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A note on references

This talk largely follows some exposition given
by Aschbacher–Lyons–Smith–Solomon in [?]:

The Classification of Finite Simple Groups

(Surveys of the AMS, Vol. 172); especially from
Sections B.6–B.8 there.

It also draws from expository material given
in Aschbacher-Smith [?][?]:

The Classification of Quasithin Groups

(Surveys of the AMS, Vols. 111 and 112);
especially from Chapters B, C, and E in [?].



Introduction: The Frattini Factorization

(An elementary situation yielding a factorization:)
If G ≥ T transitive on a G -orbit (say of α), then:

G = T · Gα

(Special case: The Frattini Argument (ca. 1885?):)
If N E G with P ∈ Sylp(N), then:

G = N · NG (P)

(Subcase:) If V elem.ab. p-group E G , then:

G = CG (V ) · NG (P)

Indeed for W weakly closed in P , NG (P) ≤ NG (W );
...and for Z ≤ V , CG (V ) ≤ CG (Z ); so:

G = CG (Z ) · NG (W ) (FA)

This form of Frattini arises in analysis of p-locals.
For example, often we will have F ∗(G ) = Op(G );
and then can take V := 〈ZG 〉 (get “p-reduced”),
where Z := Ω1

(

Z (T )
)

, for T ∈ Sylp(G ).



§1: Thompson Factorization via J(T )

Thompson (1964) introduced:

J(T ) := 〈A maxl-rank elem ≤ T 〉.

Notice J(T ) is weakly closed in T

(and indeed in any R with J(T ) ≤ R ≤ T ).
So Frattini (FA) gives Thompson Factorization:

If J(T ) ≤ CG (V ), G = CG (V ) · NG

(

J(T )
)

.

When MUST this good “If”-situation hold? E.g.:
Thompson (1966): for p-solvable G—unless
p = 2 or 3, with SL2(p) involved in G .
More generally, for the situation F ∗(G ) = Op(G ),
where as mentioned earlier we can take V := 〈ZG 〉,
the desired factorization takes the form:

G = CG ( Ω1

(

Z (T )
)

) · NG

(

J(T )
)

(TF)

Note: Thompson triple-factorization methods (∼1972)
show roughly that “enough” local factorizations
lead to a strongly p-embedded subgroup (narrow...).



§2: Failure of Thompson Factorization

If (TF) fails, some maxl-rank elem A � CG (V ).
Since |A| ≥ |VCA(V )|, and A ∩ V ≤ CV (A), get:

|A|

|CA(V )|
≥

|V |

|CV (A)|

I.e., A := A/CA(V ) is an “FF-offender”.
There are various familiar cases of such A, e.g.:
(a) (transvection) In V of dimension n,

A of rank 1 centralizing an (n − 1)-subspace;
(b) any maximal unipotent radical of GL(V ):

Uk :=

(

Ik 0
∗ In−k

)

The action of Uk is even quadratic. Indeed:
The Thompson Replacement Theorem (1969) shows
that any FF-offender contains a quadratic offender.

(c) To see FF exhibited in a local subgroup G :



p-solvable FF? Glauberman (1973) showed the
Thompson exceptions above are the only ones:
Then p = 2 or 3, with G a product of terms ViLi ,
with Vi the natural module for Li ∼= SL2(p).

More general FF? Say F ∗(G ) = Op(G ):
Reduce to components L of G := G/CG (V );
i.e., take G to be quasisimple L.
Cooperstein-Mason (1978) gave the pairs (V , L),
but without proofs. Guralnick-Malle (2002) gave
a more general treatment; in particular;
L/Z (L) is either of Lie type in char p,
or alternating with p ≤ 3; and V is “small”.

The list of FF-groups and modules is applied often
in the Classification of Finite Simple Groups (CFSG).

To follow one important direction:



§3: Pushing-up (FF-modules in blocks)

Take R ≤ T with R = Op

(

NG (R)
)

. (Ex: R = T )
For any C char R , of course NG (R) ≤ NG (C ).
Best, if we “push up” to NG (C ) which is LARGER.
Failure? Set C (G ,R) := 〈NG (C ) : 1 < C char R〉,

C (G ,R) ≤ M < G , (CPU)

where we also assume R is Sylow in 〈RM〉.

The Sylow2 case: Take p = 2,R = T .
We might expect G narrow (e.g. small Lie rank?)
Also FF, if G local? E.g. [?, C.1.26];
roughly: if (TF) succeeds, then factors in C (G ,T ).
Indeed Aschbacher’s Local C (G ,T )-Theorem (1981):
If F ∗(G ) = O2(G ) and C (G ,T ) < G ,
then G = C (G ,T )L1 · · · Lt for χ-blocks Li .
Such a block has L2(2

m) or Am (m odd), on V

with a UNIQUE nontrivial section (natural ... FF).
This led to Global C (G ,T )-Theorem (∼ 1982):
If G simple of char. 2 type with C (G ,T ) < G ,



And (CPU) with R < T? Get larger blocks...
Ex 1: Meierfrankenfeld-Stellmacher (1993):
R is rank-1 unipotent radical of rank-2 group...

Ex 2: The non-QT F23 “shadow” in QT [?]:
This has QT local L = 211 ·M23; START to elim...
Note there is x ∈ 211 with CL(x) = 211 ·M22;
Indeed CF23

(x) ∼= 〈x〉F22 (not QT).

The QT hyp’s of [?] allow L E M maxl,
with O2(L) ≥ V ∼= 211, and L ∼= M23.
Further R := O2(LT ) has C (G ,R) ≤ M < G .
Using M22, this is inherited by CM(x) < CG (x).
But under QT, no (CPU)-obstruction (like F22).
We CONCLUDE CG (x) ≤ M (at [?, 8.1.1]).
So NOT like in F23 (but L ruled out—yet).



§4: Weak-closure factorizations
EXPECT G -conj’s of V in T in some max-rk A;
so that weak closure of V in T falls into J(T ).
Aschbacher (1981) variant of (TF) is based on w.cl.:

Wi := 〈A : A ≤ T ∩ V g ,m(V g/A) = i〉;

Ci := CT (Wi).

Values of “parameters” can give versions of (FA);
to ROUGHLY state 6.11.2 (cf. [?, B.8.5]):
Set k := n(G ) (involves groups over ≤ F2k );
assume Wi > 1 for i with 0 ≤ i ≤ s − a. Then:

G = CG (Ci+k)NG (Wi). (WC)

Uniqueness Case: Aschbacher (1983), to elim
almost strongly p-embedded maxl 2-local M ≥ T ,
from Thompson strategy get H with T ≤ H � M .
With H ,U as “G ,V ”, (WC) gives H = H1H2;
use uniqueness props of M , e.g. methods like (CPU),
to TRY to force H ≤ M—contradict H � M ...
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