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Differentially Closed Fields

We work with differential fields (k,+,-,0).
C(k)={x€k:dx=0}

e We say that a differential field (K,§) is
differentially closed if every finite system of
algebraic differential equations that has a
solution in an extension field already has a
solution in K.

e Every differential field k£ has a differential clo-
sure K (i.e. a differentially closed K D k such
that if L O k is differentially closed there is
a differential embedding of K into L fixing k.)
The differential closure is unique up to isomor-
phism.

e (Quantifier Elimination in DCF)

definable = Kolchin-constructible

e (Universal Domain) We let K be a large uni-
versal differentially closed field. All fields we
consider will be small subfields of K.



Kolchin’s Galois Theory

Definition 1 Let k£ and [ be differential fields
with k£ C . We say that [/k is strongly normal
if and only if:

i) C(1) = C(k) is algebraically closed;
i) I[/k is finitely generated;

iii) if o : K — K is a differential automorphism
fixing k pointwise, then (I, C(K)) = (o(1), C(K)).

Examples i) Picard-Vessiot extensions,

i) Weierstrass extensions: | = k(y), where y
is a nonconstant solution to (v')2 = a?(y3 — y)
and C(k) = C().

Theorem 2 (Kolchin) If l/k is strongly nor-
mal, then there is an algebraic group GG defined
over C(k) such that Galg(l/k) = G(C(k)).
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Poizat’s Model Theoretic Proof

Suppose | = k(a) is strongly normal over k
where a = (a1,...,an). Let K be a differen-
tial closure of k. Note that C(K) = C(k).

Step 1 Show that [ C K.

Step 2 Find a definable X C K" such that
b € X(K) if and only if there is a differen-
tial automorphism o of K fixing k with o(a) =
b. This is a special case of a general model
theoretic fact.

e (Isolation) If K is a differential closure of
k and a = (a1,...,an) € K", there is a k-
definable set X C K" such that b € X iff there
is a differential automorphism o : K — K fixing
k with o(a) = b.

Note: If 0 : K — K is a differential auto-
morphism fixing k and o(a) € K, then o]l €
Gals(l/k).



Step 3 Show there is a k-definable function g
such that for all b € X, there is ¢ € C(K)™
such that g(a,c) = b. [This is just the fact
that b € (I, C(K))].

Step 4 Let R(b1,bs,b3) hold if by, bs, by € X(K)
and o, 7 : K — K are differential automorphisms
fixing k pointwise with o(a) = by and r(a) =
bo, then O'OT(a) = b3. R(bl,bQ,bg,) holds iff

bi,bs,b3z € X and dc € C(K)™ g(a,c) = by
g(blac) — b3'

e (X,R) is a definable group isomorphic to
Gals(l/k).



We have already shown that Galgs(l/k) is iso-
morphic to a group definable in K.

Step 5 Let Y ={ce C(K)™:g(a,c) € X(K)}.
Let c ~ cq iff g(a,c) = g(a,c1). Then Gals(l/k)
is isomorphic to a group definable on Y/ ~.

Step 6 Any set definable in C(K)™ is definable
without using 6 and hence constructible. Thus
Y and ~ are constructible.

We now use two important fact from the model
theory of algebraically closed fields (or classical
algebraic geometry).

e Y/ ~ is constructible.

e Any constructible group is constructibly iso-
morphic to an algebraic group.



Differential Algebraic Groups

Differential algebraic groups are groups where
the underlying set is an (abstract) differential
algebraic variety and multiplication and inverse
are differential morphisms.

Example 3
x ox \ | v

{( o 0 ) reK }
Differential algebraic groups are definable.
Theorem 4 (Pillay) i) Every definable group
in K is definably isomorphic to a differential
algebraic group.
ii) Every connected differential algebraic group

can be embedded as a Kolchin closed subgroup
of an algebraic group.



Pillay’s Differential Galois Theory

Idea: Replace the constant field by an arbi-
trary definable set.

Definition 5 Let k be a differential field and
X C K" is a Kolchin closed set defined over k.
We say that [/k is X-strongly normal if

i) X(k) = X(K) for K a differential closure of
L

i) [ is finitely generated over k;

i) If o : K — K is a differential automorphism
fixing k pointwise then (I, X (K)) = (o(1), X (K)).

strongly normal = C-strongly normal

e Suppose X is a Kolchin-closed set defined
over k. We let k(X) be the field of differen-
tial rational functions on X. We say X is finite
dimensional if the transcendence degree of k(X)
over k is finite.



l/k is generalized strongly normal if X-strongly
normal for some X.

Theorem 6 (Pillay) /) If I/k is generalized
strongly normal, then there is a finite dimen-
sional differential algebraic group GG defined over
k such that Galgs(l/k) is isomorphic to G(k).

ii) There is a Galois correspondence between
intermediate differential subfields of l/k and
differential algebraic subgroups of G defined
over k.

Theorem 7 (Pillay) Suppose k is a differen-
tial field and K is a differential closure of k.
Then l/k is generalized strongly normal iff
[ C K and there is a k-definable finite dimen-
sional differential algebraic group G and a prin-
ciple homogeneous space X for G such that
G(k) = G(K) and | = k(a) for some a € X.
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Theorem 8 (Pillay) Let G be a connected
finite dimensional differ tial algebraic group.
T here are differential fields kK C 1l C K such that
G is defined over k, l/k is generalized strongly
normal, and Galg(l/k) is isomorphic to G(k).

What about inverse problems?



Buium—Manin kernels

Theorem 9 Suppose A is a simple Abelian va-
riety of dimension d. There is a differential
algebraic group homomorphism u : A — K¢
a differential algebraic group homomorphism
such that A% = keru is a finite dimensional
differential algebraic group. In fact A% is the
Kolchin-closure of the torsion points of A.

e If A is defined over C, then p is Kolchin's
logarithmic derivative and A% = A(QO).

e If A is not isomorphic to any Abelian variety
defined over (C, then A% is very
different from an algebraic group. For exam-
ple, any Kolchin-constructible subset of (A#)”
is a finite Boolean combination of cosets. In
particular any Kolchin-constructible subset of
A# is finite or co-finite.
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Example 10 Let K be the differential closure
of C(t) where 6t = 1. Let E be the elliptic
curve Y2 = X(X — 1)(X —t). Then E¥#(K) =
Tor(E).



Some Inverse Problems

Theorem 11 (M-—Pillay) Suppose k is a dif-
ferential field such that k is the algebraic clo-
sure of a finitely generated extension of C(k)
and C(k) has infinite transcendence degree.
Let A be a simple abelian variety defined over
k. Then k has a generalized strongly normal
extension l/k with Galgs(l/k) =2 A7 (k).

Lemma 12 T he Buium—Manin homomorphism
u: A(k) — k% is not surjective.

Let a € K9\ u(A(k)). Then p~1(a) is a principle
homogeneous space for A%#.

Suppose K be a differential closure of k£ and
b e A(K) with u(b) = a.

Let | = k(b).
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