4 The Hanf Number of £, .,

In Exercise 1.13 we showed that the Upward Lowenheim-Skolem Theorem fails
for L., ., by giving a sentence with models of size 2% but no larger models. In
this section we will show that their is a cardinal x such that for all ¢ € L, .,
if ¢ has a model of cardinality x, then ¢ has models of all infinite cardinalities.
We call such a « the Hanf number of L., ,,. It is general nonsense that there is
a Hanf number.

Exercise 4.1 Let I be a set. For each ¢ € I, let K; be a class of models. Let
K = {K; : i € I}. Prove that there is x such that for all ¢ if K; has a model
of size x, then K; has aribitrarily large models. The least such & is the Hanf
number for .

For x an infinite cardinal and « an ordinal, we inductively define 3, (k) by
Jyp(k) = K and
Jo(k) = sup 229,
B<a
In particular 3; (k) = 2%. We let 3, = 3,(Rg). Under the Generalized Contin-
uum Hypothesis, 3, = R,.
Our main theorem, due to Morley, is that 3,,, is the Hanf number for £, ..

Theorem 4.2 If for all o < w there is M = ¢ with |M| > 3, then ¢ has
models of all infinite cardinalities.

The next exercise generalizes Exercise 1.13 to show that this result is optimal.

Exercise 4.3 Let o < wy. Let L={Ug: 8 < a+1}U{E}U{co,c1,...,},
where Ug is a unary relation and E is binary. Let ¢ assert that:

i) Up = {co,c1,...} and Vo x € Uqy;.

ii) U, C Ug for v < 3, and everything is in Ug41;

iif) Us = U, Uy for B < o a limit ordinal;

iv) if x € Ug41 \ Ug and E(y, ) then y € Up;

v) (extensionality) if {z : E(z,y)} = {z : E(x,2)}, then y = z.
a) Show that there is M = ¢ with [M| = Jo1. [Hint: Let U, = U'UP(URM)
and Uy = U,<s UM for v a limit ordinal ]
b) Show that every model of ¢ has cardinality at most Jp1-

We can refine these questions by looking at complete sentences ¢.

Exercise 4.4 Let £ ={+,0,G1,G>,...}. Let ¢ be a L, -sentence asserting
that:

i) we have a group where every element has order 2;

ii) G; is an index 2 subgroup and each G,,+1 is an index 2 subgroup of G,;

i) UG, = {0}.
Prove that ¢ is complete and every model has size at most 2%,

Baumgartner [4], building in work of Malitz [8], the Hanf number for com-
plete L, -sentences is still 3,,. Hjorth [7] has given an examples for a < w;
of complete sentences with models of size R, but no larger model.
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Here is the main idea of the proof of Theorem 4.2.

e By expanding the language we may assume that we have ¢ € T" where T
is a theory in a countable fragment with built in Skolem functions.

e Under the assumptions of Theorem 4.2 we can have find a model of T with
an infinte set of indiscernibles.

e Taking Skolem hulls we get models of all infinite cardinalities.

The first and third steps are routine. Finding a model with indiscernibles
needs a generalization of Ramsey’s Theorem.

The Erdos-Rado Partition Theorem

For X a set and s, A (possibly finite) cardinals, we let [X]* be the collection of
all subsets of X of size k. We call f : [X]® — X a partition of [X]". We say that
Y C X is homogeneous for the partition f if there is a < A such that f(A) = «
for all A € [Y]" (i.e., f is constant on [Y]%). Finally, for cardinals ,n, u, and A,
we write K — (n)4 if whenever |X| > k and f : [X]* — A, then thereis Y C X
such that |Y| > n and Y is homogeneous for f.

In this notation Ramsey’s Theorem can be stated as Xg — (Ro)7.

When we begin partitioning sets into infinitely many pieces it becomes harder
to find homogeneous sets.

Proposition 4.5 2™ /4 (3)F .

Proof We define F : [2]2 — w by F({f,g}) is the least n such that f(n) #
g(n). Clearly, we cannot find {f, g, h} such that f(n) # g(n), g(n) # h(n), and

f(n) # h(n).
In fact (2%)* — (R;){ . This is a special case of a useful and powerful
generalization of Ramsey’s Theorem.

Theorem 4.6 (Erdés—Rado Theorem) 3, (k)t — (k1) *1.

1
K

Proof We prove this by induction on n. For n = 0, kT — (k7)} is just the
Pigeonhole Principle.

Suppose that we have proved the theorem for n — 1. Let A = J,(x)", and
let f:[A]"™ — k. For a < A, let fo : [A\ {a}]™ — & by fa(A) = f(AU {a}).

We build Xg € X; € ... C X, C ... for @« < J,,_1(k)" such that X, C
3,.(k)* and each X, has cardinality at most 3, (k). Let Xo = 3,(x). If a is a
limit ordinal, then X, = U X3.

B<a
Suppose we have X, with |X,| = 3, (k). Because

:n(h-/):nfl(’i) — (2:7171(5)):7171(5) — 2:7171(5) — :R(KJ)7

there are J,,(x) subsets of X,, of cardinality 3,,_1(x). Also note that if Y C X,
and |Y| = 3,_1(k), then there are J,,(x) functions g : [Y]™ — & because

g1 (R) = 91 (®) = 7 ().
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Thus, we can find X,11 2 X, such that |X,41| = 3,(k), and if Y C X,
with |Y| = 3,-1(x) and 8 € A\'Y, then there is v € Xo41 \ Y such that
JallY]" = F, V]

Let X = Uyea, o+ Xa- Y C X with [Y] < 3y_1(k), then ¥ C X,
for some o < J,(k)*. If 3 € A\ Y, then there is v € X \ Y such that
JallY]" = 1,V ]

Fix § € A\ X. Inductively construct Y = {y, : a < I (k)} € X. Let
yo € X. Suppose that we have constructed Y, = {ys : 3 < a}. Choose y, € X
such that f,_ |[Ya]™ = fsl[Ya]™

By the induction hypothesis, there is Z C Y such that |Z| > st and Z
is homogeneous for fs5. Say fs(B) = v for all B € [Z]™. We claim that Z is
homogeneous for f. Let A € [Z]"Tl. There are a; < ... < ay11 such that
A={Yar,--+Yansi}- Then

f(A) = fyanJrl {Wars- -2 ¥Yan}) = fo({Wars -2 Yan }) = 7-

Thus, Z is homogeneous for f.

Corollary 4.7 :lf;rn — (3+)gjl'

(63

Proof This follows from Erdds-Rado because 31y = 3 (Ja)-

Constructing Indiscernibles

We can now prove Theorem 4.2.

As in the proof of the Downward Lowenheim-Skolem Theorem in 1.10 we
can assume we can expand our language £ so that we may assume that:

e there is a countable fragment F of L, ., and T' C F a theory with built
in Skolem Functions such that ¢ € T and T has models of cardinality 3, for all
a < wi;

e L contains two disjoint countably infinite sets of constant symbols C' and
D ={do,dy,...}.

Let I' = {dl 7§ dj ) 7§ j} U {H(dll,,dlm) g H(djl,...,djm) :
G(Ul,...,vm) e F,i1 < ety g1 < ,]m}

If we can find M = T UT, then the interpretation of D gives us a set of
indiscernibles. By the usual techniques we can stretch the indiscernibles to build
arbirtrarily large models of T'.

Let ¥ be the set of all finite sets o of formulas from F using only finitely
many free variables from C' U D such that o(c,dy,...,d,) € ¥ if and only if
there are arbitrarily large o < w where there is M =T with A C M, < a linear
order of A, |A| =3, and forall a; < ... <a, € A

M E 30 o(T,a).

We will prove two claims.

Claim X is a consistency property.
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Claim ocU{y}eXforallo e ¥ and ¢ €T.

Once we have proved these claims we can use the Extended Model Existence
Theorem (Exercise 3.7) to conclude there is M =T UT.

proof of claim 1:

The only tricky case is C4). Suppose \/,cx ¥ € 0 € X. Let 0 = 0(C,d1, . .., dy).
Then for arbitrarily large o we can find M, and A, C M, of cardinality at
least Jnn such that for all a1,...,a, € A,

M, E Tv o(v,a).
Let f:[Aa]™ — X such that if f(@) = vg, then
Ma ): Jo (0(57 a) A wﬁ(ﬁa a))

Since Joqpn > JLHA, Join — (JQ)QO. Thus there is A, C A, of cardinal-
ity 3, and v, such that for all @ € A/,

My E o(7,a) Ao (T,a).

We can find one ¢ € X such that ¢ = 1, for aribitarily large & < w. Then
oU{y} e

proof of claim 2:
Suppose o € ¥ and 6 is

1/}(di15' "7dim) - 1/}(dj15' . adjm)

where i1 < ... <4y and j; <...< jm. Let 0(¢,dy,...,d,) € X. We must show

oU{f} ex.
There are arbitrarily large o < w with M, | T with A C M, of cardinality
at least Jo4pm such that for all ag,...,a, € Aq

M, E T o(v,a).

Let f : [Aa]™ — {0,1} with f(@) = 1 if and only if M, | ¥(a). Since
TJotm — (Ja)5, we can find A/, C A, of cardinality at least 3,, such that f is
constant on .

This completes the proof.

Alternative Proof This theorem also follows immediately from Theorem 1.14
and the fact the Hanf number for omitting a type in models of first order theory
is 3,,. (Theorem 5.2.14 of [9].

Morley’s Two Cardinal Theorem

Let £ = {U,...} where U is a unary predicate. We say that an L-structure M
is a (k, A\)-model if |M| = k and [UM| = \.
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Theorem 4.8 Let ¢ be an L., .,-sentence. Suppose for arbitrarily large oo < wy
there is an infinite k and M a (3o (k), k)-model of ¢. Then for all infinite &
there is a (k,Ng)-model of ¢.

We can extend £ and find a countable fragment F, an F-theory T with
built-in-Skolem functions and ¢ € T such that there are aribitrarily large o and
infinite x such that there is a (Ju(k), k)-model of T.

If M |E ¢ and I C M is linearly ordered by <, we say that I is indiscernible
over U if for all ¢(z1,...,2,,7) and all@ € UM,

M ': (b(Il,...,iEn,a) hs (b(yla"'?yn’a)
whenever Z,y € I and x1 < ... < Zp, Y1 < ... < Yn.

Exercise 4.9 Suppose there is M = T countable with I C M an infinite set of
indiscernibles over U. Then T has (k, Xg)-models for all infinite . [Hint: Prove
that if f is a Skolem function, dy,...,d, € I and f(d) € U, then f is constant
in I.]

Add two new countable infinite sets of constant symbols C and D.

Let I' = {dz }é dj ) #‘]} @] {Vﬂe U G(dil,. . ,dim,ﬂ) g H(djl,.. -;djm-ﬂ) :
9(’01,...,’0m) eF, i1 <..iimi1 < ,jm}

Let X be the set of all finite sets o(¢,d) of sentence in F with finitely many

constants from C' U D such that for aribitrarily large o < wy there is M E T
and X C M with |X| > 3,(|[UM|) such that for all a; < ... < a, € X

M E 30 o(T,a).

Exercise 4.10 Prove that X is a consistency property.

Exercise 4.11 Show that if 0 € ¥ and ¢ € T, then o U {¢} € ¥. [Hint:
Given 6(z1,...,7,,0) and M |= T and (X, <) € M where | X| > Jo1n(JUM]),
consider the partition f : [X]" — 2/U™| where f(z1,...,2,) = {a : M =

0(z,a)}.]
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