(x)=1$ holds in $F[x]$, it also holds in $K[x]$ when we regard a, b, f and f^{\prime} as polynomials in $K[x]$. But this is absurd since $a(\alpha) f(\alpha)+$ $b(\alpha) f^{\prime}(\alpha)=0$ in $K[x]$. This contradiction shows that $f^{\prime}(x)=0$.

Proposition 7.5. Let F be field and let $f(x) \in F[x]$ be a polynomial of positive degree. If $f^{\prime}(x)=0$ then Char $F=p$ for some prime p and $f(x)=g\left(x^{n p}\right)$ for some $n>0$ and some polynomial $g(x)$ with $g^{\prime}(x) \neq 0$. In particular, if f is monic and irreducible, but not separable, then $f(x)=g\left(x^{n p}\right)$ where $n>0$ and g is monic, irreducible and separable.

Proof. Suppose that $f^{\prime}(x)=0$. Write $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$. Consider a monomial $a_{k} x^{k}$ where $a_{k} \neq 0$. Since $f^{\prime}(x)=0$ we have $k a_{k} x^{k}=0$, so F must have non-zero characteristic p and k must be divisible by p. Thus the non-zero monomials in f all have degree divisible by p. Let $n p$ be the greatest common divisor of the degrees of the non-zero monomials that occur in f. We have $f(x)=g\left(x^{n p}\right)$, where the coefficients of g are the same as those of f, but of different degree. There is at least one non-zero
monomial in g with degree not divisible by p. Thus $g^{\prime}(x) \neq 0$. Any factorization of g yields a factorization of f by substituting $x^{n p}$ for x. Thus g is irreducible whenever f is irreducible.

Corollary 7.6. A field of characteristic 0 is perfect.
Proposition 7.7. Let F be a field of characteristic $p \neq 0$. Suppose that a and b are elements of F. Then $(a+b)^{p}=a^{p}+b^{p}$. In particular, the function $\Phi_{F}: F \rightarrow F$ defined by $\Phi_{F}(x)=x^{p}$ is a homomorphism.

Proof. Expand $(a+b)^{p}$ using the binomial theorem. All of the binomial coefficients are divisible by p, except for the first and last ones.

Definition 7.8. If R is a ring of characteristic p, the homomorphism $\Phi_{F}: F \rightarrow F$ given by $\Phi_{F}(x)=x^{p}$ is called the Frobenius endomorphism of F.

Lemma 7.9. Let F be a field of characteristic $p \neq 0$. If the Frobenius endomorphism Φ_{F} is surjective, then $g\left(x^{p}\right)$ is in the image of the Frobenius endomorphism $\Phi_{F[x]}$ for any polynomial $g(x) \in F[x]$.

Proof. Write $g(x)=a_{0}+\cdots+a_{n} x^{n}$. For each $i=0, \ldots, n$ choose $b_{i} \in F$ such that $b_{i}^{p}=a_{i}$. Set $h(x)=b_{0}+\cdots+b_{n} x^{n}$. We have

$$
\begin{aligned}
h(x)^{p} & =\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}\right)^{p} \\
& =b_{0}^{p}+b_{1}^{p} x^{p}+\cdots+b_{n}^{p} x^{n p} \\
& =a_{0}+a_{1} x^{p}+\cdots+a_{n} x^{n p}=g\left(x^{p}\right) .
\end{aligned}
$$

Thus $g\left(x^{p}\right)$ is the image of $h(x)$ under the Frobenius endoomorphism of $F[x]$.
Proposition 7.10. If F is a field of characteristic $p \neq 0$ and if the Frobenius endomorphism $\Phi_{F}: F \rightarrow F$ is surjective, then F is perfect.

Proof. Let F be a perfect field and consider a monic irreducible polynomial $f(x) \in F[x]$ of degree m. Suppose that $f(x)$ is not separable. Then, according to Propositions 7.4 and 7.5 we must have Char $F=p \neq 0$ and we can write $f(x)=g\left(x^{n p}\right)$ for some separable polynomial g. A polynomial in $x^{n p}$ can also be regarded as a polynomial in x^{p}, so Lemma 7.9 implies that $f(x)=h(x)^{p}$ for some polynomial $h(x) \in F[x]$. This contradicts the irreducibility of f.

Corollary 7.11. Any finite field is perfect.
Proof. An endomorphism of a field is always injective. An injective map from a finite set to itself is surjective. Thus the Frobenius homomorphism of a finite field is surjective.

Example 7.12. The field $\mathbb{F}_{2}(t)$ of rational functions with coefficients in \mathbb{F}_{2} is not perfect.
To prove that $\mathbb{F}_{2}(t)$ is not perfect it suffices to show that the polynomial $f(x)=x^{2}-t$ has no root in $\mathbb{F}_{2}(t)$. That is, there is no square root of t in $\mathbb{F}_{2}(t)$. This implies that f is irreducible. But there is an algebraic extension K of $\mathbb{F}_{2}(t)$ which contains a square root of t. If we denote this element of K by \sqrt{t} then in $K[x]$ we have $f(x)=x^{2}-t=$ $x^{2}+t=(x+\sqrt{t})^{2}$, so f is an irreducible polynomial of degree 2 in $\mathbb{F}_{2}(t)[x]$ which has only one root in the algebraic extension K of $\mathbb{F}_{2}(t)$.

A proof that there is no square root of t in $\mathbb{F}_{2}(t)$ is similar to Euclid's proof that the square root of 2 is irrational. Suppose there is a rational function $p(t) / q(t)$ whose square is t. We may assume that $p(t)$ and $q(t)$ are relatively prime. We have $p(t)^{2}=t q(t)^{2}$. Since t is an irreducible polynomial, and hence is prime, t must divide p. If we set $p(t)=\operatorname{tr}(t)$ then we have $t^{2} r(t)^{2}=t q(t)$, so $\operatorname{tr}(t)=q(t)$. Thus t divides q as well, contradicting the assumption that p and q are relatively prime.

8. Normal Extensions

Definition 8.1. Let F be a field and K an extension of F. The group of automorphisms of K which restrict to the identity on F is denoted $\operatorname{Aut}(K / F)$. If G is any subgroup of $\operatorname{Aut}(K / F)$ then $\operatorname{Fix}(G)=\{k \in K \mid \sigma(k)=k$ for all $\sigma \in G\}$. It is easy to see that $\operatorname{Fix}(G)$ is a subfield of K containing F.

Theorem 8.2. Let F be a field and K an extension of F. Suppose that G is a finite subgroup of $\operatorname{Aut}(K / F)$. Then $[K: \operatorname{Fix}(G)]=|G|$.

Proof. Set $n=|G|$ and $m=[K: F]$.
We may assume that K is embedded in an algebraically closed field C. Each element of Aut (K / F) is an embedding of K / F into C. Thus

$$
n=|G| \leq|\operatorname{Aut}(K / F, C)| \leq|\operatorname{Emb}(K / F, C)| \leq[K: F]=m .
$$

Now write $G=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ and let $\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ be a basis for K as a vector space over F. Consider the $n \times m$ matrix $A=\left[\sigma_{i}\left(\alpha_{j}\right)\right]$.

Since G is a group, it follows that for any $\sigma \in G$ we have $G=\left\{\sigma \sigma_{1}, \ldots, \sigma \sigma_{n}\right\}$. This means that the effect of applying σ to each entry of A is simply to permute the rows of A. Permuting the rows of a matrix does not change its null space, so if v is a column vector in K^{n} then $A v=0$ if and only if $\sigma(A) v=0$. On the other hand, since σ is a field automorphism we have that $A v=0$ if and only if $\sigma(A) \sigma(v)=0$. Combining these two statements we see that the null space of A is invariant under σ for any $\sigma \in G$.

Suppose that $n<m$. Then there is a non-zero column vector $v \in K^{n}$ such that $A v=0$. We may assume that v has been chosen among all such vectors so that it has the minimal
number of non-zero entries. After multiplying by the inverse of a non-zero entry we may also assume that v has one entry equal to 1 .

Note that the row of A corresponding to the identity element of G contains the basis elements $\alpha_{1}, \ldots, \alpha_{m}$. Since these are independent over $\operatorname{Fix}(G)$, a non-zero vector v with $A v=0$ cannot have all of its entries contained in $\operatorname{Fix}(G)$. Thus v has an entry, say β, which is not contained in $\operatorname{Fix}(G)$.

Since β is not contained in $\operatorname{Fix}(G)$, there exists $\sigma \in G$ such that $\sigma(\beta) \neq \beta$. Now consider the vector $w=v-\sigma(v)$. Since the null space of A is invariant under G, the vector w also satisfies $A w=0$. Since $\sigma(\beta) \neq \beta$, there is at least one non-zero entry of w. But of course $\sigma(1)-\sigma(1)=0$ and $\sigma(0)-\sigma(0)=0$. Thus w has a zero entry in every position where v has either 0 or 1 . This implies that w has fewer non-zero entries than v. This is a contradiction, so we must have $m=n$.

Theorem 8.3. Let F be a field and let K be a finite extension of F. The following are equivalent:
(1) K is a splitting field of a separable polynomial in $F[x]$;
(2) $|\operatorname{Aut}(K / F)|=[K: F]$;
(3) $\operatorname{Fix}(\operatorname{Aut}(K / F))=F$;
(4) if an irreducible polynomial $f(x) \in F[x]$ has a root in K then f is separable and splits over K;
(5) K is a separable extension of F and every embedding η of K / F into an algebraically closed extension of K satisfies $\eta(K)=K$.

Proof. $(1 \Rightarrow 2)$ Let C be an algebraic closure of F. By Proposition 4.5 every embedding of K / F into C has the same image, namely $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, where $\alpha_{1}, \ldots, \alpha_{n}$ are the roots of f in C. Fix one embedding of K / F into C and let $\tau: F\left(\alpha_{1}, \ldots, \alpha_{n}\right) \rightarrow K$ denote its inverse mapping, which is an isomorphism of fields. The correspondence $\sigma \leftrightarrow \tau \sigma$ is a bijection between $\operatorname{Emb}(K / F, C)$ and $\operatorname{Aut}(K / F)$. Thus $|\operatorname{Emb}(K / F, C)|=|\operatorname{Aut}(K / F)|$. Since f is separable we have $|\operatorname{Emb}(K / F, C)|=[K: F]$ by Corollary 6.7. Thus Aut $(K / F)=$ $[K: F]$.
$(2 \Rightarrow 3)$ According to Theorem 8.2 we have $[K: \operatorname{Fix}(\operatorname{Aut}(K / F))]=|\operatorname{Aut}(K / F)|$. By assumption $|\operatorname{Aut}(K / F)|=[K: F]$. This implies that $[K: \operatorname{Fix}(\operatorname{Aut}(K / F))]=[K: F]$. But we have $F \subseteq \operatorname{Fix}(\operatorname{Aut}(K / F)) \subseteq K$, so it follows that $\operatorname{Fix}(\operatorname{Aut}(K / F))=F$.
$(3 \Rightarrow 4)$ Let $f(x) \in F[x]$ be irreducible, and suppose that f has a root α in K. We may assume that f is monic. Let $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be the distinct elements of the orbit of α under the group $\operatorname{Aut}(K / F)$. Consider the monic polynomial

$$
g(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{n}\right)
$$

Clearly g is separable and splits over K. We will complete the proof of this implication by showing that $g=f$.

First observe that any automorphism in $\operatorname{Aut}(K / F)$ permutes the roots of g, and the value of a product of linear polynomials is independent of the order of the factors. Thus the coefficients of g are contained in $\operatorname{Fix}(\operatorname{Aut}(K / F))=F$. Since α is a root of g and f is the minimal polynomial of α over F, this shows that f divides g. On the other hand, any automorphism in $\operatorname{Aut}(K / F)$ must send roots of f to roots of f. Thus every root of g is a root of f, which implies that g divides f.
$(4 \Rightarrow 1)$ Let $\beta_{1}, \ldots, \beta_{n}$ be a basis for K over F. For each $i=1, \ldots, n$, let f_{i} be a minimal polynomial for β_{i}. Let g be the product of the distinct polynomials in the set $\left\{f_{1}, \ldots, f_{n}\right\}$. Since these are irreducible no two can share a root, and by assumption each of the f_{i} is separable. Thus g is separable. Also, by assumption, each f_{i} splits over K, which implies that g splits over K as well. If H is a proper subfield of K then H cannot contain all of $\beta_{1}, \ldots, \beta_{n}$. Thus there is at least one root of g which is not contained in H. This shows that K is a splitting field for the separable polynomial g.

This shows that (1) - (4) are equivalent. Now we show that (5) is equivalent to the others. If (5) holds then K is separable over F, so for any algebraically closed extension L of K we have $|\operatorname{Emb}(K / F, L)|=[K: F]$ by Corollary 6.7. Since the image of every embedding of K / F into L is equal to K we have $\operatorname{Emb}(K / F, L)=\operatorname{Aut}(K / F)$. Thus $|\operatorname{Aut}(K / F)|=[K: F]$, which shows that (5) implies (2). On the other hand, (4) implies that K is a separable extension of F and we have already observed in the proof of $(1) \Rightarrow(2)$ that if K is a splitting field for a polynomial f with roots $\alpha_{1}, \ldots, \alpha_{n}$ then the image of any embedding of K / F into an extension of K must be equal to $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

Definition 8.4. An finite extension K of a field F is a normal extension if it satisfies the equivalent conditions in the statement of Theorem 8.3.

Proposition 8.5. Suppose that K is a normal extension of a field F and that H is an intermediate field, with $F \subseteq H \subseteq K$. Then K is a normal extension of H.

Proof. According to Proposition 6.2, K is separable over H. Any embedding of K / H into a field L is also an embedding of K / F into L. But since K is normal over F, any two embeddings of K / F have the same image. Therefore any two embeddings of K / H have the same image. This shows that K is normal over H.

9. The Galois correspondence

Suppose that K is an extension of a field F. If G is a subgroup of $\operatorname{Aut}(K / F)$, we set $\mathcal{F}(G)=\operatorname{Fix}(G)$. If H is an intermediate field, i.e. $F \subseteq H \subseteq K$, then we set $\mathcal{G}(H)=\operatorname{Aut}(K / H)$.

Theorem 9.1. Suppose that K is a normal extension of a field F. Then $\mathcal{F} \circ \mathcal{G}(H)=H$ for any field H with $F \subseteq H \subseteq K$, and $\mathcal{G} \circ \mathcal{F}(G)=G$ for any subgroup G of $\operatorname{Aut}(K / F)$. In particular, \mathcal{F} and \mathcal{G} are one-to-one correspondences between the set of subfields of K which contain F and the set of subgroups of $\operatorname{Aut}(K / F)$.

Proof. Proposition 8.5 implies that K is normal over F. Therefore

$$
\mathcal{F}(\mathcal{G}(H))=\operatorname{Fix}(\operatorname{Aut}(K / H))=H
$$

by condition (3) of Theorem 8.3.
On the other hand we have $G \leq \mathcal{G F}(G)=\operatorname{Aut}(K / \operatorname{Fix}(G))$ since every element of G is an automorphism that fixes $\operatorname{Fix}(G)$. Since K is normal over $\operatorname{Fix}(G)$ by Proposition 8.5, condition (2) of Theorem 8.3 implies that $|\mathcal{G}(\mathcal{F}(G))|=[K: \operatorname{Fix}(G)]$. But Theorem 8.2 implies that $|G|=[K: \operatorname{Fix}(G)]$. Thus $\mathcal{G}(\mathcal{F}(G))=G$.

Definition 9.2. Let K be a normal extension of a field F. Suppose that H is a field with $F \subseteq H \subseteq K$, and that G is a subgroup of $\operatorname{Aut}(K / F)$. If $\mathcal{G}(H)=G$ and $\mathcal{F}(G)=H$ then G and H correspond under the Galois correspondence.

Theorem 9.3. Suppose that K is a normal extension of a field F. Let H be a field with $F \subseteq H \subseteq K$ and let G be a subgroup of $\operatorname{Aut}(K / F)$. If G and H correspond under the Galois correspondence then $|G|=[K: H]$, and H is a normal extension of F if and only if G is a normal subgroup of $\operatorname{Aut}(K / F)$.

Proof. The condition $|G|=[K: H]$ is just condition (2) of Theorem 8.3.
Suppose that $G \unlhd \operatorname{Aut}(K / F)$. To show that H is a normal extension of F we will show that any embedding η of H / F into an algebraically closed extension L of H satisfies $\eta(H)=H$. We can assume that L is an extension of K, by identifying K with the image of some embedding of K / H into L. Now the embedding η extends to an embedding σ of K / F into L. Since K is a normal extension of $F, \sigma(K)=K$, and we may regard σ as an automorphism of K / F. Thus we have an automorphism $\sigma \in \operatorname{Aut}(K / F)$ such that $\eta(H)=\sigma(H)$. But, since G is normal, we have

$$
H=\operatorname{Fix}(G)=\operatorname{Fix}\left(\sigma G \sigma^{-1}\right)=\sigma(\operatorname{Fix}(G))=\sigma(H)=\eta(H)
$$

This shows that H is a normal extension of F.

Now suppose that H is a normal extension of F. Any automorphism of K / F can be viewed as an embedding of H / F into an algebraic closure of K. Since H is normal over F this implies that $\sigma(H)=H$ for all $\sigma \in \operatorname{Aut}(K / F)$. Thus if $\gamma \in G=\operatorname{Aut}(K / H)$ then $\sigma \gamma \sigma^{-1}$ restricts to the identity on H. This shows that $\sigma \gamma \sigma^{-1} \in G$, so G is a normal subgroup.

10. Simple extensions

Definition 10.1. Let F be a field and K an extension field of K. If $\alpha \in K-F$ then the field $F(\alpha)$ is a simple extension of F. If α is algebraic over F then $F(\alpha)$ is a simple algebraic extension of F.

Proposition 10.2. Let F be a field and let $f(x) \in F[x]$ a monic irreducible polynomial. Let α be a root of f in some extension field of F, and suppose that K is a field with $F \subseteq K \subseteq F(\alpha)$. If $g(x)=a_{0}+a_{1} x+\cdots+a_{k-1} x^{k-1}+x^{k} \in K[x]$ is the minimal polynomial of α over K, then $K=F\left(a_{0}, \ldots, a_{k-1}\right)$.

Proof. We have $F\left(a_{0}, \ldots, a_{k-1}\right) \subseteq K$ since $g(x) \in K[x]$. Since $g(x)$ is irreducible in $K[x]$ it is also irreducible in $F\left(a_{0}, \ldots, a_{k-1}\right)[x]$. Thus

$$
\left[F(\alpha): F\left(a_{0}, \ldots, a_{k-1}\right]=k=[F(\alpha): K]\right.
$$

If $F\left(a_{0}, \ldots, a_{k-1}\right)$ were a proper subfield of K then $[K: F$] would be a proper divisor of $\left[F(\alpha): F\left(a_{0}, \ldots, a_{k-1}\right]\right.$. Thus we must have $K=F\left(a_{0}, \ldots, a_{k-1}\right)$.

We can now give a rather strange looking characterization of simple extensions. The strangeness is due to the fact that the statement does not assume separability, much less normality.

Theorem 10.3. Suppose that K is a finite extension of a field F. Then $K=F(\alpha)$ for some $\alpha \in K$ if and only if there are only finitely many fields H with $F \subseteq H \subseteq K$.

Proof. If $F \subseteq H \subseteq F(\alpha)$ then by Proposition 10.2 H is generated by the coefficients of a monic irreducible factor of the minimal polynomial of $f(x)$ over K. But there are only finitely many monic factors of f. In fact, if L is an extension of $F(\alpha)$ such that $f(x)$ splits over L, then any monic factor of $f(x)$ in $K[x]$ must be a product, in $L[x]$ of linear factors of $f(x)$. There are only finitley many such products.

Suppose that there are only finitely many intermediate fields between F and K. If F is finite, then K is also finite. By Exercise 4.2 the multiplicative group of non-zero elements of K is a cyclic group generated by an element $\alpha \in K$. Clearly $K=F(\alpha)$. Thus we may assume that F is an infinite field.

Since K is a finite extension we may write $K=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ for some elements $\alpha_{1}, \ldots, \alpha_{n} \in K$. Let us assume that these elements have been chosen so that n is as small as possible. If $n \geq 2$ then consider the infinitely many elements of K that can be written as $\alpha_{1}+t \alpha_{2}$ for $t \in F$. Each such element determines an intermediate field $F \subseteq F\left(\alpha_{1}+t \alpha_{2}\right) \subseteq K$. Since there are only finitely many intermediate fields we must have $F\left(\alpha_{1}+t \alpha_{2}\right)=F\left(\alpha_{1}+s \alpha_{2}\right)$ for $s \neq t$. According to Lemma 5.1 we then have $F\left(\alpha_{1}, \alpha_{2}\right) \subseteq F\left(\alpha_{1}+t \alpha_{2}\right)$, while clearly $F\left(\alpha_{1}+t \alpha_{2}\right) \subseteq F\left(\alpha_{1}, \alpha_{2}\right)$. Thus $F\left(\alpha_{1}+t \alpha_{2}\right)=F\left(\alpha_{1}, \alpha_{2}\right)$, so $K=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)=F\left(\alpha_{1}+t \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}\right)$. This is a contradiction, unless $n=1$.

Theorem 10.4 (The Primitive Element Theorem). If K is a finite normal extension of a field F then $K=F(\alpha)$ for some $\alpha \in K$.

Proof. By Theorem 10.3 we need only show that there are only a finite number of intermediate fields between F and K. Write $K=F\left(\alpha_{1}, \ldots, \alpha_{k}\right)$. For each $i=1, \ldots, n$ let $f_{i}(x)$ be the minimal polynomial of α_{i} over F. Let L be the splitting field of the polynomial $f_{1}(x) \cdots f_{k}(x)$. Since K embeds in L we may regard L as an extension of K. Since L is a normal extension of F, the intermediate fields between F and K correspond to the subgroups of the finite group Aut (L / F) which contain the subgroup Aut (L / K). Thus there are only finitely many intermediate fields.

11. Cyclotomic polynomials

Let F be a field and let K be an extension of F. Suppose that the polynomial $x^{n}-1$ splits over K. The roots of $x^{n}-1$ form a finite subgroup of K^{\times}. By Exercise 4.2 this group must be cyclic and, if the polynomial $x^{n}-1$ is separable, it will have order n. The polynomial $x^{n}-1$ is separable unless Char $F=p \neq 0$ and p divides n. In the case Char $F=n$ the only root of $x^{n}-1=(x-1)^{n}$ is 1 , so the roots of $x^{n}-1$ form a trivial group.

Definition 11.1. A root ζ of $x^{n}-1$ in a field F is a primitive $n^{\text {th }}$ root of unity if n is the smallest positive integer such that $\zeta^{n}=1$. In particular, a primitive $n^{\text {th }}$ root of unity exists in some extension of F if and only if $x^{n}-1$ is separable over F. In this case the roots of $x^{n}-1$ form a cyclic group under multiplication, whose generators are exactly the primitive $n^{\text {th }}$ roots of unity.
11.2. Suppose that F is a field such that $x^{n}-1$ is separable over F. (That is, either Char $F=0$ or Char $F=p$ where p is a prime that does not divide n.) Let ζ be a primitive $n^{\text {th }}$ root of unity in some extension of F. Then $F(\zeta)$ is a splitting field for $x^{n}-1$, since all roots of $x^{n}-1$ are powers of ζ. If σ is any automorphism of $F(\zeta) / F$ then $\sigma(\zeta)=\zeta^{a}$ for some integer a which is necessarily relatively prime to n, since $\sigma(\zeta)$ must also be a generator of the (multiplicative) cyclic subgroup consisting of the roots
of $x^{n}-1$. If $\sigma(\zeta)=\zeta^{a}$ then σ sends each root of $x^{n}-1$ to its $a^{\text {th }}$ power, since $\sigma\left(\zeta^{k}\right)=\sigma(\zeta)^{k}=\zeta^{a k}=\left(\zeta^{k}\right)^{a}$. Moreover, if σ and τ are two automorphisms of $F(\zeta) / F$ then $\sigma=\tau$ if and only if $\sigma(\zeta)=\tau(\zeta)$. If $\sigma(\zeta)=\zeta^{\text {a }}$ then let $\rho(\sigma)$ be the congruence of a $(\bmod n)$. Notice that ρ is an injective homomorphism from $\operatorname{Aut}(F(\zeta) / F)$ to U_{n} where U_{n} denotes the group of units in $\mathbb{Z} / n \mathbb{Z}$ under multiplication. This homomorphism does not depend on the choice of the primitive root ζ since $F(\zeta)$ contains all roots of $x^{n}-1$ and since an automorphism of $\operatorname{Aut}(F(\zeta) / F)$ acts by raising all roots of $x^{n}-1$ to the same power. Thus we may identify the Galois group of $x^{n}-1$ over F with a subgroup $U_{n}(F)$ of U_{n}, which depends only on F.

Since $F(\zeta)$ is a splitting field, and hence a normal extension of F, we know that the minimal polynomial $f(x)$ of ζ over F can be written as

$$
f(x)=\prod_{a \in U_{n}(F)}\left(x-\zeta^{a}\right)
$$

Thus, $U_{n}(F)$ can be described as the congruence classes (mod n) of integers a such that $\zeta^{\text {a }}$ is a root of the minimum polynomial of ζ over F.

The Galois group of any finite extension of \mathbb{F}_{p} is generated by the Frobenius automorphism, which sends each element to its $p^{\text {th }}$ power. Thus if p is a prime which does not divide n then $U_{n}\left(\mathbb{F}_{p}\right)$ is the subgroup of U_{n} generated by the congruence class of p.

Definition 11.3. If ζ is a primitive $n^{\text {th }}$ root of unity in \mathbb{C}, then the polynomial

$$
\Phi_{n}(x)=\prod_{a \in U_{n}}\left(x-\zeta^{a}\right)
$$

is the $n^{\text {th }}$ cyclotomic polynomial.
Proposition 11.4. The polynomial $\Phi_{n}(x)$ is an irreducible polynomial in $\mathbb{Z}[x]$.
Proof. Let $f(x)$ be the minimal polynomial of ζ over \mathbb{Q}. Since $f(x)$ is a monic factor of $x^{n}-1$, Gauss' Lemma implies that $f(x) \in \mathbb{Z}[x]$. We will show that $f(x)=\Phi_{n}(x)$. According to the formula for $f(x)$ given above, this is equivalent to showing that $U_{n}(\mathbb{Q})=$ U_{n}. The group U_{n} is generated by the congruence classes of primes $p<n$ such that p does not divide n. Thus we need only show that $U_{n}(\mathbb{Q})$ contains every such prime p. That is, we must show that ζ^{p} is a root of f.

Let p be any prime which does not divide n. Suppose that ζ^{p} is not a root of $f(x)$. Let $g(x)$ be the minimal polynomial of ζ^{p}. Then f and g are distinct irreducible factors of $x^{n}-1$ and are therefore both in $\mathbb{Z}[x]$. Since ζ is a root of $g\left(x^{p}\right)$, and f is the minimal polynomial of ζ, it follows that $f(x)$ divides $g\left(x^{p}\right)$. Now reduce f and $g \bmod p$ to obtain polynomials $\bar{f}(x)$ and $\bar{g}(x)$ in $\mathbb{F}_{p}[x]$. Since $\bar{g}\left(x^{p}\right)=\bar{g}(x)^{p}$, and $\bar{f}(x)$ divides $\bar{g}\left(x^{p}\right)$, we conclude that \bar{f} divides \bar{g}, and hence that \bar{f}^{2} divides $x^{n}-1$. This is a contradiction since $x^{n}-1$ is a separable polynomial in $\mathbb{F}_{p}[x]$.

Exercise 11.1. Show that the prime factorization of $x^{n}-1$ in $\mathbb{Q}[x]$ is

$$
x^{n}-1=\prod_{d \mid n} \Phi_{d}(x)
$$

Exercise 11.2. Compute the prime factorization of $x^{8}-1$ in $\mathbb{F}_{2}[x]$.

12. Symmetric functions and Discriminants

Let F be a field. Recall that $F\left[x_{1}, \ldots, x_{n}\right]$ is the ring of polynomials in in the indeterminants x_{1}, \ldots, x_{n}, while $F\left(x_{1}, \ldots, x_{n}\right)$ is its quotient field, i.e. the field of rational functions in the indeterminants x_{1}, \ldots, x_{n}. A polynomial in $F\left[x_{1}, \ldots, x_{n}, t\right]$ can be regarded as a polynomial in t with coefficients in $F\left[x_{1}, \ldots, x_{n}\right]$. Thus it makes sense to define elements $s_{1}, \ldots, s_{n} \in F\left[x_{1}, \ldots, x_{n}\right]$ by the condition

$$
\left(t-x_{1}\right) \cdots\left(t-x_{n}\right)=t^{n}-s_{n} t^{n-1}+\cdots+(-1)^{n} s_{1} .
$$

The polynomials $s_{k}\left(x_{1}, \ldots, x_{n}\right)$ are called the elmentary symmetric functions in x_{1}, \ldots, x_{n}. For example, we have $s_{2}\left(x_{1}, x_{2}\right)=x 1 \times 2$ and $s_{1}\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$. More generally, if a monic polynomial $f(x)$ in $K[x]$ of degree n has roots $\alpha_{1}, \ldots, \alpha_{n}$ in some extension of K, then the coefficient of x^{i} in f is $(-1)^{n-i} s_{i}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

Now we regard s_{1}, \ldots, s_{n} as elements of the field $F\left(x_{1}, \ldots, x_{n}\right)$. We can then consider the field extension $F\left(s_{1}, \ldots, s_{n}\right) \subseteq F\left(x_{1}, \ldots, x_{n}\right)$.

Proposition 12.1. The field $F\left(x_{1}, \ldots, x_{n}\right)$ is a normal extension of $F\left(s_{1}, \ldots, s_{n}\right)$ with Galois group isomorphic to S_{n}.

Definition 12.2. Suppose that K is a splitting field over F for a separable polynomial $f(x) \in F[x]$. Let $\alpha_{1}, \ldots, \alpha_{n}$ be the roots of f in K. Define

$$
\delta(f)=\prod_{0<i<j \leq n}\left(\alpha_{i}-\alpha_{j}\right) .
$$

The discriminant of f is $D(f)=\delta(f)^{2}$.

13. Cubic and quartic polynomials

14. Cyclic Galois groups and radical extensions

15. Solvable and nilpotent groups

16. Solvability by radicals

Index of Definitions

$F(\alpha) 2.3$
$F\left(\alpha_{1}, \ldots, \alpha_{n}\right) 2.3$
$\operatorname{Aut}(K / F) 8.1$
Frobenius homomorphism 7.8
algebraic closure 5.6
algebraic element 3.3
algebraic extension 3.10
algebraically closed 5.4
characteristic of a ring 1.1
derivative 7.2
embedding of $K / F 6.1$
field extension 2.1
perfect field 7.1
prime subfield 1.3
root 3.1
separable extension 6.6
separable polynomial 6.6
simple extension 10.1
splits 4.1
splitting field 4.1
subfield 2.1

