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Khazdan on Model Theory

David Khazdan (2020 Abel Prize winner):

I don’t know any mathematician who did not start as a logician and for
whom it was easy and natural to learn model theory.

For a [short] while everything is so simple and so easily reformulated in
familiar terms that there is nothing to learn but suddenly one finds himself
in place when Model theoriticans “jump from a tussock to a hummock”
while we mathematicians don’t see where to put a foot down and are at a
complete loss.
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Khazdan on Model Theory continuted

So we have two questions.

a) Why is Model theory so useful in different areas of Mathematics?

b) Why is it so difficult for mathematicians to learn it ?

But really these two questions are almost the same–it is difficult to learn
the Model theory since it appeals to different intuition. But exactly this
new outlook leads to the successes of the Model Theory.

Model theory is the disappearance of the natural distinction between the
formalism and the substance.
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Outline

Part I: Definability
I Basic concepts from Logic & Model Theory
I Definability
I Interpretability
I Completeness & Compactness (time permitting)

Part II: Quantifier elimination & applications

Part III: Tameness & fields
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Mathematical structures

In Model Theory we use first order languages to study sets definable in
mathematical structures.
Examples of Structures

(Z,+, ·, 0, 1), the ring of integers;

(C,+, ·, 0, 1), the field of complex numbers;

(R,+, ·, <, 0, 1), the ordered field of real numbers;

Rexp = (R,+, ·, exp <, 0, 1), the ordered field of real numbers with
exponentiation;

Cexp = (C,+, ·, exp, 0, 1), the field of complex numbers with
exponentiation;

(C((t)),+, ·, 0, 1);

Dave Marker (UIC) Model Theory I October 9, 2020 5 / 26



Mathematical structures

Informally A structure is just a set with some distinguished functions,
relations and elements.

For Example:
In Rexp = (R,+, ·, exp, <, 0, 1) we have

The set R
Binary functions + and · and a unary function exp;

Binary relation <;

Distinguished elements 0 and 1.

In (Z,+, ·, 0, 1) we have

The set Z
Binary functions + and · ;

No relations;

Distinguished elements 0 and 1.
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Multisorted Structures

We can also look at structures where we have more than one type of basic
object.

Vector spaces over fields (V ,⊕,F ,+, ·, λ)
Two sorts–vector space and field

(F ,+, ·) is a field;

(V ,⊕) is an abelian group;

λ : F × V → V is scalar multiplication

Valued fields (K ,+K , ·K , Γ,+Γ, <, k,+k, ·k)
Three sorts home field, value group and residue field.

(K ,+K , ·K ) and (k,+k, ·k) fields;

(Γ,+Γ, <) an ordered abelian group;

v : K → Γ the valuation;

r : K → k the residue map
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First order languages

We fix a language to describe our structure.
For example, let’s say we are studying Rexp. We would use the language
Lexp where we have special symbols +, ·, exp, <, 0, 1.

Following some simple rules we build up the collection of Lexp-formulas
using the special symbols and the logical symbols

=;

Logical connectives ∧ (and), ∨ (or), ¬(not);

Quantifiers ∃ (exists) and ∀ (for all);

Variables v0, v1, . . . ; (often we use x , y , z . . . )

Parenthesis;
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Examples of Lexp-formulas

1 1 + x < exp(x);

2 ∃y y · y = x x is a square

3 ∀x (0 < x → ∃y y2 = x) every positive element is a square

4 ∃y exp(y) = x x has a logarithm

5 ∀ε > 0 ∃δ > 0 ∀x ((x − 2)2 < δ → (x2 − 4)2 < ε)

lim
x→2

x2 = 4

(here 2 and 4 are abbreviations for 1+1 and 1 + 1 + 1 + 1 and
(x − 2)2 < δ is an abbreviation for x · x + 1 + 1 + 1 + 1 < δ + x + x .

Definition

A formula is a sentence if every variable is in the scope of a quantifier.

Here 3) and 5) are sentences.
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Sentences

Sentences are declarative statements. In any particular structure they are
either true or false.

∃x∀y x · y = y
I True in Z, Q, R, C (take x = 1).

∀x (x = 0 ∨ ∃y x · y = 1)
I False in Z (take x = 2)
I True in Q, R, C.

∀x∃y y2 = x
I False in Z, R (no

√
−1)

I True in C
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What we can’t do

Sentences are finite.

We can only quantify over elements of our structure not subsets,
functions,. . . .

We don’t have sentences expressing.

a group is torsion
∀x (x2 = 1 ∨ x3 = 1 ∨ x4 = 1 ∨ . . . )
an ordering is complete
∀X if X is nonempty and bounded above, then there is a least upper
bound
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Theories

An L-theory T is just a set of L-sentences.
For example T could be the set of axioms for fields.

If φ is an L-sentence we write M |= φ if φ is true in M.

If T is an L-theory we write M |= T if M |= φ for all φ ∈ T and say M
is a model of T .

The Theory of a structure M is the set of all sentences true in M and
denoted Th(M).
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Fundamental Problem 1

Given a structure M can we understand Th(M)?

Is there an algorithm to decide for φ an L-sentence if M |= φ?
If there is we say Th(M) is decidable.

Can we give a simple axiomatization of Th(M)?
i.e., can we write down a simple set of L-sentences T0 such that
M |= T0 whenever N |= T0, then N |= Th(M).

If the last condition holds, then

M |= φ⇔ N |= φ

for all L-sentences φ. We say M and N are elementarily equivalent and
write M≡ N .

We say T is complete if any two models are elementarily equivalent.
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Definable Sets
Formulas with free variable assert a property of the free variables.

∃y y2 = x asserts x is a square

in Z or Q it is true for x = 9, but false for x = 3

in R it is true of any x ≥ 0 but false for x = −3

in C it is true for every x .

Suppose φ(x1, . . . , xn) is a formula with free variables x1, . . . , xn and M is
a structure. We say that

{(a1, . . . , an) ∈Mn :M |= φ(a1, . . . , an)}

is definable.

We also allow parameters. Given φ(x1, . . . , xn+m) and b1, . . . , bm ∈M

{(a1, . . . , an) ∈Mn :M |= φ(a1, . . . , an, b1, . . . , bm)}

is definable using parameters b1, . . . , bm.

For example {x ∈ R : x > π} is definable using parameter π.
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Examples of Definable sets

In C any algebraic variety V is definable using parameters.

x ∈ V⇔ p1(x) = 0 ∧ · · · ∧ pm(x) = 0.

Z is definable in Cexp.

Z = {n : ∀z (exp(z) = 1→ exp(nz) = 1}.]

≤ is definable in (Z,+, ·)

x ≤ y ⇔ ∃z1∃z2∃z3∃z4 x + z2
1 + z2

2 + z2
3 + z2

4 = y
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Examples of Definable sets

If X ⊂ Rn is definable, so is it’s closure X .
Let φ(v, a) define X .

x ∈ X ⇔ ∀ε
[
ε > 0→ ∃y

(
φ(y, a) ∧

∑
(xi − yi )

2 < ε
)]
.

C is definable in the field C(t)

x ∈ C ⇔ ∃y y2 = x3 + 1

Because y2 = x3 + 1 has genus 1, there are no nonconstant rational
functions f , g such that f 2 = g3 + 1.
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Examples of Definable sets

The valuation ring Zp is definable in the p-adic field Qp.
Assume p 6= 2.

x ∈ Zp ⇔ ∃y y2 = px + 1

If v(x) < 0¡ then v(px + 1) is odd while v(y2) is even
If v(x) ≥ 0, we can solve y2 = px + 1 by Hensel’s Lemma.

(J. Robinson) Z is definable in the field Q.
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Some undefinability results

R is not definable in C.
Suppose φ(x , a) is a formula.

Let k be the subfield of C generated by a and let r ∈ R, s ∈ C \R be
transcendental over k .

There is an automorphism σ of C fixing k with σ(r) = s. But then

φ(r , a)⇔ φ(σ(r), σ(a))⇔ φ(s, a).

Thus φ(x , a) does not define R.

In C(t) we can’t define {t} using only parameters from C.
Consider an automorphism of C(t) fixing C but sending t 7→ t + 1.

We were lucky here as the structures have many automorphisms. In
general to prove undefinability results we need to develop a good theory of
the definable sets.
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Interpretability

We can interpret C in the field R.

Identify C with R2 and define

(x , y)⊕ (u, v) = (x + u, y + v) and (x , y)� (u, v) = (xu − yv , xv + yu).

In a similar way for any field F and any finite algebraic extension K/F we
can interpret K in F .

Definition

We say that an L0-structure N is interpretable in an L-structure M if
there is a definable X ⊆Mn, a definable equivalence relation E on X , and
for each symbol of L0 we can find definable E -invariant sets on X (where
“definable” means definable in L) such that X/E with the induced
structure is isomorphic to N .
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Examples of Interpretations

P(n)(k) is interpretable in k

Define ∼ in kn+1 − {0}, by (x0, . . . , xn) ∼ (y0, . . . , yn) if and only if
there is λ ∈ k× such that λxi = yi for all i .

Alternatively. define P1(k) by taking X = k × {0, 1} and identify
(x , i) with (1/x , 1− i) for x 6= 0,

Dave Marker (UIC) Model Theory I October 9, 2020 20 / 26



Examples of Interpretations

If (G , ·) is a definable group definable in M and H ⊂ G is a definable
normal subgroup, then we can interpret G/H in M.

If K is a valued field with valuation ring O, then the value group is
interpretable in (K ,O,+, ·).

Let U = {x ∈ O : ∃y ∈ O xy = 1} be the units.

Let Γ = K×/U.

x/U ≤ y/U if ∃z ∈ O y = xz .

Similarly, the residue field is interpretable.

Any structure in a finite language can be interpreted in a graph.
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Fundamental Problem 2

Fundamental Problem For a particular structure M, can we understand
the definable sets?

Can we give a simpler description of the definable sets?

Can we prove the definable sets have good properties?

Can we understand what structures are interpretable in M?

So our two fundamental problems are to try to understand the Th(M)
and the sets definable in M.
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Bad Cases: Gödel Phenomena

These problems are hopeless for (Z,+, ·).

Theorem (Gödel’s Incompleteness Theorem)

Th(Z) is far from decidable.
In particular, no decidable theory can axiomatize Th(Z).

The definable subset of Zn are exactly the arithmetic sets from
computability theory.

MRDP showed that for any recursively enumerable set A there is an
integer polynomial p(X ,Y1, . . . ,Y9) such that

n ∈ A⇔ ∃y ∈ Z9 p(n, y) = 0

Lesson: Quantifiers lead to complexity
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It could be worse

Consider (R,Z,+, ·). The real field with a predicate for Z.

In this case the definable sets are the projective sets of descriptive set
theory.

Even questions like “is every definable set Lebesgue measurable” depend
on set theoretic assumptions.
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Digression: Completeness Theorem

For an L-theory T we write T |= φ (φ is a consequence of T ) if

for all M |= T ⇒M |= φ.

Theorem (Gödel’s Completeness Theorem)

T |= φ if and only if there is a finite proof of φ assuming T .

We say T is satisfiable if there is some M |= T .

Corollary

T is satisfiable if and only there is no proof of a contradiction from T.

Dave Marker (UIC) Model Theory I October 9, 2020 25 / 26



Digression: Compactness Theorem

Corollary (Compactness Theorem)

T is satisfiable if and only if every finite subset of T is satisfiable.

Proof Any proof of a contradiction from T uses only finitely many of the
sentences in φ.

Sample Application (Nonstandard models)
There is K |= Th(R) with a ∈ K an infinite.
Let L = {+, ·, <, 0, 1, a}. Let
T = Th(R) ∪ {a > 1, a > 1 + 1, a > 1 + 1 + 1, . . . }.
If ∆ is a finite subset of T then there is a maximum n such that
“a > n”∈ ∆.
We can find a model of ∆ by taking R and interpreting a as n + 1. So ∆
is satisfiable.
Thus, by the Compactness Theorem, T is satisfiable.
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