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Abstract

For each k¿ 2, we exhibit in nite families of prime k-component links with Jones polynomial equal to
that of the k-component unlink. ? 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The startling discovery by Jones some 17 years ago of a polynomial invariant of links aris-
ing from von Neumann algebras [3] opened an entirely new vista in 3-dimensional topology. The
Jones polynomial and its generalizations have been used to settle century-old conjectures in
knot theory [4,6,7,12], and have led to new connections between topology and physics [13].
Despite these advances, it cannot yet be said that the Jones polynomial is well understood
in terms of intrinsic topological properties of links; for example, at this writing it is unknown
whether there exists a non-trivial knot indistinguishable by the Jones polynomial from the
unknot.
In this article we produce a strong a?rmative answer to the analogous question for links, in that

we exhibit in nite families of prime k-component links with Jones polynomials equal to those of
the corresponding unlinks, for all k¿ 2.
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Fig. 1. The diagram H (T; U ).

We have not found any non-trivial links with trivial HomHy or Kau,man 2-variable polynomials;
however, in Section 4 below we give an in nite sequence of prime 2-component links which neither
the Jones nor the Alexander polynomial can distinguish from the unlink.
The links in these families are all satellites of the Hopf link, and all conform to the pattern H (T; U )

illustrated in Fig. 1, formed by clasping together the numerators of tangles T; U . Our method is
based on a transformation H (T; U ) → H (T; U )!, whereby the tangles T; U are cut out and reglued
by certain speci c homeomorphisms of the tangle boundaries. Like mutation, the transformation !
preserves the Kau,man bracket polynomial; however, it is more e,ective in generating examples, as
a trivial link can be transformed to a prime link, and repeated application yields an in nite sequence
of inequivalent links.
Throughout this paper we shall work with the Kau,man bracket version of the Jones polynomial.

We recall that the Kau,man bracket polynomial 〈D〉 ∈Z [a; a−1] of a link diagram D is de ned by
the following two properties:
(i) the bracket polynomial of a diagram consisting of k disjoint simple closed curves in the plane

is 	k−1, where 	=−a−2 − a2;
(ii) 〈 〉=a〈 〉+a−1〈 〉, where the three vignettes indicate diagrams that are identical except that

a crossing of the  rst diagram is nulli ed in two di,erent ways to form the second and third
diagrams.

We also recall that if D is a diagram of a link L, then the Jones polynomial VL(t) of L is obtained
by substituting t=a−4 in the polynomial (−a3)−wr(D)〈D〉, where wr(D) is the writhe of the diagram
D. Thus, the Jones polynomial of a k-component link represented by a diagram D is trivial if and
only if the bracket polynomial of D is equal to 	k−1(−a3)wr(D).
Historically [1], the symbol −T denotes the reHection of T in the projection plane, and n denotes

a twist of n crossings proceeding from west to east, where the twist is right-handed if n¿ 0 and
left-handed if n¡ 0 (some authors use the opposite convention). We note that the “integer” tangle
−n is indeed an additive inverse of the tangle n, in that their tangle sum is 0 = ; however, it
is false in general that −T is an additive inverse of T . We shall denote by T� the reHection of T
in a NW–SE axis, and by T · U the tangle sum T� + U . Note that T · 0 = T�. Traditionally, for
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Fig. 2. Examples of tangles.

Fig. 3. A tangle T , its closures TN ; TD and the tangle combinations T + U; T ∗ U .

n∈Z; n �=0 the tangle n� is denoted 1=n, and 0� = is denoted ∞. Regarding iterated “products”,
we follow the standard convention that T ·U · V is to be interpreted as (T ·U ) · V . Some examples
are illustrated in Fig. 2.
Given a tangle T , we shall denote by TN; TD the numerator and denominator closures of T , and

by T + U the tangle sum of T; U . We shall also have occasion to consider the “vertical sum” of
two tangles T ∗ U = (T� + U�)� (Fig. 3).
We acknowledge with pleasure the computational knot theory package K2K by Ochiai and Imafuji

[8] which was an essential tool for our investigations, and Stephenson’s circle packing software
Circlepack [11], whose underlying engine was used for generating the pictures of links.

2. Elementary algebraic and geometric properties of H (T; U )

Our immediate task is to derive a formula for the bracket polynomial of the link diagram H (T; U )
depicted in Fig. 1. We shall present two methods of obtaining such a formula. Our  rst approach is
to apply the 2-strand parallel bracket expansion formula given in [5, Proposition 5, p. 33]. In that
proposition, [K] denotes 〈K2〉, where K2 is the 2-strand parallel of K ; also, the symbol denotes

. From Proposition 5(i) of [5] we immediately obtain the following “switching formula”:

We apply this formula to either of the two “2-strand parallel” crossings of the clasp of H (T; U ).
Switching this generalized crossing yields a diagram regularly isotopic to a split union of the numer-
ators of T; U ; therefore, its bracket polynomial is 	〈TN〉〈UN〉. Each of the last four diagrams in the
switching formula is regularly isotopic to a connected sum of the denominators of T; U ; therefore,
these terms cancel out.
The diagram corresponding to the term [ ] is regularly isotopic to the numerator of the tangle

sum T + U , modi ed by the insertion of the 2-strand parallel of a positive kink in the two
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strands issuing from the western (or eastern) ends of T ; we therefore have, by means of a simple
bracket calculation

[ ] = a6{a2〈(T + U )N〉+ 2〈TD〉〈UD〉+ a−2	〈TD〉〈UD〉}:
Similarly, we have

[ ] = a−6{a−2〈(T + U )N〉+ 2〈TD〉〈UD〉+ a2	〈TD〉〈UD〉}:
After collecting terms, the switching formula yields

Proposition 2.1. 〈H (T; U )〉= 	{	g〈(T +U )N〉+ 〈TN〉〈UN〉 − g〈TD〉〈UD〉}; where g= a−8 − 2a−4 +
2− 2a4 + a8.

Following ideas developed in [10], we now introduce a formalism which will be useful in the
next section, and which yields an alternative formula for 〈H (T; U )〉.
Given a tangle T , the bracket expansion formula 〈 〉 = a〈 〉 + a−1〈 〉, together with the rule

〈D∐ 〉=	 · 〈D〉 (applicable also to link diagrams), allow us to express the symbol 〈T 〉 as a formal
linear combination 〈T 〉=f(T )〈0〉+g(T )〈∞〉, where 〈0〉; 〈∞〉 are to be regarded as primitive objects,
and where the coe?cients f(T ); g(T ) are in the ring Z[a; a−1]. We de ne the bracket vector of T
to be the ordered pair (f(T ); g(T )), and denote it by br(T ). For example, br(1) = (a; a−1). Where
appropriate, we shall consider br(T ) as the column vector[

f(T )
g(T )

]
:

The identities of the next proposition can be con rmed merely by verifying that they hold for the
generators 0;∞, and then applying linearity.

Proposition 2.2.

(i)
[ 〈TN〉
〈TD〉

]
=
[
	 1
1 	

]
br(T ).

(ii) br(T + U ) =
[
f(U ) 0
g(U ) f(U ) + 	g(U )

]
br(T )

and

br (T ∗ U ) =
[
	f(U ) + g(U ) f(U )

0 g(U )

]
br(T ).

Returning to H (T; U ), we observe that if we take (T; U ) = (0; 0), we obtain the 2-strand par-
allel of the standard diagram of the Hopf link. The bracket polynomial of this diagram, namely
−a−14−a−6−2a−2−2a2−a6−a14, is not hard to compute by hand. The choice (T; U )=(0;∞) (or
(T; U )=(∞; 0)) yields a diagram with writhe 0 of the unlink of 3 components, and (T; U )=(∞;∞)
gives a diagram with writhe 0 of the unlink of 2 components. Therefore, the bracket polynomials
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of H (0;∞); H (∞;∞) are 	2; 	, respectively. For convenience, let us de ne

h00 = 〈H (0; 0)〉=−a−14 − a−6 − 2a−2 − 2a2 − a6 − a14;
h01 = h10 = 〈H (0;∞)〉= 	2;
h11 = 〈H (∞;∞)〉= 	

and let H denote the matrix[
h00 h01
h10 h11

]
:

From the bracket expansion formula, we immediately have the following alternative formula for
the bracket polynomial of H (T; U ):

Proposition 2.1′. 〈H (T; U )〉 = h00f(T )f(U ) + h01(f(T )g(U ) + g(T )f(U )) + h11g(T )g(U ) or; in
matrix notation

〈H (T; U )〉= br(T )t ·H · br(U ):

The equivalence of the two formulae for 〈H (T; U )〉 may be demonstrated by means of Proposi-
tion 2.2.
We turn now to geometric properties of the link H (T; U ). Recall from [9] that a link L in a solid

torus V is said to be geometrically essential in V if each cross-sectional disk of V meets L. The
sublinks TN; UN of H (T; U ) lie in solid tori VT ; VU , respectively, whose cores form a Hopf link.
If TN; UN are geometrically essential in their respective solid tori, then the boundaries of the solid
tori are incompressible in S3 − H (T; U ), and the cores of VT ; VU form a companion Hopf link of
H (T; U ). On the other hand, if one of TN; UN is not geometrically essential, then the link H (T; U )
is split by a 2-sphere separating TN from UN. We are particularly interested in  nding properties of
the tangles T; U which guarantee that: (i) H (T; U ) is non-split and (ii) H (T; U ) is prime.
In order to discuss tangles satisfactorily in geometric terms, it is necessary to consider a tangle

as a pair (B; T ), where B is a 3-ball and T is a proper 1-submanifold of B meeting the boundary
of B in four points. When viewing a diagram of a tangle, it is understood that B is a Euclidean
3-ball whose boundary meets the projection plane in a “equatorial” circle circumscribing the tangle
diagram, and that T itself lies in the projection plane except for small vertical perturbations near
crossings. A tangle (B; T ) is trivial or rational if it is homeomorphic to a pair (B; T0), where T0 is
the union of two parallel line segments in the projection plane, for example the zero tangle.

De�nition. Let (B; T ) be a tangle; presented as a tangle diagram in the plane. A separating disk for
T is a properly embedded disk in B that avoids T and separates the endpoints of T into two pairs.
An NS-separating disk for T is a separating disk for T whose boundary is the great circle on @B
that lies in a north-south vertical plane.

For example, any rational tangle admits a separating disk, but the only rational tangle admitting
an NS-separating disk is the tangle ∞: .
If T is one of the substituent tangles in H (T; U ), then the following statements are equivalent:

(i) (B; T ) admits an NS-separating disk; (ii) the numerator TN lies in a 3-ball in VT ; and (iii) TN

fails to be geometrically essential in VT .
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De�nition. A tangle (B; T ) has a connected summand if there exists a 2-sphere in B which meets T
in two points and which bounds a 3-ball in B whose intersection with T is other than an unknotted
arc.

Informally, a connected summand of a tangle T is a non-trivial link spliced into an arc of T . A
connected summand of T will persist as a connected summand of TN; therefore, if we wish H (T; U )
to be prime, we must use substituent tangles that are free of connected summands.
If (B; T ) is non-trivial and has a separating disk �, then the union of � with one of the components

of @B− @� will be a 2-sphere exhibiting a connected summand of (B; T ). For this reason, the only
tangles with separating disks that we shall use in the construction of links of form H (T; U ) are
rational tangles.
A separate observation is that since there exists a cross-sectional disk of VT meeting TN trans-

versely in two points, every cross-sectional disk of VT which is transverse to TN must meet TN in
an even number of points.
The next two propositions use elementary general position arguments to establish su?cient con-

ditions for H (T; U ) to be a prime link.

Proposition 2.3. Suppose that neither of T; U is separated by a 2-sphere in its ambient 3-ball; and
that neither of T; U admits an NS-separating disk. Then the link H (T; U ) is non-split.

Proof. From the second part of the hypothesis; each of TN; UN is geometrically essential in its solid
torus. Let F be a 2-sphere in S3−H (T; U ); and suppose that F separates the link H (T; U ). F cannot
separate the two companion tori; as the Hopf link is not split; therefore; F must meet a companion
torus; say @VT ; and we may assume that F∩(@VT ∪@VU ) is the union of  nitely many disjoint simple
closed curves. We may also assume that the number of components of F ∩ (@VT ∪ @VU ) cannot be
reduced by an isotopy of F . Let C be a simple closed curve of intersection that is innermost on F;
say C ⊂ F ∩ @VT . If C is homotopically non-trivial on @VT ; then the innermost disk on F bounded
by C is a cross-sectional disk for VT avoiding TN; contradicting the fact that TN is geometrically
essential. On the other hand; if C is homotopically trivial on @VT ; then the fact that C cannot be
removed by an isotopy of F implies that the 2-sphere formed by the disk on @VT bounded by C and
the innermost disk on F bounded by C bounds a 3-ball in VT meeting TN. If this 3-ball contains
the two arcs forming the numerator closure of T ; then again we would have an NS-separating disk
for T ; otherwise we would have a 2-sphere in the ambient 3-ball of T separating T .

Proposition 2.4. Suppose that T; U meet the conditions of Proposition 2.3; and that neither of T
nor U has a connected summand. Then the link H (T; U ) is prime.

Proof. From the  rst part of the hypothesis; the tori @VT ; @VU are incompressible in S3 − H (T; U );
also; by Proposition 2.2; H (T; U ) is non-split; whence S3−H (T; U ) is irreducible. Let F be a 2-sphere
in S3 meeting H (T; U ) transversely in two points. These points must lie on the same component
of H (T; U ); hence they lie in the same companion solid torus; say without loss of generality VT .
Since @VT is incompressible and S3 − H (T; U ) is irreducible; we may isotope F so as to remove
all simple closed curves of F ∩ @VT which are homotopically trivial in F − (F ∩ H (T; U )). We are
then left with a  nite number of parallel simple closed curves on F that separate the two points of
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Fig. 4. (i) & (ii).

(F ∩ H (T; U )). If the number of such curves is zero; then F lies in VT ; since by hypothesis T has
no connected summands; F bounds a 3-ball in VT meeting the link H (T; U ) in an unknotted arc;
and we are done. Otherwise; the two curves closest to the respective points of (F ∩H (T; U )) bound
disjoint cross-sectional disks of VT meeting H (T; U ) in a single point; this is impossible; as each
such cross-sectional disk meets H (T; U ) in an even number of points.

The hypotheses of Propositions 2.3 and 2.4 can be met even if the sublinks TN; UN are trivial
or composite. For example, the link H (T; U ) illustrated in Fig. 4(ii) is prime, even though TN is a
connected sum of four links and UN is the unlink of two components.
The  nal proposition of this section deals with the issue of connected sums, and will be useful

for constructing prime links with prescribed polynomials.

De�nition. A tangle T is primary if it meets the hypotheses of Propositions 2.3 and 2.4; namely if
T is not separated by a 2-sphere in its ambient 3-ball; T does not admit an NS-separating disk; and
T has no connected summand.

Proposition 2.5. Let L be a non-split link in S3. Then there exists a primary tangle T such that
TN = L.

Proof. If L is the unknot; we may take T = 1. Otherwise; from the hypothesis; L is either prime or
a connected sum of prime links. Let us suppose  rst that L is prime. We take any diagram of L;
and then choose two edges  ; ! of the projection of L sharing a common region and corresponding
to distinct Wirtinger generators of the link group "1(S3 − L). Cutting out interior segments of these
edges and choosing a suitable coordinate system yields a diagram of a tangle T with numerator equal
to L. Since we are assuming for the moment that L is prime; all conditions for T being primary
are obviously met except possibly for the condition regarding the absence of an NS-separating disk
for T . But such a disk would extend to a 2-sphere meeting L in a point of  and a point of !;
impossible as  ; ! correspond to distinct Wirtinger generators.
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The proof for the case where L is composite is very similar, except that we need to choose
the arcs  ; ! carefully in order to ful ll the condition that T should have no connected summand.
Speci cally, we  rst choose a diagram of L where all the connected summands are arranged in a
chain, in the manner of Fig. 4(i) (to achieve this con guration it might be necessary to “feed” one
connected summand through another, as explained in [2]). We then take  ; ! to be arcs at the two
extremities of the chain, as indicated. This action will “purge” all connected summands from T .

3. In�nite sequences of links with common bracket polynomial

In this section we describe a general way of generating in nite sequences of links with common
bracket and Jones polynomials.

De�nition. Given a tangle T; T! denotes the tangle (T + 2) · 1 · 2; and T P! denotes the tangle
(T − 2) · (−1) · (−2) (Fig. 5).

Using the operation ∗ introduced in Section 1, we may also write T! = ((T + 2) ∗ 1)) + 2, and
T P! = ((T − 2) ∗ (−1))− 2.
We may consider ! as a self-homeomorphism of the (3-ball, tangle) pair (B; T ), mapping its

boundary by a self-homeomorphism of (@B; @B ∩ T ) that interchanges the SW and SE endpoints of
T .
It may easily be veri ed that T! P! is equivalent to T via an isotopy  xing the endpoints of T .

This corresponds to the fact that the homeomorphisms of (@B; @B ∩ T ) induced by !; P! represent
inverse elements of the mapping class group of (@B; @B ∩ T ).
We note the following elementary properties of the operator !:

(i) any given orientation of TN extends to an orientation of (T!)N, whence signs of crossings within
TN are preserved when transforming to (T!)N;

(ii) the sum of the signs of the  ve additional crossings in (T!)N is always +1.

In (ii) we are taking into account the fact that an orientation of the numerator of a tangle T forces
one of the NW, NE ends of T to be directed inwards, and the other outwards.
Of course, the operator P! enjoys the same properties, except that the sum of the signs of the  ve

additional crossings is always −1.
We now determine the e,ect that the operations !; P! have on the bracket vector of a tangle. From

Proposition 2.2(ii) we have

br(T + 1) =M+ · br(T ); br(T ∗ 1) =M∗ · br(T );

Fig. 5. The tangles T!; T P!.
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where

M+ =
[

a 0
a−1 −a−3

]
; M∗ =

[−a3 a
0 a−1

]
:

In the present context it is natural to introduce the 2× 2 matrix

$ =M 2
+M∗M 2

+ =
[ −a−1 + a3 − a7 a−3

−a−11 + 2a−7 − 2a−3 + 2a− a5 a−13 − a−9 + a−5

]
:

We then have

Proposition 3.1.

br(T!) = $ · br(T );
br(T P!) = $−1 · br(T ):

De�nition. Given tangles T; U; H (T; U )! denotes the diagram H (T!; U P!).

Theorem 3.2. Let T; U be any tangles. Then the bracket polynomials of H (T; U ); H (T; U )! are
equal.

Proof. This follows from Proposition 3.1 and the easily veri able identity

$tH$−1 =H;

where H is the matrix in the formula 〈H (T; U )〉= br(T )t ·H · br(U ) of Proposition 2.1′.

The writhe of H (T; U )! might di,er from that of H (T; U ), as application of ! interchanges two
tangle ends, and can therefore a,ect the signs of the eight “clasp” crossings in the pattern H (T; U )
where the two numerators meet. However, a double application of ! preserves tangle ends, and in
view of properties (i) and (ii) of ! stated above we have the following additional result:

Theorem 3.2′. Let T; U be any tangles. Then the Jones polynomials of H (T; U ); H (T; U )!
2
are

equal; assuming that the transformed tangles are oriented in a manner consistent with the orien-
tations of the original tangles.

By iterating the transformation H (T; U ) → H (T; U )!, from given tangles T; U we can construct an
in nite sequence of links, such that alternate links in the sequence have the same Jones polynomial
(all diagrams in the sequence have the same bracket polynomial).
Let T be a primary tangle. Then either T is a rational tangle, or T has no separating disk. In

the former case, the sequence T; T!; T!2
; : : : contains at most one instance of a tangle admitting an

NS-separating disk, whereas in the latter case no tangle in the sequence can admit such a disk, as
the existence of a separating disk is a topological property.
We are now ready to state and prove our main results.
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Theorem 3.3. Let L be any non-split link with k¿ 1 components. Let VL denote the Jones polyno-
mial of L; and let u denote the Jones polynomial of the 2-component unlink; i.e. u=−t−1=2 − t1=2.
Then there are in?nitely many inequivalent prime (k + 1)-component links with Jones polynomial
equal to uVL.

Proof. First we consider the case where L is distinct from the unknot. By Proposition 2.5 there
exists a primary tangle T with numerator L. Let U be the tangle ∞ + 2; i.e. the tangle .
We de ne a sequence of (k + 1)-component links &i (i¿ 0) inductively as follows: &0 =H (T; U );
&i =&!2

i−1 (i¿ 1). As &0 is a split union of L with the unknot; the Jones polynomial of &0 is uVL.
Therefore; by Theorem 3.2′; all &i have the desired Jones polynomial. It therefore remains to be
shown that there are in nitely many distinct prime links amongst the &i.
From the discussion immediately before this theorem, at most one tangle in the sequence T; T!2

;
T!4

; : : : fails to be primary. The tangle U = ∞ + 2 is not primary; however, repeated application
of P!2 to ∞+ 2 yields the sequence of rational tangles

−(5 · 1 · 2);−(5 · 1 · 4 · 1 · 4 · 1 · 2);−(5 · 1 · 4 · 1 · 4 · 1 · 4 · 1 · 4 · 1 · 2) : : : :
Since these rational tangles are all primary, by Proposition 2.3 at most one of the links &i (i¿ 1)
can fail to be prime; since the numerators of these tangles are pairwise distinct 2-bridged knots,
there must be in nitely many link types amongst the &i.
If L is the unknot, we choose T=∞−2, U=∞+2, and construct the sequence &i as before. The

situation here is simpler, as &i=H (Ti;−Ti), where Ti=5 ·(1 ·4)2(i−1) ·1 ·2. Clearly, the tangles Ti are
all primary for i¿ 1, and the numerators of the Ti are pairwise distinct 2-bridged knots. Therefore
the conclusion holds in this case also.

For split links a slightly stronger statement is possible, in view of the special nature of the Jones
polynomial of a split link.

Theorem 3.3′. Let L be an arbitrary link of k-components; let us suppose that L is a split union
of links L1; L2; : : : ; Lm (m¿ 1); where the splitting is maximal in that each Li is non-split. Then for
each i¿ − m + 2 there are in?nitely many (k + i)-component prime links with Jones polynomial
equal to uiVL.

Proof. The connected sum L1#L2# · · · #Lm is a non-split (k − m + 1)-component link with Jones
polynomial u−m+1VL. Apply Theorem 3.3 repeatedly to this connected sum.

Corollary 3.3.1. For each k¿ 2 there are in?nitely many prime k-component links having the
same Jones polynomial as the k-component unlink.

In the next section we describe examples of this construction.

4. Sequences of links with trivial polynomials

4.1. The family of 2-component links LL2(n) (Fig. 6)

Our  rst example is the sequence generated by the pair T=∞−2; U=−T=∞+2. This sequence
featured in the part of the proof of Theorem 3.3 concerned with the unknot. We use the subscript 2
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Fig. 6. The links LL2(1); LL2(2); LL2(3).

in its identi er as it was the second such sequence to be discovered. H (∞− 2;∞+2) is a diagram
of the unlink of two components with writhe 0; therefore, repeated applications of the operator ! to
the tangle T yields a sequence of rational tangles T0=∞−2; T1=3; T2=5 ·1 ·2; T3=5 ·1 ·4 ·1 ·2; : : : ;
such that 〈H (Tn;−Tn)〉= 	 for all n¿ 0.

De�nition. LL2(n) =H (Tn;−Tn); where the tangle Tn is the result of n applications of the operator
! to the tangle ∞− 2.

It can be veri ed that the writhe of H (Tn;−Tn) is zero for even n, whereas for odd n the writhe
is equal to ±8, the sign depending on choice of string orientations.
Let VL(t) denote the Jones polynomial of a link L, and let u denote the Jones polynomial of the

2-component unlink, i.e. u=−t−1=2 − t1=2. From the discussion of the previous paragraph, we may
assert:

Theorem 4.1. VLL2(n)(t) = u for even n; and VLL2(n)(t) = t±6u for odd n; where the sign depends on
choice of string orientations.

For even n the link LL2(n) has the added distinction of having zero Alexander polynomial, on
account of being a boundary link: it is easily checked by means of Seifert’s algorithm that the
sublinks TN; UN bound disjoint Seifert surfaces. Therefore the sequence LL2(n) (n=2; 4; 6; : : :) is an
in nite sequence of pairwise distinct prime links indistinguishable from the unlink by both Jones
and Alexander polynomials. However, although we have not proved this, it appears that the HomHy
polynomials of these links are all non-trivial.

4.2. The 2-parameter family of 2-component links LL1(m; n) (Fig. 8)

Let us de ne a 2-parameter family of tangles Tm;n = n · 1 · (1 · 1=2)m · (−1), where m¿ 0 and n
is any integer.

Proposition 4.2. The numerator of Tm;n is the unknot.



166 S. Eliahou et al. / Topology 42 (2003) 155–169

Fig. 7.

Proof. In the case m = 0; a single Reidemeister move of type II transforms the numerator of Tm;n

to the denominator of the tangle n; so (T0; n)N is indeed the unknot.
Now let us consider the case m¿ 0. If T is any tangle, inspection of Fig. 7 shows that the

numerator of T · (1=2) · (−1) is equivalent to that of T −2. Therefore the numerators of Tm;n; Tm−1; n

are equivalent, and the conclusion follows by induction on m.

A single application of ! to Tm;n and P! to ∞+ 2 leads to the following family.

De�nition. LL1(m; n) = H (T;−3); where T = (Tm;n)! = n · 1 · (1 · 1=2)m · 1 · 1 · 2.
It is easily checked that the transformation from H (Tm;n;∞ + 2) to H (T!

m;n;−3) does not alter
writhe when m¿ 1; or when m=0 and n is even. However; when m=0 and n is odd; the contribution
to the writhe from the eight clasp crossings changes from 0 to ±8. Therefore; we may assert:

Theorem 4.3.

VLL1(m;n)(t) =




u (m¿ 1);
u (m= 0 and n even);
t±6u (m= 0 and n odd):

Clearly the transformation ! can be applied to LL1(m; n) to generate a 3-parameter in nite family
of 2-component links with trivial Jones polynomial.

4.3. The family of 3-component links LLL(n) (Fig. 9)

Let Tn be the tangle 2 · (1=2 ·1)n−1 ·−1 (n¿ 1), and let T0 be the zero tangle. An almost identical
argument to that of Proposition 4.2 shows that the numerator of Tn is the unlink of two components,
for all n¿ 0. A single application of ! yields the following family:

De�nition. LLL(n) = H (T;−3) (n¿ 0); where T = (Tn)! = 2 · (1=2 · 1)n · 1 · 2.

The following is easily veri ed.

Theorem 4.4. VLLL(n)(t)= u2 for n¿ 1; and VLLL(0)(t)= u2 if the components of TN are oriented so
that the linking number between TN and UN is zero.
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Fig. 8. LL1(3; 4).

Fig. 9. LLL(0); LLL(3).

5. Some remarks on the families

1. The links LL1(0;−2); LL1(0;−1); LL1(0; 0); LL1(0; 1) and LLL(0) were originally discovered
by the third author during the course of a computer enumeration of links.
2. The links with trivial polynomial described here are all e,ectively classi able, as their sublinks

are all alternating, and the way in which they sit inside the regular neighbourhood of the companion
Hopf link is evident. It is perhaps ironic that the Jones polynomial, whose discovery played a
fundamental rôle in the proof of the Tait conjectures [4,6,7], fails completely to distinguish these
links directly. There are a few isolated duplications within the families, for instance LL1(m+1;−1)=
LL1(m;−2) and LL1(0;−1) = LL2(0).
3. In cases where the individual numerators TN; UN are presented in reduced alternating form

and the linking number between the numerators is ±4, the diagram H (T; U ) of Fig. 1 must have
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Fig. 10. Prime 4- and 5-component links with trivial Jones polynomial.

minimal crossing-number, as a linking number of n cannot be realized with fewer than 2|n| crossings
with strands in both sublinks. It is possible that a more re ned argument could be used to show
that H (T; U ) has minimal crossing-number for reduced alternating T; U , without this assumption
regarding linking number.
4. One can try to generalize the H (T; U ) construction. For example, an analogue of Theorem 3.2

holds for the 2-clasp pattern of Fig. 10(i). Therefore the argument of Theorem 3.3 shows that the
4-component link illustrated in Fig. 10(i) has Jones polynomial equal to that of the 4-component
unlink, if one orients the middle two components so as to make all linking numbers zero. Fig. 10(ii)
illustrates a prime 5-component link with trivial Jones polynomial, obtained from the link of Fig.
10(i) by the method of Theorem 3.3.
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