Failure of Thompson Factorization and (some of) its descendants

Failure of Thompson Factorization and (some of) its descendants

Stephen D. Smith
U. Illinois-Chicago

Thompson 80 Conference
Cambridge, (postponed from) September 2012

Failure of Thompson Factorization and (some of) its descendants

Stephen D. Smith
U. Illinois-Chicago

Thompson 80 Conference
Cambridge, (postponed from) September 2012
Overview of the talk:
INTRODUCTION: The Frattini factorization.
1: The Thompson Factorization via the J-subgroup.
2: Determining when the factorization can fail (FF).
3: Pushing-up techniques (FF-modules in blocks).
4: Further factorizations: weak closure methods.
5: Oliver's conjecture on the J-subgroup (odd p).

Failure of Thompson Factorization and (some of) its descendants

Stephen D. Smith
U. Illinois-Chicago

Thompson 80 Conference
Cambridge, (postponed from) September 2012
Overview of the talk:
INTRODUCTION: The Frattini factorization.
1: The Thompson Factorization via the J-subgroup.
2: Determining when the factorization can fail (FF).
3: Pushing-up techniques (FF-modules in blocks).
4: Further factorizations: weak closure methods.
5: Oliver's conjecture on the J-subgroup (odd p).

These slides can be found at:
www.math.uic.edu/~smiths/talk.pdf

A note on references

This talk largely follows some exposition given by Aschbacher-Lyons-Smith-Solomon in [?]:

The Classification of Finite Simple Groups
(Surveys of the AMS, Vol. 172); especially from Sections B.6-B. 8 there.

It also draws from expository material given in Aschbacher-Smith [?][?]:

The Classification of Quasithin Groups
(Surveys of the AMS, Vols. 111 and 112); especially from Chapters B, C, and E in [?].

Introduction: The Frattini Factorization

(An elementary situation yielding a factorization:)
If $G \geq T$ transitive on a G-orbit (say of α), then:

$$
G=T \cdot G_{\alpha}
$$

(Special case: The Frattini Argument (ca. 1885?):)
If $N \unlhd G$ with $P \in \operatorname{Syl}_{p}(N)$, then:

$$
G=N \cdot N_{G}(P)
$$

(Subcase:) If V elem.ab. p-group $\unlhd G$, then:

$$
G=C_{G}(V) \cdot N_{G}(P)
$$

Indeed for W weakly closed in $P, N_{G}(P) \leq N_{G}(W)$;
...and for $Z \leq V, C_{G}(V) \leq C_{G}(Z)$; so:

$$
\begin{equation*}
G=C_{G}(Z) \cdot N_{G}(W) \tag{FA}
\end{equation*}
$$

This form of Frattini arises in analysis of p-locals.
For example, often we will have $F^{*}(G)=O_{p}(G)$; and then can take $V:=\left\langle Z^{G}\right\rangle$ (get " p-reduced"), where $7:=\Omega_{1}(Z(T))$ for $T \in \operatorname{Svl}^{(G)}$
§1: Thompson Factorization via $J(T)$
Thompson (1964) introduced:

$$
J(T):=\langle A \text { maxl-rank elem } \leq T\rangle .
$$

Notice $J(T)$ is weakly closed in T
(and indeed in any R with $J(T) \leq R \leq T$).
So Frattini (FA) gives Thompson Factorization:

$$
\text { If } J(T) \leq C_{G}(V), G=C_{G}(V) \cdot N_{G}(J(T)) \text {. }
$$

When MUST this good "If"-situation hold? E.g.:
Thompson (1966): for p-solvable G-unless
$p=2$ or 3 , with $S L_{2}(p)$ involved in G.
More generally, for the situation $F^{*}(G)=O_{p}(G)$, where as mentioned earlier we can take $V:=\left\langle Z^{G}\right\rangle$, the desired factorization takes the form:

$$
\begin{equation*}
G=C_{G}\left(\Omega_{1}(Z(T))\right) \cdot N_{G}(J(T)) \tag{TF}
\end{equation*}
$$

Note: Thompson triple-factorization methods (~ 1972) show roughly that "enough" local factorizations

§2: Failure of Thompson Factorization

If (TF) fails, some maxl-rank elem $A \not \leq C_{G}(V)$.
Since $|A| \geq\left|V C_{A}(V)\right|$, and $A \cap V \leq C_{V}(A)$, get:

$$
\frac{|A|}{\left|C_{A}(V)\right|} \geq \frac{|V|}{\left|C_{V}(A)\right|}
$$

I.e., $\bar{A}:=A / C_{A}(V)$ is an "FF-offender".

There are various familiar cases of such \bar{A}, e.g.:
(a) (transvection) In V of dimension n,
\bar{A} of rank 1 centralizing an ($n-1$)-subspace;
(b) any maximal unipotent radical of $G L(V)$:

$$
\bar{U}_{k}:=\left(\begin{array}{c|c}
I_{k} & 0 \\
\hline * & I_{n-k}
\end{array}\right)
$$

The action of \bar{U}_{k} is even quadratic. Indeed:
The Thompson Replacement Theorem (1969) shows that any FF-offender contains a quadratic offender.
(c) To see FF exhihited in a local subroun G.
p-solvable FF? Glauberman (1973) showed the Thompson exceptions above are the only ones:
Then $p=2$ or 3 , with G a product of terms $V_{i} L_{i}$, with V_{i} the natural module for $L_{i} \cong S L_{2}(p)$.
More general FF? Say $F^{*}(\underline{G})=O_{p}(G)$:
Reduce to components \bar{L} of $\bar{G}:=G / C_{G}(V)$;
i.e., take \bar{G} to be quasisimple \bar{L}.

Cooperstein-Mason (1978) gave the pairs (V, \bar{L}), but without proofs. Guralnick-Malle (2002) gave a more general treatment; in particular;
$\bar{L} / Z(\bar{L})$ is either of Lie type in char p, or alternating with $p \leq 3$; and V is "small".

The list of FF-groups and modules is applied often in the Classification of Finite Simple Groups (CFSG).

To follow one important direction:
$\S 3: ~ P u s h i n g-u p ~(F F-m o d u l e s ~ i n ~ b l o c k s) ~$
Take $R \leq T$ with $R=O_{p}\left(N_{G}(R)\right)$. (Ex: $\left.R=T\right)$
For any C char R, of course $N_{G}(R) \leq N_{G}(C)$.
Best, if we "push up" to $N_{G}(C)$ which is LARGER.
Failure? Set $C(G, R):=\left\langle N_{G}(C): 1<C\right.$ char $\left.R\right\rangle$,

$$
\begin{equation*}
C(G, R) \leq M<G \tag{CPU}
\end{equation*}
$$

where we also assume R is Sylow in $\left\langle R^{M}\right\rangle$.
The Sylow case: $_{2}$ Take $p=2, R=T$.
We might expect G narrow (e.g. small Lie rank?)
Also FF, if G local? E.g. [?, C.1.26];
roughly: if (TF) succeeds, then factors in $C(G, T)$.
Indeed Aschbacher's Local $C(G, T)$-Theorem (1981):
If $F^{*}(G)=O_{2}(G)$ and $C(G, T)<G$,
then $G=C(G, T) L_{1} \cdots L_{t}$ for χ-blocks L_{i}.
Such a block has $L_{2}\left(2^{m}\right)$ or $A_{m}(m$ odd), on V
with a UNIQUE nontrivial section (natural ... FF).
This led to Global $C(G, T)$-Theorem (~ 1982) :

And (CPU) with $R<T$? Get larger blocks...
Ex 1: Meierfrankenfeld-Stellmacher (1993):
R is rank-1 unipotent radical of rank-2 group...
Ex 2: The non-QT F_{23} "shadow" in QT [?]:
This has QT local $L=2^{11} \cdot M_{23}$; START to elim...
Note there is $x \in 2^{11}$ with $C_{L}(x)=2^{11} \cdot M_{22}$; Indeed $C_{F_{23}}(x) \cong\langle x\rangle F_{22}($ not QT).

The QT hyp's of [?] allow $L \unlhd M$ maxl, with $O_{2}(L) \geq V \cong 2^{11}$, and $\bar{L} \cong M_{23}$.
Further $R:=O_{2}(L T)$ has $C(G, R) \leq M<G$. Using M_{22}, this is inherited by $C_{M}(x)<C_{G}(x)$.
But under QT, no (CPU)-obstruction (like F_{22}). We CONCLUDE $C_{G}(x) \leq M$ (at [?, 8.1.1]).
So NOT like in F_{23} (but L ruled out-yet).
§4: Weak-closure factorizations
EXPECT G-conj's of V in T in some max-rk A; so that weak closure of V in T falls into $J(T)$.
Aschbacher (1981) variant of (TF) is based on w.cl.:

$$
\begin{gathered}
W_{i}:=\left\langle A: A \leq T \cap V^{g}, m\left(V^{g} / A\right)=i\right\rangle ; \\
C_{i}:=C_{T}\left(W_{i}\right) .
\end{gathered}
$$

Values of "parameters" can give versions of (FA); to ROUGHLY state 6.11 .2 (cf. [?, B.8.5]):
Set $k:=n(G)$ (involves groups over $\leq \mathbb{F}_{2^{k}}$); assume $W_{i}>1$ for i with $0 \leq i \leq s-a$. Then:

$$
\begin{equation*}
G=C_{G}\left(C_{i+k}\right) N_{G}\left(W_{i}\right) . \tag{WC}
\end{equation*}
$$

Uniqueness Case: Aschbacher (1983), to elim almost strongly p-embedded maxl 2 -local $M \geq T$, from Thompson strategy get H with $T \leq H \not \leq M$. With H, U as " G, V ", (WC) gives $H=H_{1} H_{2}$; use uniqueness props of M, e.g. methods like (CPU),

References I

