◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Stephen D. Smith U. Illinois–Chicago

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Thompson 80 Conference Cambridge, (postponed from) September 2012

Stephen D. Smith U. Illinois–Chicago

Thompson 80 Conference

Cambridge, (postponed from) September 2012

Overview of the talk:

INTRODUCTION: The Frattini factorization.

- 1: The Thompson Factorization via the *J*-subgroup.
- 2: Determining when the factorization can fail (FF).
- 3: Pushing-up techniques (FF-modules in blocks).
- 4: Further factorizations: weak closure methods.
- 5: Oliver's conjecture on the *J*-subgroup (odd p).

> Stephen D. Smith U. Illinois–Chicago

Thompson 80 Conference

Cambridge, (postponed from) September 2012

Overview of the talk:

INTRODUCTION: The Frattini factorization.

- 1: The Thompson Factorization via the *J*-subgroup.
- 2: Determining when the factorization can fail (FF).
- 3: Pushing-up techniques (FF-modules in blocks).
- 4: Further factorizations: weak closure methods.
- 5: Oliver's conjecture on the *J*-subgroup (odd p).

These slides can be found at:

www.math.uic.edu/~smiths/talk_pdf

A note on references

This talk largely follows some exposition given by Aschbacher–Lyons–Smith–Solomon in [?]: *The Classification of Finite Simple Groups* (Surveys of the AMS, Vol. 172); especially from Sections B.6–B.8 there.

It also draws from expository material given in Aschbacher-Smith [?][?]: *The Classification of Quasithin Groups* (Surveys of the AMS, Vols. 111 and 112); especially from Chapters B, C, and E in [?].

Introduction: The Frattini Factorization

(An elementary situation yielding a factorization:) If $G \ge T$ transitive on a *G*-orbit (say of α), then:

$$G = T \cdot G_{\alpha}$$

(Special case: The Frattini Argument (ca. 1885?):) If $N \trianglelefteq G$ with $P \in Syl_p(N)$, then:

$$G = N \cdot N_G(P)$$

(Subcase:) If V elem.ab. p-group \trianglelefteq G, then:

$$G = C_G(V) \cdot N_G(P)$$

Indeed for W weakly closed in P, $N_G(P) \le N_G(W)$; ...and for $Z \le V$, $C_G(V) \le C_G(Z)$; so:

$$G = C_G(Z) \cdot N_G(W) \tag{FA}$$

This form of Frattini arises in analysis of *p*-locals. For example, often we will have $F^*(G) = O_p(G)$; and then can take $V := \langle Z^G \rangle$ (get "*p*-reduced"), where $Z := \Omega_1(Z(T))$, for $T \in Syl_1(G)$, and the set $T \in Syl_2(G)$.

§1: Thompson Factorization via J(T)

Thompson (1964) introduced:

$$J(T) := \langle A \text{ maxl-rank elem } \leq T \rangle.$$

Notice J(T) is weakly closed in T(and indeed in any R with $J(T) \le R \le T$). So Frattini (FA) gives Thompson Factorization:

If
$$J(T) \leq C_G(V)$$
, $G = C_G(V) \cdot N_G(J(T))$.

When MUST this good "If"-situation hold? E.g.: Thompson (1966): for *p*-solvable *G*—unless p = 2 or 3, with $SL_2(p)$ involved in *G*. More generally, for the situation $F^*(G) = O_p(G)$, where as mentioned earlier we can take $V := \langle Z^G \rangle$, the desired factorization takes the form:

$$G = C_G(\Omega_1(Z(T))) \cdot N_G(J(T))$$
(TF)

Note: Thompson triple-factorization methods (\sim 1972) show roughly that "enough" local factorizations

§2: Failure of Thompson Factorization If (TF) fails, some maxl-rank elem $A \nleq C_G(V)$. Since $|A| \ge |VC_A(V)|$, and $A \cap V \le C_V(A)$, get: $\frac{|A|}{|C_A(V)|} \ge \frac{|V|}{|C_V(A)|}$

I.e., $\overline{A} := A/C_A(V)$ is an "FF-offender". There are various familiar cases of such \overline{A} , e.g.: (a) (transvection) In V of dimension n,

 \overline{A} of rank 1 centralizing an (n-1)-subspace; (b) any maximal unipotent radical of GL(V):

$$\overline{U}_k := \left(\begin{array}{c|c} I_k & 0 \\ \hline * & I_{n-k} \end{array} \right)$$

The action of \overline{U}_k is even *quadratic*. Indeed: The Thompson Replacement Theorem (1969) shows that *any* FF-offender contains a quadratic offender.

(c) To see EE exhibited in a local subgroup $G^{(2)}$

p-solvable FF? Glauberman (1973) showed the Thompson exceptions above are the only ones: Then p = 2 or 3, with *G* a product of terms V_iL_i , with V_i the natural module for $L_i \cong SL_2(p)$.

More general FF? Say $F^*(G) = O_p(G)$: Reduce to components \overline{L} of $\overline{G} := G/C_G(V)$; i.e., take \overline{G} to be quasisimple \overline{L} . Cooperstein-Mason (1978) gave the pairs (V, \overline{L}) , but without proofs. Guralnick-Malle (2002) gave a more general treatment; in particular; $\overline{L}/Z(\overline{L})$ is either of Lie type in char p, or alternating with $p \leq 3$; and V is "small".

The list of FF-groups and modules is applied often in the Classification of Finite Simple Groups (CFSG).

To follow one important direction:

§3: Pushing-up (FF-modules in blocks) Take $R \leq T$ with $R = O_p(N_G(R))$. (Ex: R = T) For any C char R, of course $N_G(R) \leq N_G(C)$. Best, if we "push up" to $N_G(C)$ which is LARGER. Failure? Set $C(G, R) := \langle N_G(C) : 1 < C$ char $R \rangle$,

$$C(G,R) \le M < G, \tag{CPU}$$

where we also assume R is Sylow in $\langle R^M \rangle$.

The Sylow₂ case: Take p = 2, R = T. We might expect G narrow (e.g. small Lie rank?) Also FF, if G local? E.g. [?, C.1.26]; roughly: if (TF) succeeds, then factors in C(G, T). Indeed Aschbacher's Local C(G, T)-Theorem (1981): If $F^*(G) = O_2(G)$ and C(G, T) < G, then $G = C(G, T)L_1 \cdots L_t$ for χ -blocks L_i . Such a block has $L_2(2^m)$ or A_m (*m* odd), on *V* with a UNIQUE nontrivial section (natural ... FF). This led to Global C(G, T)-Theorem (~ 1982): And (CPU) with R < T? Get larger blocks... Ex 1: Meierfrankenfeld-Stellmacher (1993): R is rank-1 unipotent radical of rank-2 group...

Ex 2: The non-QT F_{23} "shadow" in QT [?]: This has QT local $L = 2^{11} \cdot M_{23}$; START to elim... Note there is $x \in 2^{11}$ with $C_L(x) = 2^{11} \cdot M_{22}$; Indeed $C_{F_{23}}(x) \cong \langle x \rangle F_{22}$ (not QT).

The QT hyp's of [?] allow $L \leq M \max I$, with $O_2(L) \geq V \cong 2^{11}$, and $\overline{L} \cong M_{23}$. Further $R := O_2(LT)$ has $C(G, R) \leq M < G$. Using M_{22} , this is inherited by $C_M(x) < C_G(x)$. But under QT, no (CPU)-obstruction (like F_{22}). We CONCLUDE $C_G(x) \leq M$ (at [?, 8.1.1]). So NOT like in F_{23} (but L ruled out—yet). §4: Weak-closure factorizations EXPECT *G*-conj's of *V* in *T* in some max-rk *A*; so that weak closure of *V* in *T* falls into J(T). Aschbacher (1981) variant of (TF) is based on w.cl.:

$$W_i := \langle A : A \leq T \cap V^g, m(V^g/A) = i \rangle;$$

$$C_i := C_T(W_i).$$

Values of "parameters" can give versions of (FA); to ROUGHLY state 6.11.2 (cf. [?, B.8.5]): Set k := n(G) (involves groups over $\leq \mathbb{F}_{2^k}$); assume $W_i > 1$ for i with $0 \leq i \leq s - a$. Then:

$$G = C_G(C_{i+k})N_G(W_i). \tag{WC}$$

Uniqueness Case: Aschbacher (1983), to elim almost strongly *p*-embedded maxl 2-local $M \ge T$, from Thompson strategy get *H* with $T \le H \le M$. With *H*, *U* as "*G*, *V*", (WC) gives $H = H_1H_2$; use uniqueness props of *M*, e.g. methods like (CPU),

References I

▲ロト ▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○