
4 The Hanf Number of Lω1,ω

In Exercise 1.13 we showed that the Upward Löwenheim-Skolem Theorem fails
for Lω1,ω by giving a sentence with models of size 2ℵ0 but no larger models. In
this section we will show that their is a cardinal κ such that for all φ ∈ Lω1,ω

if φ has a model of cardinality κ, then φ has models of all infinite cardinalities.
We call such a κ the Hanf number of Lω1,ω. It is general nonsense that there is
a Hanf number.

Exercise 4.1 Let I be a set. For each i ∈ I, let Ki be a class of models. Let
K = {Ki : i ∈ I}. Prove that there is κ such that for all i if Ki has a model
of size κ, then Ki has aribitrarily large models. The least such κ is the Hanf
number for K.

For κ an infinite cardinal and α an ordinal, we inductively define iα(κ) by
i0(κ) = κ and

iα(κ) = sup
β<α

2iβ(κ).

In particular i1(κ) = 2κ. We let iα = iα(ℵ0). Under the Generalized Contin-
uum Hypothesis, iα = ℵα.

Our main theorem, due to Morley, is that iω1
is the Hanf number for Lω1,ω.

Theorem 4.2 If for all α < ω there is M |= φ with |M | ≥ iα, then φ has

models of all infinite cardinalities.

The next exercise generalizes Exercise 1.13 to show that this result is optimal.

Exercise 4.3 Let α < ω1. Let L = {Uβ : β ≤ α + 1} ∪ {E} ∪ {c0, c1, . . . , },
where Uβ is a unary relation and E is binary. Let φ assert that:

i) U0 = {c0, c1, . . .} and ∀x x ∈ Uα+1.
ii) Uγ ⊆ Uβ for γ < β, and everything is in Uα+1;
iii) Uβ =

⋃
γ<β Uγ for β < α a limit ordinal;

iv) if x ∈ Uβ+1 \ Uβ and E(y, x) then y ∈ Uβ ;
v) (extensionality) if {x : E(x, y)} = {x : E(x, z)}, then y = z.

a) Show that there is M |= φ with |M | = iα+1. [Hint: Let UM
β+1 = UM

β ∪P(UM
β )

and UM
β =

⋃
γ<β U

M
γ for γ a limit ordinal.]

b) Show that every model of φ has cardinality at most iα+1.

We can refine these questions by looking at complete sentences φ.

Exercise 4.4 Let L = {+, 0, G1, G2, . . .}. Let φ be a Lω1,ω-sentence asserting
that:

i) we have a group where every element has order 2;
ii) G1 is an index 2 subgroup and each Gn+1 is an index 2 subgroup of Gn;
iii)

⋃
Gn = {0}.

Prove that φ is complete and every model has size at most 2ℵ0 .
Baumgartner [4], building in work of Malitz [8], the Hanf number for com-

plete Lω1,ω-sentences is still iω1
. Hjorth [7] has given an examples for α < ω1

of complete sentences with models of size ℵα but no larger model.
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Here is the main idea of the proof of Theorem 4.2.
• By expanding the language we may assume that we have φ ∈ T where T

is a theory in a countable fragment with built in Skolem functions.
• Under the assumptions of Theorem 4.2 we can have find a model of T with

an infinte set of indiscernibles.
• Taking Skolem hulls we get models of all infinite cardinalities.

The first and third steps are routine. Finding a model with indiscernibles
needs a generalization of Ramsey’s Theorem.

The Erdos-Rado Partition Theorem

For X a set and κ, λ (possibly finite) cardinals, we let [X ]κ be the collection of
all subsets of X of size κ. We call f : [X ]κ → λ a partition of [X ]κ. We say that
Y ⊆ X is homogeneous for the partition f if there is α < λ such that f(A) = α

for all A ∈ [Y ]κ (i.e., f is constant on [Y ]κ). Finally, for cardinals κ, η, µ, and λ,
we write κ → (η)µλ if whenever |X | ≥ κ and f : [X ]µ → λ, then there is Y ⊆ X

such that |Y | ≥ η and Y is homogeneous for f .
In this notation Ramsey’s Theorem can be stated as ℵ0 → (ℵ0)

n
k .

When we begin partitioning sets into infinitely many pieces it becomes harder
to find homogeneous sets.

Proposition 4.5 2ℵ0 6→ (3)2ℵ0
.

Proof We define F : [2ω]2 → ω by F ({f, g}) is the least n such that f(n) 6=
g(n). Clearly, we cannot find {f, g, h} such that f(n) 6= g(n), g(n) 6= h(n), and
f(n) 6= h(n).

In fact (2ℵ0)+ → (ℵ1)
2
ℵ0

. This is a special case of a useful and powerful
generalization of Ramsey’s Theorem.

Theorem 4.6 (Erdös–Rado Theorem) in(κ)+ → (κ+)n+1
κ .

Proof We prove this by induction on n. For n = 0, κ+ → (κ+)1κ is just the
Pigeonhole Principle.

Suppose that we have proved the theorem for n − 1. Let λ = in(κ)+, and
let f : [λ]n+1 → κ. For α < λ, let fα : [λ \ {α}]n → κ by fα(A) = f(A ∪ {α}).

We build X0 ⊆ X1 ⊆ . . . ⊆ Xα ⊆ . . . for α < in−1(κ)
+ such that Xα ⊆

in(κ)
+ and each Xα has cardinality at most in(κ). Let X0 = in(κ). If α is a

limit ordinal, then Xα =
⋃

β<α

Xβ .

Suppose we have Xα with |Xα| = in(κ). Because

in(κ)in−1(κ) = (2in−1(κ))in−1(κ) = 2in−1(κ) = in(κ),

there are in(κ) subsets of Xα of cardinality in−1(κ). Also note that if Y ⊂ Xα

and |Y | = in−1(κ), then there are in(κ) functions g : [Y ]n → κ because

κin−1(κ) = 2in−1(κ) = in(κ).
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Thus, we can find Xα+1 ⊇ Xα such that |Xα+1| = in(κ), and if Y ⊂ Xα

with |Y | = in−1(κ) and β ∈ λ \ Y , then there is γ ∈ Xα+1 \ Y such that
fβ|[Y ]n = fγ |[Y ]n.

Let X =
⋃
α<in−1(κ)+ Xα. If Y ⊂ X with |Y | ≤ in−1(κ), then Y ⊂ Xα

for some α < in(κ)
+. If β ∈ λ \ Y , then there is γ ∈ X \ Y such that

fβ|[Y ]n = fγ |[Y ]n.
Fix δ ∈ λ \ X . Inductively construct Y = {yα : α < i

+
n−1(κ)} ⊆ X . Let

y0 ∈ X . Suppose that we have constructed Yα = {yβ : β < α}. Choose yα ∈ X

such that fyα
|[Yα]n = fδ|[Yα]n.

By the induction hypothesis, there is Z ⊆ Y such that |Z| ≥ κ+ and Z

is homogeneous for fδ. Say fδ(B) = γ for all B ∈ [Z]n. We claim that Z is
homogeneous for f . Let A ∈ [Z]n+1. There are α1 < . . . < αn+1 such that
A = {yα1

, . . . , yαn+1
}. Then

f(A) = fyαn+1
({yα1

, . . . , yαn
}) = fδ({yα1

, . . . , yαn
}) = γ.

Thus, Z is homogeneous for f .

Corollary 4.7 i
+
α+n → (i+

α )n+1
iα

.

Proof This follows from Erdös–Rado because iα+n = in(iα).

Constructing Indiscernibles

We can now prove Theorem 4.2.
As in the proof of the Downward Löwenheim-Skolem Theorem in 1.10 we

can assume we can expand our language L so that we may assume that:
• there is a countable fragment F of Lω1,ω and T ⊆ F a theory with built

in Skolem Functions such that φ ∈ T and T has models of cardinality iα for all
α < ω1;

• L contains two disjoint countably infinite sets of constant symbols C and
D = {d0, d1, . . .}.

Let Γ = {di 6= dj : i 6= j} ∪ {θ(di1 , . . . , dim) ↔ θ(dj1 , . . . , djm) :
θ(v1, . . . , vm) ∈ F , i1 < . . . im, j1 < . . . , jm}.

If we can find M |= T ∪ Γ, then the interpretation of D gives us a set of
indiscernibles. By the usual techniques we can stretch the indiscernibles to build
arbirtrarily large models of T .

Let Σ be the set of all finite sets σ of formulas from F using only finitely
many free variables from C ∪ D such that σ(c, d1, . . . , dn) ∈ Σ if and only if
there are arbitrarily large α < ω where there is M |= T with A ⊆M , < a linear
order of A, |A| = iα and for all a1 < . . . < an ∈ A

M |= ∃v σ(v, a).

We will prove two claims.

Claim Σ is a consistency property.
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Claim σ ∪ {ψ} ∈ Σ for all σ ∈ Σ and ψ ∈ Γ.

Once we have proved these claims we can use the Extended Model Existence
Theorem (Exercise 3.7) to conclude there is M |= T ∪ Γ.

proof of claim 1:
The only tricky case is C4). Suppose

∨
ψ∈X ψ ∈ σ ∈ Σ. Let σ = σ(c, d1, . . . , dn).

Then for arbitrarily large α we can find Mα and Aα ⊂ Mα of cardinality at
least iα+n such that for all a1, . . . , an ∈ Aα

Mα |= ∃v σ(v, a).

Let f : [Aα]n → X such that if f(a) = ψa, then

Mα |= ∃v (σ(v, a) ∧ ψa(v, a)).

Since iα+n ≥ i
+
α+n−1, iα+n → (iα)nℵ0

. Thus there is A′
α ⊆ Aα of cardinal-

ity iα and ψα such that for all a ∈ A′
α

Mα |= σ(v, a) ∧ ψα(v, a).

We can find one ψ ∈ X such that ψ = ψα for aribitarily large α < ω. Then
σ ∪ {ψ} ∈ Σ.

proof of claim 2:
Suppose σ ∈ Σ and θ is

ψ(di1 , . . . , dim) ↔ ψ(dj1 , . . . , djm)

where i1 < . . . < im and j1 < . . . < jm. Let σ(c, d1, . . . , dn) ∈ Σ. We must show
σ ∪ {θ} ∈ Σ.

There are arbitrarily large α < ω with Mα |= T with A ⊆Mα of cardinality
at least iα+m such that for all a1, . . . , an ∈ Aα

Mα |= ∃v σ(v, a).

Let f : [Aα]m → {0, 1} with f(a) = 1 if and only if Mα |= ψ(a). Since
iα+m → (iα)m2 , we can find A′

α ⊆ Aα of cardinality at least iα such that f is
constant on iα.

This completes the proof.

Alternative Proof This theorem also follows immediately from Theorem 1.14
and the fact the Hanf number for omitting a type in models of first order theory
is iω1

. (Theorem 5.2.14 of [9].

Morley’s Two Cardinal Theorem

Let L = {U, . . .} where U is a unary predicate. We say that an L-structure M
is a (κ, λ)-model if |M | = κ and |UM| = λ.
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Theorem 4.8 Let φ be an Lω1,ω-sentence. Suppose for arbitrarily large α < ω1

there is an infinite κ and M a (iα(κ), κ)-model of φ. Then for all infinite κ

there is a (κ,ℵ0)-model of φ.

We can extend L and find a countable fragment F , an F -theory T with
built-in-Skolem functions and φ ∈ T such that there are aribitrarily large α and
infinite κ such that there is a (iα(κ), κ)-model of T .

If M |= φ and I ⊆M is linearly ordered by <, we say that I is indiscernible

over U if for all φ(x1, . . . , xn, u) and all a ∈ UM,

M |= φ(x1, . . . , xn, a) ↔ φ(y1, . . . , yn, a)

whenever x, y ∈ I and x1 < . . . < xn, y1 < . . . < yn.

Exercise 4.9 Suppose there is M |= T countable with I ⊆M an infinite set of
indiscernibles over U . Then T has (κ,ℵ0)-models for all infinite κ. [Hint: Prove
that if f is a Skolem function, d1, . . . , dn ∈ I and f(d) ∈ U , then f is constant
in I.]

Add two new countable infinite sets of constant symbols C and D.
Let Γ = {di 6= dj : i 6= j} ∪ {∀u ∈ U θ(di1 , . . . , dim , u) ↔ θ(dj1 , . . . , djm .u) :

θ(v1, . . . , vm) ∈ F , i1 < . . . im, j1 < . . . , jm}.
Let Σ be the set of all finite sets σ(c, d) of sentence in F with finitely many

constants from C ∪D such that for aribitrarily large α < ω1 there is M |= T

and X ⊆M with |X | ≥ iα(|UM|) such that for all a1 < . . . < an ∈ X

M |= ∃v σ(v, a).

Exercise 4.10 Prove that Σ is a consistency property.

Exercise 4.11 Show that if σ ∈ Σ and ψ ∈ Γ, then σ ∪ {ψ} ∈ Σ. [Hint:
Given θ(x1, . . . , xn, u) and M |= T and (X,<) ⊆M where |X | > iα+n(|U

M|),

consider the partition f : [X ]n → 2|U
M| where f(x1, . . . , xn) = {a : M |=

θ(x, a)}.]
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