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Our Main Goal

Theorem 1 (Hrushovski—Sokolovi¢ 1992) There are 280
countable differentially closed fields of characteristic zero.



What are we looking for?

For our method of coding graphs using dimensions to work,
we will need:

e large family of types (pa : a € A), pa € S(a), to which
we can assign different countable dimensions.

e good notion of independence in A with lots of elements
a,b,c € A, pairwise independent but not independent
(non-triviality)

e the ability to realize one type in the family while omit-
ting others (orthogonality)



The types p, Will be generic types of strongly minimal sets.
Recall

e Hrushovski and Sokolovi€ showed that if X is a nonmod-
ular strongly minimal set then there is a definable finite-
to-one f : X — C, where C is the field of constants.

e We can find many trivial strongly minimal sets. For
example, if A is a )-independent set, and

o =0
Xg=1x . =
x4+ 1
then X, is an infinite set of indiscernibles and X, 1 X, for
a#=be A.

But all known trivial strongly minimal sets are infinite di-
mensional.

If this is to work we will need to find nontrivial modular
strongly minimal sets.



Abelian Varieties

Let K be an algebraically closed field. An Abelian variety
is a subvariety A C P*(K), such that there is a rational
map u: Ax A— A making A into a group.

The simplest example is an elliptic curve
Y2=X34aX+5b
together with a point O at infinity.



Proposition 2 Every Abelian variety is a divisible commu-
tative group.

If A has dimension d, then there are n2d points of order n.

Definition 3 We say A is simple if A has no proper infinite
Abelian subvarieties.

Definition 4 Abelian varieties A and B are isogenous if
there is a rational group homomorphism f : A — B with
finite kernel.



J-Invariants

Consider the elliptic curve E

Y2 =X34aX +0.
6912a3
4q3 -+ 27b2

The j-invariant of the curve j(F) is

Theorem 5 /) Let L be an algebraically closed field. For
j € L there is E with j(E) = j.

ii) E= Eq if and only if j(E) = j(E1).

jiii) If E and Eq are isogenous, then j(F) and j(Eq1) are
interalgebraic over Q.



Manin Kernels

Theorem 6 (Manin-Buium) Let K be a differentially closed
field. If A is an Abelian variety defined over K, there is

a d-definable homomorphism pn . A — K™ such that the
kernel of u is the Kolchin closure of the torsion of A.

For example, if £ is the elliptic curve

Y2 =X3+4+aX+0b

x/

where a,b € C then u(x,y) = —.
Yy

Let A be the Kolchin closure of the torsion.

If A is defined over C, then Af = A(C).



Theorem 7 (Hrushovski—SokoloviC€) If A is a simple Abelian
variety that is not isomorphic to an Abelian variety defined
over the constants, then At is a modular strongly minimal
set.

If A and B are nonisogenous A% and B! are orthogonal.

Moreover, if X is any nontrivial modular strongly minimal
set, then X is nonorthogonal to Al for some simple Abelian
variety A.



Independence

Definition 8 We say that @ is independent from B over

A if
RM(a/A U B) = RM(a/A).
We write a \|/AB.
Example If aqg,...,an are d-independent over k, then ag
is d-transcendental over k{aq,...,an) (the differential field

generated by k(aq,...,an)). Thus
RM(ag/k) = w = RM(ag/k,a1,...,an)

and ap \|/ka,1, e, An.

Example Let a be d-transcendental over k. Then a xka’,
since over k{a’), a satisfies the rank 1 formula X' = a’.

Theorem 9 (Symmetry) Ifa \|/A5, then b 1 ,a



Algebraic Characterization of Independence in DCF

Definition 10 Let &k C [q,l» be fields. [{ and I, are free
over k if any aq1,...,an € [1 algebraically dependent over I5
are already algebraically dependent over k.

Theorem 11 If k is a differential field and a,B C K =
DCF, then the following are equivalent

i) k{(a) and k(B) are free over k.



Fact 12 j) Iftd(k(a)/k) is finite, then RM(a/k) < td(k(a)/k).
i) If td(k(a)/k) is infinite, then RM(a/k) > w.

Lemma 13 If a is ¢é-transcendental over k and
RM(b/k) < w, then a \|/k5.

Proof If a lkB, then k{a,b) has finite transcendence de-

gree over k(b). But then k(a,b) has finite transcendence
degree over k, a contradiction.



Orthogonality

Definition 14 Let p € S(A), g € S(B). We say p L q if
a \|/M5 for any M O AU B, a realizing p and b realizing q
with a \|/AM and b \|/BM.

Lemma 15 Suppose X is a strongly minimal set defined
over K = DCF, p is the generic type of X over K and
p L q. Letb realize q. Then p is omitted in K (b)diT

Proof Suppose @ € K(b)91" realizes p. There is ¢(v) iso-
lating tp(a/K(b)). Since p L q, RM(¢) = 1. Since X is
strongly minimal, ¢ holds of some elements of X(K), a
contradiction.



What are we looking for?

For our method of coding graphs using dimensions to work,
we will need:

e large family of types (pa : a € A), pa € S(a), to which
we can assign different countable dimensions.

e good notion of independence in A with lots of elements
a,b,c € A, pairwise independent but not independent
(non-triviality)

e the ability to realize one type in the family while omit-
ting others (orthogonality)



For a € K, let E(a) be the elliptic curve with j-invariant
a, let E(a)? be the §-closure of the torsion points and let
pa € S(a) be the generic type of E(a)t.

e E(a)? is strongly minimal

e p, is determine by 7 € E(a)?, = g Q<a>a|g_

e E(a)?NQ(a)?'9 contains the torsion points of E(a) so is
infinite.

e po £ pp if and only if E(a) and E(b) are isogenous, in this
case Q(a)?3'9 = Q(b)219.

e p, L r where r is the type of a )-transcendental



Lemma 16 p, is not realized in Q{a)d'.

Proof Suppose b € Q(a)dT realizes p,. Let ¢(v) isolate
tp(b/Q(a)). Since b & Q(a)?'9, #(v) defines an infinite subset
of E(a)?, but then it must contain a torsion point of E(a).
But the torsion points are in Q(a)2'9, a contradiction.



Coding Graphs in DCF

Let G be an infinite graph with vertex set A such that for
all a € A there are b # ¢ with (a,b), (a,c) € G.

Let Ko be the differential closure of Q(A) where the ele-
ments of A are independent d-transcendentals.

Let B={a+b:a,b€ A, (a,b) € G}. Note that the elements
of B are also d-transcendental.

Theorem 17 There is K(G) = DCF with K(G) D Ky,
|K(G)| = |G| where if ce AU B, dim(p:/K(G)) = 0 while
if ¢ is d-transcendental and p. 1L ps for all a € AU B, then
dim(pae, K(G)) = Ng.



Constructing K(G)
Proposition 18 Ifa € AU B, then pg is omitted in K.
Suppose a € A (the other case is similar).
e py is omitted in Q(a)di.
e py is omitted in Ko =2 (Q(a)dM)(A\ {a}))9T, since r L pq.

We build Ko C K1 C Ko.... Suppose c € Ky and pe L pq
for all a € AU B. We can build K41 2 Ky realizing pc
and adding no new realizations of p, for a € AU B. With
careful bookkeeping we construct K(G) = U Kj.



Recovering G from K(G)
o / IS an equivalence relation on realizations of r.
For a,b realizing r, a lb if a is differentially algebraic over
k(b). If a yband b Ja, Q(a,b,c) is differentially algebraic
over Q(a, b) which is differentially algebraic over Q{(a). Thus
a Jﬁc.

Let [a] be the J-class of a.

Let S = {[a] : a realizes r,dim(pq, K(G)) = 0}.



e For each [a] € S there is a unique ¢ € AU B such that

] = la].

If pc L pg for some a € AU B, then E(¢c) and E(a) are
iIsogenous and ¢ Ja.

We say that {[a], [b],[c]} € S3 is a triangle if a,b,c are pair-
wise independent but not independent.

e [ his does not depend on choice of representative. If say
ai Jbi, then a fai1 yb1 yb, and, since [} is an equiva-
lence relation, a «Kb-

Since

Q<a’17b1> C Q<a’17b17a7b> C Q<a’17blaa’7b7 C> C Q<a’17b17a7baca Cl>
and each of these extensions is of finite transcendence de-
gree, the transcendence degree of Q{a1, b1, c1) over Q{aq,bq)
is finite and ¢1 fa1,b1. Hence ay,b1,c1 are pairwise inde-
pendent but not independent.



Proposition 19 Every triangle is of the form {[al, [b], [a +
b]} where a,b € A.

e Any three elements of A are independent

e Any three elements of B are independent

For example a 4+ b,a + ¢,b 4+ ¢ are interdefinable with a,b,c
(since 2b=(a+b)+ (b+¢c) — (a+ ¢)), thus they are inde-
pendent.

e Ifac A and x,y € B then a,z,y are independent

For example a,a + b,a 4+ ¢ are interdefinable with a,b, c.

elfa,be A, x € B and a,b,x are dependent, then x = a+0b.

For example a,b,a 4+ ¢ are interdefinable with a,b, c.



Recall that every vertex of G has valance at least 2.

Let V ={[a] € S : there are at least two triangles contain-
ing [a]}. Then V ={[a] : a € A}.

Let £ = {([a], [b]) : there is a triangle {[a], [b], [c]}.
Then (V,E) = G.

Theorem 20 « > Ng. There are 2% nonisomorphic DCF
of cardinality k.

For kK > Ng, this was proved by Poizat using trivial strongly
minimal instead of E(a)f.



DOP and ENI-DOP

Definition 21 A theory T has the Dimension Order
Property (DOP) if there are models Mgy C M1, M> C M
with M prime over M, U M>, p € S(M) such that p L M;
and p 1L Mo.

In our case we could take K differentially closed, a,b o-
independent over Ky, K1 = Koo)', Ky = K09, K =
Ko{a,b)d™ and p = py4s.

We say that T' has ENI-DOP if we can choose the type
p to be strongly regular, nonisolated (as in our case), or
more generally, nonisolated after adding finitely many pa-
rameters.



e In DCF, the type pq is nonisolated over a (since there
are infinitely many torsion points algebraic over a), so we
have ENI-DOP

e In 75 (where 7~ 1(a) is a model of Th(Z,s), the generic
type is isolated over a, but once we have a realization b it
is nonisolated over a,b, so we have ENI-DOP.

e In Ty (where 7= 1(a) is an infinite set with no structure),
even if we add finitely many realizations b the type is iso-
lated. In this case we have DOP but not ENI-DOP.



Theorem 22 (Shelah) Let T be an w-stable theory with

DOP. If k > Ny, there are 2% nonisomorphic models of
cardinality k.

Further, if T has ENI-DOP, then there are also 280 count-
able models.



