
NOTES ON ALGEBRA (FIELDS)

Marc Culler - Spring 2005

The most familiar examples of fields are Fp
.
= Z/pZ, where p is a prime, the field Q

of rational numbers, the field R of real numbers and the field C of complex numbers.
Another example to keep in mind is the field F (t) of rational functions with coefficients

in some field F .

1. The characteristic of a field

Definition 1.1. The characteristic of a commutative ring is either the smallest positive

integer n such that n · 1 = 0, or 0 if no such integer exists. The characteristic of a
commutative ring R is denoted CharR.

Exercise 1.1. Let F be a field of characteristic p. Show that p · x = 0 for all x ∈ F .

Exercise 1.2. Show that if the characteristic of a field is not 0 then it is prime.

Exercise 1.3. Show that a finite field has non-zero characteristic.

Exercise 1.4. Let F be a field. Show that the intersection of any family of subfields of F

is a subfield of F .

Proposition 1.2. Let F be any field. The intersection of all subfields of F is a subfield

which is isomorphic to Q if Char f = 0, and isomorphic to Fp if Char F = p.

Proof. The intersection P of all subfields of F is a field by Exercise 1.4. Consider the

ring homomorphism φ : Z → F given by φ(n) = n · 1. Since any subfield contains 1
and is closed under addition, imφ is contained in P . If Char F = p 6= 0 then imφ is
isomorphic to Z/pZ = Fp. Since this is a field, we have P = imφ ∼= Fp. If Char F = 0
then φ is injective. Define φ̂ : Q → F by φ̂(m/n) = φ(m)/φ(n) for any m, n ∈ Z with
n 6= 0. It is easy to check that φ̂ is well-defined, and is an injective homomorphism.
Moreover, φ̂(Q) ⊆ P since P is closed under the field operations. Thus P = im φ̂ ∼= Q if
Char F = 0. �

Definition 1.3. The intersection of all subfields of a field F is the prime subfield of F .
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2. Extensions

Definition 2.1. Let F and K be fields with F ⊆ K. Then F is a subfield of K, and K is
an extension of F . Observe that K is a vector space over F . If K is a finite dimensional

vector space over F of dimension d then d is the degree of the extension, and is denoted

[K : F ]. We write [K : F ] <∞ to indicate that K is a finite extension of F .

Proposition 2.2. Let F , K and L be fields with F ⊆ K ⊆ L. If [L : F ] < ∞ then
[K : F ] <∞, [L : K] <∞, and [L : F ] = [K : F ][L : K].

Proof. Let L = (l1, . . . , lm) be an ordered basis of L as a vector space over F . Since L is
a spanning set of L as a vector space over F , it is also a spanning set for L as a vector

space over K. Thus [L : K] ≤ [L : F ], and in particular L is a finite extension of K. Since
K, viewed as a vector space over F , is a subspace of the finite dimensional vector space

L, it follows that K is a finite extension of F . Choose an ordered basis K = (k1, . . . , kn)
of K over F .

We will show that (ki lj) is a basis of L over F , where i runs from 1 to n and j runs

from 1 to m. To show that it is a spanning set, choose an arbitrary element l of L.

Write l = a1l1 + · · · + amlm, where a1, . . . , am ∈ K. For each i = 1, . . . , m, write

ai = bi1k1 + · · ·+ binkn. Then we have

l =
m∑
i=1

(
n∑
j=1

bi jki)lj =
m∑
i=1

n∑
j=1

bi jki lj .

This shows that L is a spanning set. To show that L is independent, suppose that

0 =
m∑
i=1

n∑
j=1

bi jki lj =
m∑
i=1

(
n∑
j=1

bi jki)lj .

Since L is independent over K, we have bi1k1+ · · ·+ binkn = 0 for i = 1, . . . , m. Since K
is a basis for K over F , this implies that bi j = 0 for i = 1, . . . , m and j = 1, . . . , n.

Thus we have [K : F ] = m, [L : K] = n and [L : F ] = mn. �

Definition 2.3. Let F and K be fields with F ⊆ K and let α1, . . . , αk ∈ K. The inter-
section of all subfields of K which contain F and {α1, . . . , αk} is denoted F (α1, . . . , αk)
and, according to Exercise 1.4, is a subfield of K.

Exercise 2.1. Let F and K be fields with F ⊆ K and let α and β be elements of K. Show
that F (α)(β) = F (β)(α) = F (α, β).
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3. Algebraic extensions

Definition 3.1. Let F and K be fields with F ⊆ K. Let f (x) = a0 + · · ·+ anxn ∈ F [x ].
If α ∈ K then we define

f (α) = a0 + a1α+ · · ·+ anαn.
If f (x) 6= 0 and f (α) = 0 then α is a root of f .

Exercise 3.1. Let F and K be fields with F ⊆ K. A polynomial of degree n in F [x ] has
at most n roots in K.

Proposition 3.2. Let F and K be fields with F ⊆ K and let α be an element of K. If
[K : F ] <∞ then there is a non-zero polynomial f (x) with degree at most [K : F ] such
that f (α) = 0.

Proof. Set n = [K : F ]. The n + 1 elements 1, α, . . . , αn of the K must be linearly

dependent over F , since K has dimension n as a vector space over F . Thus there exist

elements a0, . . . , an of F , not all equal to 0, such that a0 + a1α+ · · ·+ anαn = 0. If we
set f (x) = a0 + a1x + · · ·+ anxn then we have f (α) = 0. �

Definition 3.3. Suppose that F and K are fields with F ⊆ K and that α is an element
of K. If there exists f (x) ∈ F [x ] such that f (α) = 0 then α is algebraic over F . We may
sometimes omit reference to the field K when referring to algebraic elements over F .

3.4. The set

A = {f (x) ∈ F [x ] | f (α) = 0}
is an ideal in the polynomial ring F [x ]. Since F [x ] is a PID, the ideal A is generated by

a single polynomial g(x), which is unique up to multiplication by units. Thus there is a

unique monic polynomial g(x) which generates A. (A polynomial is monic if the non-zero

coefficient of highest degree is equal to 1.) The unique monic generator of A is called

the minimal polynomial of α over F . It may also be described as the monic polynomial of

least degree having α as a root.

Exercise 3.2. Let F be a field and suppose that α is algebraic over F . Prove that the

minimal polynomial if α is irreducible.

Proposition 3.5. Suppose that α is algebraic over the field F . The degree of the minimal

polynomial of α over F is equal to [F (α) : F ].

Exercise 3.3. Prove Proposition 3.5

Exercise 3.4. Let F and K be fields with F ⊆ K and let f ∈ F [x ]. For each α ∈ K the
function φα : F [x ]→ K defined by φα(f ) = f (α) is a ring homomorphism.
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3.6. If F is a field and f (x) ∈ F [x ] is an irreducible polynomial then the quotient F [x ]/(f )
is a field, and we have maps

F // F [x ] // F [x ]/(f )

where the map on the left sends each element a in F to the degree 0 polynomial a, and

the map on the right is the natural surjection. The composition of these two maps is an

injection from F to the field F [x ]/(f ). We will always identify F with its image under this

injection, so that the field F [x ]/(f ) can be regarded as an extension of F .

Definition 3.7. An embedding of a field F into a field K is a non-zero homomorphism

from F to K. (Any non-zero field homomorphism is injective since a field has no proper

ideals.) If K is an extension of a field F and η : F → L is an embedding, then an

embedding η̂ : K → L is called an extension of η provided that η̂|F = η.

Exercise 3.5. Suppose that η : F → K is an embedding of fields. Let η̃ : F [x ] → K[x ]

be defined by

η̃(a0 + · · ·+ anxn) = η(a0) + · · ·+ η(an)xn.
Prove that η̃ is an injective ring homomorphism.

Exercise 3.6. Suppose that F is a field and f (x) ∈ F [x ] is irreducible, so that F [x ]/(f ) is
a field. Let x̄ denote the coset of the polynomial x in the quotient F [x ]/(f ). Prove that

x̄ is a root of f in the field F [x ]/(f ).

Proposition 3.8. Let F be a field. Let f (x) ∈ F [x ] be an irreducible polynomial and let
x̄ denote the coset of the polynomial x in the extension field F [x ]/(f ) of F (see 3.6).

Suppose that η : F → K is an embedding of F into a field K. Any extension of η to an

embedding of F [x ]/(f ) into L must send x̄ to a root of f (x). If α is any root of f (x) in

L then there exists an extension ηα : F [x ]/(f ) → L such that ηα(x̄) = α and the image

of ηα is η(F )(α).

Proof. We use the notation of Exercise 3.5.

Suppose that η̂ is an extension of η to an embedding of F [x ]/(f ) into K. If f (x) =

a0 + · · · anxn then, since x̄ is a root of f (x) in F [x ]/(f ),

0 = η̂(a0 + · · · anx̄n) = η̂(a0) + · · ·+ η̂(an)η̂(x̄) = η(a0) + · · ·+ η(an)η(x̄).

Thus any extension of η must send x̄ to some root of η̃(f ).

For any α ∈ K we can consider the homomorphism η̃ ◦φα : F [x ]→ K. That is, η̃ ◦φα(f )
is the element of K obtained by evaluating the polynomial η̃(f ) at α. Observe that

η̃ ◦ φα(x̄) = α. If we assume, in addition, that the element α ∈ K is a root of η̃(f ) then
the kernel of η̃ ◦ φα is the ideal (f ). Thus, by the first isomorphism theorem, we obtain
an embedding ηα of the field F [x ]/(f ) into K such that ηα(x̄) = α and ηα|F = η, where
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we are regarding F as a subfield of F [x ]/(f ) as in 3.6. Since the image of ηα contains α,

and is clearly contained in the field generated by η(F ) and α, we see that the image of

ηα is η(F )(α). �

Corollary 3.9. Let F be a field and K an extension of F . Suppose that α ∈ K is

algebraic over the field F . Let f (x) be the minimal polynomial of α over F . Then the

field F (α) ⊆ K is isomorphic to F [x ]/(f (x)) by an isomorphism that restricts to the

identity on F .

Definition 3.10. Suppose the field K is an extension of the field F . Then K is an

algebraic extension of F if every element of K is algebraic over F .

Exercise 3.7. Show that any finite extension is algebraic.

Proposition 3.11. Suppose that F , K and L are fields, with F ⊆ K ⊆ L. If K is an

algebraic extension of F and L is an algebraic extension of K, then L is an algebraic

extension of F .

Proof. Let α be an element of the field L. Since α is algebraic over K, there is a

polynomial f (x) ∈ K[x ] such that f (α) = 0. Suppose that f (x) = a0+ · · ·+ anxn, where
a0, . . . , an ∈ K. Consider the field H = F (a0, . . . , an). Clearly α is algebraic over H, and
H is a finite extension of F since each of a0, . . . , an is algebraic over F . Thus H(α) is a

finite extension of F . Since any element of a finite extension is algebraic, we have shown

that α is algebraic over F . Since α was arbitrary, L is an algebraic extension of F . �

Proposition 3.12. Suppose that F and K are fields with F ⊆ K. The set of elements of
K which are algebraic over F forms a subfield of K.

Proof. We need only show that the set of algebraic elements is closed under the opera-

tions. If α is algebraic over F then F (α) is a finite extension of F , and hence any element

of F (α) is algebraic over F . In particular, if α 6= 0 then α−1 is algebraic. Similarly, if α
and β are algebraic over F then α+β and αβ are elements of the finite extension F (α, β)

of F , and consequently are algebraic. �

4. Splitting fields

Definition 4.1. Let F be a field and let f (x) be a non-constant polynomial in F [x ]. The

polynomial f splits over K if f factors as a product of linear polynomials in K[x ].

Theorem 4.2. Given any field F and any non-constant polynomial f (x) ∈ F [x ], there
exists a finite extension K of F such that f splits over K.
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Proof. Let n ≥ 1 be the degree of f . Let K be chosen among all finite extensions F so
that the number k of irreducible factors of f (x) in K[x ] is as large as possible. If k = n

then each factor must be linear, so f splits over K. If k < n then there is an irreducible

factor g(x) ∈ K[x ] of f (x) such that the degree of g is at least 2. The field L = K[x ]/(g)
is a finite extension of K in which g has a root, and hence in which g factors. But then f

has more irreducible factors in L[x ] than it has in F [x ], contradicting the choice of K. �

Definition 4.3. An extension K of F is a splitting field for f provided that f splits over

K and f does not split over any proper subfield of K.

4.4. Every non-constant polynomial in F [x ] has a splitting field K. Specifically, if L is

a finite extension of K such that f (x) splits over L, then we may take K to be the

intersection of all subfields of L over which f splits.

Proposition 4.5. Let F be a field and let f (x) be a non-constant polynomial in F [x ].

Suppose that L is an extension of F such that f splits over L. Let α1, . . . , αn be the

roots of f in L. Then F (α1, . . . , αn) is a splitting field for f , and any splitting field for f

is isomorphic to F (α1, . . . , αn).

Proof. Clearly f splits over F (α1, . . . , αn). On the other hand, if H is any proper subfield

of L containing F , then there exists some index i such that αi is not contained in H. The

minimal polynomial of αi over H is an irreducible factor of f in H[x ] and also has degree

greater than 1. Therefore f does not split over H. This shows that F (α1, . . . , αn) is a

splitting field for f .

Now let K be a splitting field for f . Let C be an algebraic closure of L. We know from

Proposition 6.8 that there exists an embedding σ of K/F into C. We need only show

that σ(K) = F (α1, . . . , αk) ⊆ L.

Any root of f in K must map to a root of f in C. Thus F (α1, . . . , αk) ⊆ σ(K). Since
σ is an isomorphism from K to σ(K), we know that f cannot split over any proper

subfield H of σ(K). On the other hand, f does split over F (α1, . . . , αk). It follows that

σ(K) = F (α1, . . . , αk). �

Corollary 4.6. Let F be a field and let f (x) be a non-constant polynomial in F [x ]. Any

two splitting fields for f are isomorphic.

Corollary 4.7. If F and F ′ are finite fields of the same order then F is isomorphic to F ′

Proof. Let F be a finite field. The order of F is pk for some prime p and some positive

integer k . Since the multiplicative group of non-zero elements of F has order pk − 1,
every element of F is a root of the polynomial f (x) = xp

k − x . On the other hand, since

6



f has degree pk , it has at most pk roots. This shows that F is a splitting field for f . So

is F ′. Therefore F ∼= F ′. �

Exercise 4.1. Let G be a finite abelian group. Use the structure theorem for finite abelian

groups to show that if there are at most n elements of order n in G, for all positive integers

n, then G is cyclic.

Exercise 4.2. Let F be a field and let G be a finite subgroup of F×, the multiplicative

group of non-zero elements of F . Show that G is cyclic. In particular, if F is a finite field

then F× is a cyclic group.

5. Algebraic closures

We will first prove the Fundamental Theorem of Algebra, assuming that the field of

real numbers has been constructed, and is known to be a connected topological space.

Specifically, we assume the result from calculus, based on the Intermediate Value Theo-

rem, which says that every odd degree polynomial in R[x ] has a real root. We define the
complex numbers C to be R(i) where i is a root of x2+1; no topological properties of C
will be needed for this proof.

Lemma 5.1. Suppose that F and K are fields with F ⊆ K. Let α and β be elements of
an extension L of K. If there exist two distinct elements s, t ∈ F such that α+ sβ ∈ K
and α+ tβ ∈ K then F (α, β) ⊆ K.

Proof. Subtracting, we have (s − t)β ∈ K. Since s 6= t, this implies that β ∈ K. But
then sβ ∈ K, so α = (α+ sβ)− sβ ∈ K. �

Theorem 5.2 (The Fundamental Theorem of Algebra). Every non-constant polynomial

in C[x ] splits over C.

Proof. It suffices to show that every polynomial of positive degree in C[x ] has a root in
C. For this, it suffices to show that every polynomial in R[x ] has a root in C, since if
f (x) ∈ C[x ] had no roots in C, then f (x) would also have no roots in C, and hence
f (x)f (x), being equal to its own conjugate, would be a polynomial in R[x ] with no roots
in C.

We show by induction on n that any real polynomial of degree 2nm, m odd, has a root in

C. The case n = 0 follows from the calculus theorem mentioned above. For the induction
step, suppose that f (x) ∈ R[x ] has degree 2nm, m odd. Let K be a splitting field for f
over C. Let α1, . . . , αk be the roots of f in K. For any real number t, let

gt(x) =
∏

0<i<j≤k
(x − (αi + αj + tαiαj)).
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Notice that the degree of gt is 2
nm(2nm − 1)/2 = 2n−1(2nm − 1), and 2nm − 1 is odd.

Therefore, by induction, each gt has a root in C. So for any real number t there exist
integers 0 < i < j ≤ k such that αi + αj + tαiαj ∈ C. Since there are infinitely many
real numbers and only finitely many pairs i , j , there must exist real numbers s and t, with

s 6= t, and a pair i , j so that both of the elements αi + αj + sαiαj and αi + αj + tαiαj
of K are contained in C. By Lemma 5.1, this implies that α1 + α2 ∈ C and α1α2 ∈ C.
In particular the coefficients of the polynomial (x − α1)(x − α2) are contained in C. But
the quadratic formula shows that any quadratic polynomial in C[x ] has roots in C. That
is, α1 and α2 are in C. This completes the induction step. �

Theorem 5.3 (Artin’s construction). Let F be a field. There exists an extension F1 of

F such that every polynomial in F [x ] has a root in F1.

Proof. It suffices to construct an extension F1 such that every monic irreducible polynomial

has a root in F1.

Let P be the set of monic irreducible polynomials in F [x ]. For each f (x) ∈ P , let xf be
an indeterminate, and set X = {xf | f (x) ∈ P}. Let F [X ] denote the ring of polynomials
in the indeterminates X . For each f (x) ∈ P , let f̂ be the polynomial in F [X ] obtained by
substituting xf for x . Let A be the ideal generated by {f̂ | f (x) ∈ P}. We claim that A is
a proper ideal. Otherwise, we could write 1 = g1f̂1 + · · · gk f̂k where f1(x), . . . , fk(x) ∈ P
and g1, . . . , gk ∈ R[X ]. Let K be a finite extension of F which contains a root αi of fi(x)
for 1, . . . , k . Then F [X ] is a subring of K[X ]. Since the equation 1 = g1f̂1 + · · · gk f̂k
holds in K[X ], if we substitute elements of K for indeterminates we will obtain a valid
equation in K. But if we substitute αi for xfi and 0 for each of the other indeterminates in

X then we obtain the absurd equation 1 = 0 in K. This contradiction shows that A is a
proper ideal and therefore, by Zorn’s Lemma, is contained in a maximal ideal M. Consider

the field F1 = F [X ]/M. For each polynomial f (x) ∈ P the element xf is sent under the
natural map to a root of f in F1. We may embed F into F1 as the image of the degree 0

polynomials under the natural map. Thus F1 is an extension of F which contains a root

of every polynomial in F [x ]. �

Definition 5.4. A field K is algebraically closed if every polynomial in K[x ] has a root in

K.

In particular, C is algebraically closed.

Exercise 5.1. Show that if K is algebraically closed, then every polynomial in K[x ] factors

as a product of linear polynomials.

Proposition 5.5. Let F be a field. Then F has an algebraically closed extension.
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Proof. Let F1 be the extension given by Artin’s construction. Thus every polynomial in

F [x ] has a root in F1. It is not necessarily the case that every polynomial in F1[x ] has

a root in F1. So we may apply Artin’s construction to F1 to obtain an extension F2 of

F1 such that every polynomial in F1[x ] has a root in F2. Repeating, we obtain an infinite

sequence of fields F = F0 ⊆ F1 ⊆ · · · such that every polynomial in Fi [x ] has a root in
Fi+1. Let F be the union of the Fi . If x and y are elements of F then there exists an
integer i such that x and y are both contained in Fi ; the sum and product of x and y

are defined to be their sum and product as elements of Fi . It is not hard to see that this

makes F into an extension field of F .

If f (x) is any polynomial in F [x ] then there exists an integer i such that all of the
coefficients of f (x) are contained in Fi . Thus f (x) has a root in Fi+1 ⊆ F . This shows
that F is algebraically closed. �

Definition 5.6. An extension K of a field F is an algebraic closure of F if K is an algebraic

extension of F and K is algebraically closed.

5.7. Observe that if C is an algebraic closure of F then no proper subfield of C can be

an algebraic closure of F . If K is a proper subfield of C and α ∈ C − K then K clearly
does not contain all of the roots of the minimal polynomial of α, so it is not algebraically

closed.

On the other hand, if C is an algebraic closure of F and K is a subfield of C with

F ⊆ K ⊆ C then C is an algebraic closure of K.

The field C is the algebraic closure of R, since any algebraically closed extension of R
must contain a root of x2 + 1.

Theorem 5.8. Any field has an algebraic closure.

Proof. Let F be an algebraically closed extension of F . Let K ⊆ F denote the set of
elements of F which are algebraic over F . This is a subfield of F by Proposition 3.12,
and is clearly an algebraic extension of F . To show that K is algebraically closed, consider

a polynomial f (x) = a0 + · · · + anxn in K[x ]. Let α ∈ F be a root of f . Since K(α) is
an algebraic extension of K and K is an algebraic extension of F , Proposition 3.11 shows

that K(α) is algebraic over F . In particular, α is algebraic over F and hence is contained

in K. This shows that K is algebraically closed. �

Proposition 5.9. Let F be field. Suppose that K and K ′ are extensions of F and that

φ : K → K ′ is an isomorphism which restricts to the identity on F . Let f (x) ∈ K[x ]
be an irreducible polynomial and define φ̃(f ) ∈ K ′[x ] as in Exercise 3.5. Suppose that L
and L′ are extensions of K and K ′ respectively, such that L contains a root α of f and
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L′ contains a root α′ of φ̃(f ). Then there is an isomorphism φ̂ : K(α) → K ′(α′) which

restricts to φ on K.

Exercise 5.2. Use Proposition 3.8 to Prove Proposition 5.9.

Theorem 5.10. If C and C ′ are two algebraic closures of a field F then there is an

isomorphism from C to C ′ which fixes F .

Proof. The proof is based on Zorn’s Lemma. Let X be the set of all injective homo-

morphisms φ : K → C ′ where K ⊆ C is an extension of F and where φ restricts to the
identity on F . If φ : H → C ′ and ψ : K → C ′ are elements of X, define φ ≤ ψ if H ⊆ K
and ψ|H = φ. This is easily seen to be a partial ordering on X.

We claim that any chain in X has an upper bound. If Y ⊆ X is a chain, then the family
{domφ |φ ∈ Y } is a nested family of subfields of C. Let H denote the union of all of
these subfields, which is a subfield of C. Define Φ : H → C ′ as follows. If α ∈ H then
there is an element φ : K → C ′ in Y such that α ∈ K. Set Φ(α) = φ(α). Since any two
homomorphisms in Y agree on the intersection of their domains, the homomorphism Φ

is well defined, and is clearly an upper bound for Y .

Thus by Zorn’s lemma there exists a maximal element φ : K → C ′ in Y . We will show

that K = C. If not, choose α ∈ C − K. Since C is an algebraic extension of F , it is
also an algebraic extension of K; set K ′ = φ(K) ⊆ C ′. Let f (x) ∈ K[x ] be the minimal
polynomial of α and define φ̃(f ) ∈ K ′[x ] as in Exercise 3.5. Let α′ ∈ C ′ be a root of
φ̃(f ). By Proposition 5.9 there is an isomorphism φ̂ from K(α) to K ′(α′) which restricts

to φ on K. But then φ : K → C ′ is less than φ̂ : K(α)→ C ′ in the ordering of Y , which

contradicts the maximality of φ. Thus we have K = C. Since φ(K) is isomorphic to K it

is also algebraically closed, so we must have φ(K) = C ′. �

6. Embeddings

Definition 6.1. If the field L is an extension of F , then an embedding of K/F into L is

an embedding of K in L which restricts to the identity on F . The set of all embeddings

of K/F into L will be denoted Emb(K/F, L).

The goal of this section is to count the number of embeddings of K/F into C in the case

where K is a finite extension of F and C is an algebraically closed extension of F .

Theorem 6.2. Let F be a field and let C be an algebraically closed extension of F .

Suppose that K and L are finite extensions of F with F ⊆ K ⊆ LThen every embedding
of K/F into C extends to an embedding of L/F into C.
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Proof. The proof is by strong induction on [L : K]. The case [L : K] = 1 is obvious since

K = L in that case. Suppose that σ is an embedding of K/F in C. Choose an element

α ∈ L − K. Proposition 5.9 implies that σ extends to an embedding σ′ of K(α)/F into
C. Since [L : K(α)] < [L : K], the induction hypothesis implies that σ′ extends to an

embedding of L/F into C. This is also an extension of σ, since σ′ is an extension of

σ. �

6.3. Suppose that F is a field and K is any finite extension of F . We can construct K

from F by forming a finite sequence of simple algebraic extensions. Choose α1 ∈ K − F .
Since α1 6∈ K, we have [F (α1) : F ] > 1. (The minimal polynomial of α1 has degree
1 only if α1 ∈ F .) Thus [K : F (α1)] = [K : F ]/[F (α1)] < [K : F ]. Next choose

α2 ∈ K − F (α1). Continuing this process we obtain fields

F ⊆ F (α1) ⊆ F (α1, α2) ⊆ · · · .

Since [K : F (α1, . . . , αi)] < [K : F (α1, . . . , αi−1)], we must have F (α1, . . . , αk) = K

for some k ≤ [K : F ]. (In fact, since each of these degrees divides [K : F ], we have
k < [K : F ].)

Lemma 6.4. Let F be a field and let f (x) be an irreducible polynomial in F [x ]. Suppose

that η : F → K is an embedding of F into K. The number of distinct extensions of η to

embeddings of F [x ]/(f ) into K is equal to the number of distinct roots of f (x) in K.

Proof. This follows immediately from Proposition 3.8. �

Proposition 6.5. Suppose that K is a finite extension of a field F . Let C be an alge-

braically closed extension of F . Suppose that K = F (α1, . . . , αk). For each i = 1, . . . , k

let fi(x) ∈ F (α1, . . . , αi−1)[x ] be the minimal polynomial of αi . Suppose that fi has ni
roots in C. Then |Emb(K/F, C)| = n1 · · · nk ≤ [K : F ].

Proof. The proof is by induction on k . For the case k = 1 observe that Proposition 3.8

shows that the number of embeddings of F [x ]/(f1) into K which restrict to the identity

on F is equal to the number of distinct roots of f1(x) in K. Fix an isomorphism from

φ : F (α1) → F [x ]/(f1). A homomorphism η : F [x ]/(f1) → K is an embedding of

F [x ]/(f1) into K which restricts to the identity on F if and only if η ◦ φ is an embedding
of F (α1)/F into K. Thus there are n1 of these.

By Theorem 6.2, each of the n1 embeddings of F (α1)/F into C extends to an embedding

of K/F into C. Suppose that η is an embedding of F (α1)/F into C and that η̂ is an

extension of η to an embedding of K/F into C. If we set α′i = η̂(αi) then, since η̂ is an

isomorphism, the minimal polynomial of α′i over the field F (α
′
1, . . . , α

′
i−1) has the same

number of roots in η̂(K) as fi has in K. Thus, by induction, there are n2 · · · nk embeddings
of η̂(K)/η(F (α1)) into C. But a homomorphism τ is an embedding of η̂(K)/η(F (α1))
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into C if and only if τ ◦η is an embedding of K/F into C which restricts to eta on F (α1).
Thus there are n2 · · · nk extensions of η to embeddings of K/F into C. Since there are n1
choices for η, It follows that there are a total of n1 · · · nk embeddings of K/F in C. �

Definition 6.6. Let F be a field. A polynomial f (x) of degree n in F [x ] is separable if it

has n distinct roots in some extension of F . An algebraic extension K of F is separable

if every element of K has a separable minimal polynomial over F .

Exercise 6.1. Show that a polynomial f (x) ∈ F [x ] of degree n is separable if and only if
f has n distinct roots in any algebraic closure of F .

With the notion of a separable polynomial in hand we can state the following corollary of

Proposition 6.5.

Corollary 6.7. Let F be a field and suppose that f (x) ∈ F [x ] is a separable polynomial
of degree n. Let α1, . . . , αn be the distinct roots of f in some extension C of F , and set

K = F (α1, . . . , αn). Then |Emb(K/F, C)| = [K : F ].

Proof. Since the degree [K : F ] is equal to the product of the degrees of the polynomials

fi in the Proposition, it suffices to show that each fi is separable, since we will then know

that its degree is equal to the number ni of its roots. Each polynomial fi is contained in

H[x ] for some field H with F ⊆ H ⊆ K, and fi divides f in H[x ]. Thus fi divides f in K[x ].
But the prime power factors of f in K[x ] are the distinct linear polynomials x − αi , for
i = 1, . . . , n, each appearing with exponent 1 in the factorization of f . Since the monic

polynoial fi divides f , it cannot have repeated roots. �

Exercise 6.2. Let F , K and L be fields, with F ⊆ K ⊆ L. Show that if L is a separable
extension of F then L is a separable extension of K.

Theorem 6.8. If K is a finite separable extension of F and C is an algebraically closed

extension of F then |Emb(K/F, C)| = [K : F ].

Proof. Write K = F (α1, . . . , αk). Let fi(x) be the minimal polynomial of αi over

F (α1, . . . , αi−1). By Exercise 6.2 each fi is separable. Let ni be the degree of fi , which is

equal to the number of roots of fi in C. Now we have

[K : F ] = [F (α1) : F ] · · · [F (α1, . . . , αk) : F (α1, . . . , αk−1)] = n1 · · · nk = |Emb(K/F, C)|,

where the last equality follows from Proposition 6.5. �
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7. Separability

Definition 7.1. A field F is perfect if every algebraic extension of F is separable.

The key to understanding how an algebraic extension can fail to be separable is the

algebraic notion of the derivative of a polynomial.

Definition 7.2. Let F be a field and let f (x) = a0 + a1x + · · · anxn be a polynomial in
F [x ]. The derivative of f is the polynomial f ′(x) = a1 + · · · nanxn−1.

Exercise 7.1. Let F be a commutative ring. Show that if f (x) and g(x) are two polyno-

mials in F [x ] then (f + g)′ = f ′ + g′ and (f g)′ = f ′g + f g′.

7.3. Observe that if F is field with non-zero characteristic then it is possible for a non-

constant polynomial in F [x ] to have derivative 0. For example, consider f (x) = x2 + 1 ∈
F2[x ]. We have f ′(x) = 2x = 0. On the other hand, if Char f = 0 then a polynomial of
degree at least 1 cannot have derivative 0.

Proposition 7.4. Let F be field and let f (x) ∈ F [x ] be an irreducible polynomial. If f (x)
is not separable then f ′(x) = 0.

Proof. Suppose that f (x) is not separable and that f ′(x) 6= 0. Since f (x) is irreducible,
and f ′(x) has lower degree than f (x), the greatest common divisor of f and f ′ is 1. Let

a(x) and b(x) be polynomials in F [x ] such that a(x)f (x) + b(x)f ′(x) = 1.

Since f is not separable, there is an extension K of F such that f has a repeated root

α ∈ K. Thus in K[x ] we have f (x) = (x − α)2h(x). By the product rule, f ′(x) =
2(x − α)h(x) + (x − α)2h′(x). Thus f (α) = f ′(α) = 0.

Since the equation a(x)f (x) + b(x)f ′(x) = 1 holds in F [x ], it also holds in K[x ] when

we regard a, b, f and f ′ as polynomials in K[x ]. But this is absurd since a(α)f (α) +

b(α)f ′(α) = 0 in K[x ]. This contradiction shows that f ′(x) = 0. �

Proposition 7.5. Let F be field and let f (x) ∈ F [x ] be a polynomial of positive degree.
If f ′(x) = 0 then Char F = p for some prime p and f (x) = g(xnp) for some n > 0 and

some polynomial g(x) with g′(x) 6= 0. In particular, if f is monic and irreducible, but not
separable, then f (x) = g(xnp) where n > 0 and g is monic, irreducible and separable.

Proof. Suppose that f ′(x) = 0. Write f (x) = a0+a1x+ · · ·+anxn. Consider a monomial
akx

k where ak 6= 0. Since f ′(x) = 0 we have kakxk = 0, so F must have non-zero
characteristic p and k must be divisible by p. Thus the non-zero monomials in f all

have degree divisible by p. Let np be the greatest common divisor of the degrees of the

non-zero monomials that occur in f . We have f (x) = g(xnp), where the coefficients of

g are the same as those of f , but of different degree. There is at least one non-zero
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monomial in g with degree not divisible by p. Thus g′(x) 6= 0. Any factorization of g
yields a factorization of f by substituting xnp for x . Thus g is irreducible whenever f is

irreducible. �

Corollary 7.6. A field of characteristic 0 is perfect.

Proposition 7.7. Let F be a field of characteristic p 6= 0. Suppose that a and b are
elements of F . Then (a+ b)p = ap + bp. In particular, the function ΦF : F → F defined

by ΦF (x) = x
p is a homomorphism.

Proof. Expand (a + b)p using the binomial theorem. All of the binomial coefficients are

divisible by p, except for the first and last ones. �

Definition 7.8. If R is a ring of characteristic p, the homomorphism ΦF : F → F given

by ΦF (x) = x
p is called the Frobenius endomorphism of F .

Lemma 7.9. Let F be a field of characteristic p 6= 0. If the Frobenius endomorphism
ΦF is surjective, then g(x

p) is in the image of the Frobenius endomorphism ΦF [x ] for any

polynomial g(x) ∈ F [x ].

Proof. Write g(x) = a0 + · · · + anxn. For each i = 0, . . . , n choose bi ∈ F such that
bpi = ai . Set h(x) = b0 + · · ·+ bnxn. We have

h(x)p = (b0 + b1x + · · ·+ bnxn)p

= bp0 + b
p
1x
p + · · ·+ bpnxnp

= a0 + a1x
p + · · ·+ anxnp = g(xp).

Thus g(xp) is the image of h(x) under the Frobenius endoomorphism of F [x ]. �

Proposition 7.10. If F is a field of characteristic p 6= 0 and if the Frobenius endomorphism
ΦF : F → F is surjective, then F is perfect.

Proof. Let F be a perfect field and consider a monic irreducible polynomial f (x) ∈ F [x ] of
degree m. Suppose that f (x) is not separable. Then, according to Propositions 7.4 and

7.5 we must have Char F = p 6= 0 and we can write f (x) = g(xnp) for some separable

polynomial g. A polynomial in xnp can also be regarded as a polynomial in xp, so Lemma

7.9 implies that f (x) = h(x)p for some polynomial h(x) ∈ F [x ]. This contradicts the
irreducibility of f . �

Corollary 7.11. Any finite field is perfect.

Proof. An endomorphism of a field is always injective. An injective map from a finite set

to itself is surjective. Thus the Frobenius homomorphism of a finite field is surjective. �
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Example 7.12. The field F2(t) of rational functions with coefficients in F2 is not perfect.

To prove that F2(t) is not perfect it suffices to show that the polynomial f (x) = x2 − t
has no root in F2(t). That is, there is no square root of t in F2(t). This implies that
f is irreducible. But there is an algebraic extension K of F2(t) which contains a square
root of t. If we denote this element of K by

√
t then in K[x ] we have f (x) = x2 − t =

x2 + t = (x +
√
t)2, so f is an irreducible polynomial of degree 2 in F2(t)[x ] which has

only one root in the algebraic extension K of F2(t).

A proof that there is no square root of t in F2(t) is similar to Euclid’s proof that the square
root of 2 is irrational. Suppose there is a rational function p(t)/q(t) whose square is t.

We may assume that p(t) and q(t) are relatively prime. We have p(t)2 = tq(t)2. Since

t is an irreducible polynomial, and hence is prime, t must divide p. If we set p(t) = tr(t)

then we have t2r(t)2 = tq(t), so tr(t) = q(t). Thus t divides q as well, contradicting

the assumption that p and q are relatively prime.

8. Normal Extensions

Definition 8.1. Let F be a field and K an extension of F . The group of automorphisms

of K which restrict to the identity on F is denoted Aut(K/F ). If G is any subgroup of

Aut(K/F ) then Fix(G) = {k ∈ K |σ(k) = k for all σ ∈ G}. It is easy to see that Fix(G)
is a subfield of K containing F .

Theorem 8.2. Let F be a field and K an extension of F . Suppose that G is a finite

subgroup of Aut(K/F ). Then [K : Fix(G)] = |G|.

Proof. Set n = |G| and m = [K : F ].

We may assume that K is embedded in an algebraically closed field C. Each element of

Aut(K/F ) is an embedding of K/F into C. Thus

n = |G| ≤ |Aut(K/F, C)| ≤ |Emb(K/F, C)| ≤ [K : F ] = m.

Now write G = {σ1, . . . , σn} and let (α1, . . . , αm) be a basis for K as a vector space over
F . Consider the n ×m matrix A = [σi(αj)].

Since G is a group, it follows that for any σ ∈ G we have G = {σσ1, . . . , σσn}. This
means that the effect of applying σ to each entry of A is simply to permute the rows of

A. Permuting the rows of a matrix does not change its null space, so if v is a column

vector in Kn then Av = 0 if and only if σ(A)v = 0. On the other hand, since σ is a field

automorphism we have that Av = 0 if and only if σ(A)σ(v) = 0. Combining these two

statements we see that the null space of A is invariant under σ for any σ ∈ G.

Suppose that n < m. Then there is a non-zero column vector v ∈ Kn such that Av = 0.
We may assume that v has been chosen among all such vectors so that it has the minimal
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number of non-zero entries. After multiplying by the inverse of a non-zero entry we may

also assume that v has one entry equal to 1.

Note that the row of A corresponding to the identity element of G contains the basis

elements α1, . . . , αm. Since these are independent over Fix(G), a non-zero vector v with

Av = 0 cannot have all of its entries contained in Fix(G). Thus v has an entry, say β,

which is not contained in Fix(G).

Since β is not contained in Fix(G), there exists σ ∈ G such that σ(β) 6= β. Now consider
the vector w = v − σ(v). Since the null space of A is invariant under G, the vector w
also satisfies Aw = 0. Since σ(β) 6= β, there is at least one non-zero entry of w . But of
course σ(1)− σ(1) = 0 and σ(0)− σ(0) = 0. Thus w has a zero entry in every position
where v has either 0 or 1. This implies that w has fewer non-zero entries than v . This

is a contradiction, so we must have m = n. �

Theorem 8.3. Let F be a field and let K be a finite extension of F . The following are

equivalent:

(1) K is a splitting field of a separable polynomial in F [x ];

(2) |Aut(K/F )| = [K : F ];

(3) Fix(Aut(K/F )) = F ;

(4) if an irreducible polynomial f (x) ∈ F [x ] has a root in K then f is separable and
splits over K;

(5) K is a separable extension of F and every embedding η of K/F into an alge-

braically closed extension of K satisfies η(K) = K.

Proof. (1 ⇒ 2) Let C be an algebraic closure of F . By Proposition 4.5 every embedding
of K/F into C has the same image, namely F (α1, . . . , αn), where α1, . . . , αn are the roots

of f in C. Fix one embedding of K/F into C and let τ : F (α1, . . . , αn) → K denote its

inverse mapping, which is an isomorphism of fields. The correspondence σ ↔ τσ is a bijec-

tion between Emb(K/F, C) and Aut(K/F ). Thus |Emb(K/F, C)| = |Aut(K/F )|. Since
f is separable we have |Emb(K/F, C)| = [K : F ] by Corollary 6.7. Thus Aut(K/F ) =
[K : F ].

(2 ⇒ 3) According to Theorem 8.2 we have [K : Fix(Aut(K/F ))] = |Aut(K/F )|. By
assumption |Aut(K/F )| = [K : F ]. This implies that [K : Fix(Aut(K/F ))] = [K : F ].
But we have F ⊆ Fix(Aut(K/F )) ⊆ K, so it follows that Fix(Aut(K/F )) = F .

(3 ⇒ 4) Let f (x) ∈ F [x ] be irreducible, and suppose that f has a root α in K. We may
assume that f is monic. Let {α1, . . . , αn} be the distinct elements of the orbit of α under
the group Aut(K/F ). Consider the monic polynomial

g(x) = (x − α1)(x − α2) · · · (x − αn).
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Clearly g is separable and splits over K. We will complete the proof of this implication by

showing that g = f .

First observe that any automorphism in Aut(K/F ) permutes the roots of g, and the value

of a product of linear polynomials is independent of the order of the factors. Thus the

coefficients of g are contained in Fix(Aut(K/F )) = F . Since α is a root of g and f is

the minimal polynomial of α over F , this shows that f divides g. On the other hand, any

automorphism in Aut(K/F ) must send roots of f to roots of f . Thus every root of g is

a root of f , which implies that g divides f .

(4 ⇒ 1) Let β1, . . . , βn be a basis for K over F . For each i = 1, . . . , n, let fi be a minimal
polynomial for βi . Let g be the product of the distinct polynomials in the set {f1, . . . , fn}.
Since these are irreducible no two can share a root, and by assumption each of the fi is

separable. Thus g is separable. Also, by assumption, each fi splits over K, which implies

that g splits over K as well. If H is a proper subfield of K then H cannot contain all of

β1, . . . , βn. Thus there is at least one root of g which is not contained in H. This shows

that K is a splitting field for the separable polynomial g.

This shows that (1) − (4) are equivalent. Now we show that (5) is equivalent to the
others. If (5) holds then K is separable over F , so for any algebraically closed extension

L of K we have |Emb(K/F, L)| = [K : F ] by Corollary 6.7. Since the image of every
embedding of K/F into L is equal to K we have Emb(K/F, L) = Aut(K/F ). Thus

|Aut(K/F )| = [K : F ], which shows that (5) implies (2). On the other hand, (4)
implies that K is a separable extension of F and we have already observed in the proof

of (1) ⇒ (2) that if K is a splitting field for a polynomial f with roots α1, . . . , αn

then the image of any embedding of K/F into an extension of K must be equal to

F (α1, . . . , αn). �

Definition 8.4. An finite extension K of a field F is a normal extension if it satisfies the

equivalent conditions in the statement of Theorem 8.3.

Proposition 8.5. Suppose that K is a normal extension of a field F and that H is an

intermediate field, with F ⊆ H ⊆ K. Then K is a normal extension of H.

Proof. According to Proposition 6.2, K is separable over H. Any embedding of K/H into

a field L is also an embedding of K/F into L. But since K is normal over F , any two

embeddings of K/F have the same image. Therefore any two embeddings of K/H have

the same image. This shows that K is normal over H. �
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9. The Galois correspondence

Suppose that K is an extension of a field F . If G is a subgroup of Aut(K/F ), we

set F(G) = Fix(G). If H is an intermediate field, i.e. F ⊆ H ⊆ K, then we set

G(H) = Aut(K/H).

Theorem 9.1. Suppose that K is a normal extension of a field F . Then F ◦ G(H) = H
for any field H with F ⊆ H ⊆ K, and G ◦ F(G) = G for any subgroup G of Aut(K/F ).
In particular, F and G are one-to-one correspondences between the set of subfields of K
which contain F and the set of subgroups of Aut(K/F ).

Proof. Proposition 8.5 implies that K is normal over F . Therefore

F(G(H)) = Fix(Aut(K/H)) = H

by condition (3) of Theorem 8.3.

On the other hand we have G ≤ GF(G) = Aut(K/Fix(G)) since every element of G is
an automorphism that fixes Fix(G). Since K is normal over Fix(G) by Proposition 8.5,

condition (2) of Theorem 8.3 implies that |G(F(G))| = [K : Fix(G)]. But Theorem 8.2
implies that |G| = [K : Fix(G)]. Thus G(F(G)) = G. �

Definition 9.2. Let K be a normal extension of a field F . Suppose that H is a field with

F ⊆ H ⊆ K, and that G is a subgroup of Aut(K/F ). If G(H) = G and F(G) = H then
G and H correspond under the Galois correspondence.

Theorem 9.3. Suppose that K is a normal extension of a field F . Let H be a field with

F ⊆ H ⊆ K and let G be a subgroup of Aut(K/F ). If G and H correspond under the

Galois correspondence then |G| = [K : H], and H is a normal extension of F if and only
if G is a normal subgroup of Aut(K/F ).

Proof. The condition |G| = [K : H] is just condition (2) of Theorem 8.3.

Suppose that G E Aut(K/F ). To show that H is a normal extension of F we will show

that any embedding η of H/F into an algebraically closed extension L of H satisfies

η(H) = H. We can assume that L is an extension of K, by identifying K with the image

of some embedding of K/H into L. Now the embedding η extends to an embedding σ

of K/F into L. Since K is a normal extension of F , σ(K) = K, and we may regard σ

as an automorphism of K/F . Thus we have an automorphism σ ∈ Aut(K/F ) such that
η(H) = σ(H). But, since G is normal, we have

H = Fix(G) = Fix(σGσ−1) = σ(Fix(G)) = σ(H) = η(H).

This shows that H is a normal extension of F .
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Now suppose that H is a normal extension of F . Any automorphism of K/F can be

viewed as an embedding of H/F into an algebraic closure of K. Since H is normal over

F this implies that σ(H) = H for all σ ∈ Aut(K/F ). Thus if γ ∈ G = Aut(K/H) then
σγσ−1 restricts to the identity on H. This shows that σγσ−1 ∈ G, so G is a normal
subgroup. �

10. Simple extensions

Definition 10.1. Let F be a field and K an extension field of K. If α ∈ K − F then
the field F (α) is a simple extension of F . If α is algebraic over F then F (α) is a simple

algebraic extension of F .

Proposition 10.2. Let F be a field and let f (x) ∈ F [x ] a monic irreducible polynomial.
Let α be a root of f in some extension field of F , and suppose that K is a field with

F ⊆ K ⊆ F (α). If g(x) = a0+a1x+ · · ·+ak−1xk−1+xk ∈ K[x ] is the minimal polynomial
of α over K, then K = F (a0, . . . , ak−1).

Proof. We have F (a0, . . . , ak−1) ⊆ K since g(x) ∈ K[x ]. Since g(x) is irreducible in K[x ]
it is also irreducible in F (a0, . . . , ak−1)[x ]. Thus

[F (α) : F (a0, . . . , ak−1] = k = [F (α) : K].

If F (a0, . . . , ak−1) were a proper subfield of K then [K : F ] would be a proper divisor of

[F (α) : F (a0, . . . , ak−1]. Thus we must have K = F (a0, . . . , ak−1). �

We can now give a rather strange looking characterization of simple extensions. The

strangeness is due to the fact that the statement does not assume separability, much less

normality.

Theorem 10.3. Suppose that K is a finite extension of a field F . Then K = F (α) for

some α ∈ K if and only if there are only finitely many fields H with F ⊆ H ⊆ K.

Proof. If F ⊆ H ⊆ F (α) then by Proposition 10.2 H is generated by the coefficients of
a monic irreducible factor of the minimal polynomial of f (x) over K. But there are only

finitely many monic factors of f . In fact, if L is an extension of F (α) such that f (x)

splits over L, then any monic factor of f (x) in K[x ] must be a product, in L[x ] of linear

factors of f (x). There are only finitley many such products.

Suppose that there are only finitely many intermediate fields between F and K. If F is

finite, then K is also finite. By Exercise 4.2 the multiplicative group of non-zero elements

of K is a cyclic group generated by an element α ∈ K. Clearly K = F (α). Thus we may
assume that F is an infinite field.
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Since K is a finite extension we may write K = F (α1, . . . , αn) for some elements

α1, . . . , αn ∈ K. Let us assume that these elements have been chosen so that n is

as small as possible. If n ≥ 2 then consider the infinitely many elements of K that
can be written as α1 + tα2 for t ∈ F . Each such element determines an intermedi-

ate field F ⊆ F (α1 + tα2) ⊆ K. Since there are only finitely many intermediate fields

we must have F (α1 + tα2) = F (α1 + sα2) for s 6= t. According to Lemma 5.1 we

then have F (α1, α2) ⊆ F (α1 + tα2), while clearly F (α1 + tα2) ⊆ F (α1, α2). Thus

F (α1 + tα2) = F (α1, α2), so K = F (α1, . . . , αn) = F (α1 + tα2, α3, . . . , αn). This is a

contradiction, unless n = 1. �

Theorem 10.4 (The Primitive Element Theorem). If K is a finite normal extension of a

field F then K = F (α) for some α ∈ K.

Proof. By Theorem 10.3 we need only show that there are only a finite number of inter-

mediate fields between F and K. Write K = F (α1, . . . , αk). For each i = 1, . . . , n let

fi(x) be the minimal polynomial of αi over F . Let L be the splitting field of the polynomial

f1(x) · · · fk(x). Since K embeds in L we may regard L as an extension of K. Since L
is a normal extension of F , the intermediate fields between F and K correspond to the

subgroups of the finite group Aut(L/F ) which contain the subgroup Aut(L/K). Thus

there are only finitely many intermediate fields. �

11. Cyclotomic polynomials

Let F be a field and let K be an extension of F . Suppose that the polynomial xn−1 splits
over K. The roots of xn−1 form a finite subgroup of K×. By Exercise 4.2 this group must
be cyclic and, if the polynomial xn − 1 is separable, it will have order n. The polynomial
xn − 1 is separable unless Char F = p 6= 0 and p divides n. In the case Char F = n the
only root of xn − 1 = (x − 1)n is 1, so the roots of xn − 1 form a trivial group.

Definition 11.1. A root ζ of xn − 1 in a field F is a primitive nth root of unity if n is
the smallest positive integer such that ζn = 1. In particular, a primitive nth root of unity

exists in some extension of F if and only if xn − 1 is separable over F . In this case the
roots of xn−1 form a cyclic group under multiplication, whose generators are exactly the
primitive nth roots of unity.

11.2. Suppose that F is a field such that xn − 1 is separable over F . (That is, either
Char F = 0 or Char F = p where p is a prime that does not divide n.) Let ζ be a

primitive nth root of unity in some extension of F . Then F (ζ) is a splitting field for

xn − 1, since all roots of xn − 1 are powers of ζ. If σ is any automorphism of F (ζ)/F
then σ(ζ) = ζa for some integer a which is necessarily relatively prime to n, since σ(ζ)

must also be a generator of the (multiplicative) cyclic subgroup consisting of the roots
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of xn − 1. If σ(ζ) = ζa then σ sends each root of xn − 1 to its ath power, since
σ(ζk) = σ(ζ)k = ζak = (ζk)a. Moreover, if σ and τ are two automorphisms of F (ζ)/F

then σ = τ if and only if σ(ζ) = τ(ζ). If σ(ζ) = ζa then let ρ(σ) be the congruence of a

(mod n). Notice that ρ is an injective homomorphism from Aut(F (ζ)/F ) to Un where Un

denotes the group of units in Z/nZ under multiplication. This homomorphism does not
depend on the choice of the primitive root ζ since F (ζ) contains all roots of xn − 1 and
since an automorphism of Aut(F (ζ)/F ) acts by raising all roots of xn − 1 to the same
power. Thus we may identify the Galois group of xn − 1 over F with a subgroup Un(F )
of Un, which depends only on F .

Since F (ζ) is a splitting field, and hence a normal extension of F , we know that the

minimal polynomial f (x) of ζ over F can be written as

f (x) =
∏

a∈Un(F )
(x − ζa).

Thus, Un(F ) can be described as the congruence classes (mod n) of integers a such that

ζa is a root of the minimum polynomial of ζ over F .

The Galois group of any finite extension of Fp is generated by the Frobenius automorphism,
which sends each element to its pth power. Thus if p is a prime which does not divide n

then Un(Fp) is the subgroup of Un generated by the congruence class of p.

Definition 11.3. If ζ is a primitive nth root of unity in C, then the polynomial

Φn(x) =
∏
a∈Un
(x − ζa)

is the nth cyclotomic polynomial.

Proposition 11.4. The polynomial Φn(x) is an irreducible polynomial in Z[x ].

Proof. Let f (x) be the minimal polynomial of ζ over Q. Since f (x) is a monic factor
of xn − 1, Gauss’ Lemma implies that f (x) ∈ Z[x ]. We will show that f (x) = Φn(x).
According to the formula for f (x) given above, this is equivalent to showing that Un(Q) =
Un. The group Un is generated by the congruence classes of primes p < n such that p

does not divide n. Thus we need only show that Un(Q) contains every such prime p. That
is, we must show that ζp is a root of f .

Let p be any prime which does not divide n. Suppose that ζp is not a root of f (x). Let

g(x) be the minimal polynomial of ζp. Then f and g are distinct irreducible factors of

xn − 1 and are therefore both in Z[x ]. Since ζ is a root of g(xp), and f is the minimal
polynomial of ζ, it follows that f (x) divides g(xp). Now reduce f and g mod p to obtain

polynomials f̄ (x) and ḡ(x) in Fp[x ]. Since ḡ(xp) = ḡ(x)p, and f̄ (x) divides ḡ(xp), we

conclude that f̄ divides ḡ, and hence that f̄ 2 divides xn − 1. This is a contradiction since
xn − 1 is a separable polynomial in Fp[x ]. �
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Exercise 11.1. Show that the prime factorization of xn − 1 in Q[x ] is

xn − 1 =
∏
d |n
Φd(x).

Exercise 11.2. Compute the prime factorization of x8 − 1 in F2[x ].

12. Symmetric functions and Discriminants

Let F be a field. Recall that F [x1, . . . , xn] is the ring of polynomials in in the indeterminants

x1, . . . , xn, while F (x1, . . . , xn) is its quotient field, i.e. the field of rational functions

in the indeterminants x1, . . . , xn. A polynomial in F [x1, . . . , xn, t] can be regarded as a

polynomial in t with coefficients in F [x1, . . . , xn]. Thus it makes sense to define elements

s1, . . . , sn ∈ F [x1, . . . , xn] by the condition

(t − x1) · · · (t − xn) = tn − sntn−1 + · · ·+ (−1)ns1.

The polynomials sk(x1, . . . , xn) are called the elmentary symmetric functions in x1, . . . , xn.

For example, we have s2(x1, x2) = x1x2 and s1(x1, x2) = x1 + x2. More generally, if a

monic polynomial f (x) in K[x ] of degree n has roots α1, . . . , αn in some extension of K,

then the coefficient of x i in f is (−1)n−isi(α1, . . . , αn).

Now we regard s1, . . . , sn as elements of the field F (x1, . . . , xn). We can then consider

the field extension F (s1, . . . , sn) ⊆ F (x1, . . . , xn).

Proposition 12.1. The field F (x1, . . . , xn) is a normal extension of F (s1, . . . , sn) with

Galois group isomorphic to Sn.

Definition 12.2. Suppose that K is a splitting field over F for a separable polynomial

f (x) ∈ F [x ]. Let α1, . . . , αn be the roots of f in K. Define

δ(f ) =
∏

0<i<j≤n
(αi − αj).

The discriminant of f is D(f ) = δ(f )2.

13. Cubic and quartic polynomials

14. Cyclic Galois groups and radical extensions

15. Solvable and nilpotent groups

16. Solvability by radicals
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