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1. Introduction. In [5] Mazur constructed a homotopy 4-sphere which

looked like one of the strongest candidates for a counterexample to the

4-dimensional Poincaré Conjecture. In this paper we show that Mazur's

example is in fact a true 4-sphere after all. This raises the odds in favour

of the 4-dimensional Poincaré Conjecture.

The proof involves a smooth knot of S2 in S4 with unusual properties.

Firstly, the group of the knot is

^(S4 - S2) = G X Z,

where Z = integers, and G = binary dodecahedral group. Since G has order

120, this answers affirmatively a question of Fox [3, Problems 33 and 34]

asking if the group of an S2 knot in S4 could have elements of even order.

Secondly, the complement S4 — S2 of the knot is a fibre bundle over

S1 with fibre the punctured dodecahedral space, and group Z5 (= cyclic

of order 5). TAe dodecahedral space M3 is defined to be the quotient space

M3 = S3/G, where G is embedded as a subgroup of S3 by the double covering

G-£->S3

Dodecahedral group->SO(3).

The dodecahedral space M3 is the only known homology 3-sphere with non-

trivial finite fundamental group [9, §62]. By punctured M3, or more briefly

pune M3, we mean a space homeomorphic to M3 minus a point; and by

bounded punctured M3 we mean a space homeomorphic to M3 minus a (tame)

open 3-cell.

The knotted S2 in S4 is obtained by spinning a trefoil knot in the manner

of Artin [l], with the additional refinement that we twist it 5 times as it

spins. The precise formulation of "twisting" and "spinning" is given in §6,

together with a more elaborate intuitive description in §4.

More generally we give a recipe for ^-twist-spinning any smooth Sn~2

knot in Sn. The result is a smooth S"'1 knot in Sn+1, whose complement is

a bundle over S\ with group Zk and fibre pune M", where M" is the A-fold

cyclic branched covering of S", branched over the original S"~2 knot. More-
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Figure 1

over S1 acts on S"+1 so as to leave the Sn_1 invariant (setwise not pointwise),

and map the complement fibrewise. In particular if k = ± 1 the result is

unknotted.

A corollary to the theorem is that the punctured dodecahedral space can

be differentially embedded in S4. On the other hand Wall has shown that

the (unpunctured) dodecahedral space M3 cannot be tamely embedded in

S4. His proof uses the fact that M3 is the boundary of an algebraic variety

of index 8, with Stiefel-Whitney class W2 = 0. If one could embed M3 in

S4, then each component of the complement would be homologically trivial,

and glueing one of them onto the variety would give a closed 4-manifold

of index 8, contradicting Rohlin's theorem [7], which says the index must

be divisible by 16.

Another application is the differential embedding of the punctured lens

spaces L{p,q), p odd, in S4, confirming a conjecture of Epstein [2]. This

application uses a theorem of Schubert [8, Satz 6] which says that these

lens spaces occur as double branched coverings of certain knots, and so we

obtain the embeddings by 2-twist-spinning the knots. On the other hand

an (unpunctured) lens space cannot be embedded in S4, because the co-

homology ring cannot be split into two components compatible with both

the Bockstein coboundary operator and Alexander duality. In contrast

Epstein [2] has shown that when p is even the lens spaces L{p,q) cannot be

differentially embedded in S4, whether punctured or unpunctured. His proof

uses a Thom construction and Pontryagin classes. It is interesting that

Schubert's technique [8] gives all the lens spaces occurring as branched
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coverings, but luckily we do not have a contradiction here, because when

p is even the branching is over a link rather than a knot.

The A-twist-spinning process does not by any means generate all knots,

because for instance if the process is applied to S0 C S2 then we obtain

only the trivial knot of S1 in S3; but it does look like a promising con-

struction for providing counterexamples.

2. Mazur's example [5]. Let M3 be the dodecahedral space. Choose a

homeomorphism A of M3 with the properties:

(a) A is orientation preserving,

(b) A has period 5,

(c) A has a fixed point,

(d) A* kills the fundamental group (i.e., adding the relations A*x = x,

xGiri(M3) reduces iri(M3) to zero).

Mazur gives an explicit example of A which is equivalent to the following

description. Represent M3 as a dodecahedron with the opposite faces glued

together [9, §62]. Then A is the homeomorphism induced by rotating the

dodecahedron through an angle 2x/5 about a diameter perpendicular to a

pair of faces. This particular A has a whole circle of fixed points. We discuss

other choices of A in §8.

Let / denote the unit interval. Now glue the ends of M3 X I together by

A to form a bundle

M3->M4->SX

with group Z5. The fixed point gives a cross-section to the bundle, which

we now surger out. More precisely choose a tubular neighbourhood D3 X S1

of this cross-section and replace it by S2 X D2, thereby defining a manifold

Q4 = (M4 - D3 X S1) U S2 X D2.

We shall show in §§4 and 6 that one of these choices gives Q4 = S*. The

other choices are discussed in §8.

Meanwhile we can check that Q4 is a homotopy 4-sphere by showing it

to be a homology 4-sphere and simply connected. The homology property

follows from the Mayer-Vietoris sequence and the fact that M4 is a homology

torus S3 X S1. To show Q4 simply connected, we first look at ^(M4). From

the homotopy exact sequence of the fibering we have irx(M4) sitting in a

short exact sequence,

0->G-^(Af4)->Z-»0.

The action of a generator zEZ is the isomorphism A* on G= irx(M3) in-

duced by the homeomorphism A. By explicit computation we can choose

generators x,y of G, and lift z back into ^(M4) so that
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tt(M4) = \x,y,z;xs= (xy)3= ixyz)2,z~lxz = y,z~lyz = yx"1}.

The effect of the surgery is to add the relation z = 1, which kills the whole

group. Therefore irAQ4) = 0, and so we have shown that Q4 is a homotopy

4-sphere.

The knot involved in Q4 is the core of the surgery

S2=S2X0CS2XD2CQ4.

There are homeomorphisms

Q4-S2^Q4-S2xD2

= M4 - Ö3 X S1

s M4 - S\

where S1 denotes the cross-section through the fixed single point of ft. Re-

moving this cross-section leaves the bundle

pune M3-> (Q4 - S2)-► S\

This shows the fibering of the complement of the knot. To work out the

fundamental group we observe that ^(puncM3) = 7Ti(M3) = G, and so

iri(Q4 — S2) = it AM4). Now the above exact sequence for wxiM4) does not

split, and so it is not clear that it AM4) =¿ G X Z. To prove this we modify

Mazur's proof slightly (we need to modify his proof, because in his paper

he confuses G with the dodecahedral group and therefore mistakenly assumes

that G is simple). Let g = xy_1x_1 G G. Then by computations we can show

that the inner automorphism induced on G by g coincides with the action

of 2 on G in irAM4). Therefore if 2* = g~lz, then 2* is a generator of irxiM4)

of infinite order that commutes with G. Therefore if Z* is the free cyclic

subgroup generated by 2* we have irAM4) = G X Z*.

Finally we look at the action of Sl on Q4. To begin with, S1 acts on the

bundle M4 —> S1 by rotating the base S1 five times and acting on M4 fibre-

wise. The cross-section is an invariant circle and is rotated on itself five

times. Provided the tubular neighbourhood is chosen correctly, then the

induced action on the boundary S2 X S1 of the tubular neighbourhood is

the product of five rotations of S1 with one rotation of S2 about a diameter.

This extends to a similar product action of S1 on S2 X D2, and hence gives

an action of S1 on Q4. The action of S1 on the knot S2 = S2 X 0 is rota-

tion once about a diameter.

Remark. In his paper Mazur makes the mistake of thinking that S1

leaves the knot pointwise fixed as opposed to setwise fixed (the mistake

occurs on page 248, line 23, in the words "it is also clear that"). This leads

him to claim erroneously that the Smith conjecture [10] in higher dimen-

sions is false, i.e., that there exists a periodic map of Sn with fixed point
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set a knotted S"'2. As far as I knowC) this conjecture is still open for all n = 3.

3. A digression on the trefoil knot. I personally found it hard to visualise

how the complement of a knot could be fibered so beautifully, until I heard

a talk by John Stallings on Neuwirth knots (see [6] and [il]). A Neuwirth

knot is an ordinary S1 knot in S3 whose group has finitely generated com-

mutator subgroup.

Theorem (Neuwirth [6] and Stallings [11]). Let S1 ES3 be a Neuwirth

knot of genus g. Then:

1. The commutabr subgroup of irx(S3 — S1) is free on 2g generators, and

2. if Mg denotes the orientable surface of genus g, there is a fibre bundle

(pune M2)-> (S3 - S1)-> S1.

The closure of a fibre is a minimal surface spanning the knot.

For the benefit of readers who enjoy visualising such a fibering and who

wish for a more explicit picture in 3-dimensions in order to gain insight

into the 4-dimensional Mazur example and the n-dimensional theorem in

§6, let me now digress for a little while to describe in detail the fibering of

the complement of the trefoil knot. In this case the fibre will be a punctured

torus.

Represent <S3 as the join of two circles S3 = S\*Sl. Let S1 act on S3

by rotating S\ twice and S2 thrice, and joining. More precisely if ^ G S1,

Si G S1, and £ G I is the join parameter, then \p acts by mapping

(bx, t, e2)-> (ex + 2i, t, e2 + 3*).

In terms of unit quaternions this is the action zx + jz2 —» e2l*zx + je3l*z2,

where zx and z2 are complex numbers. The trefoil knot lies on the halfway

torus £ = 1/2, and is given by 30i = 202. The action of S1 rotates the trefoil

on itself once.

We shall now describe a minimal surface T2 spanning the knot, which

will be a bounded punctured torus. The interior of T2 is a punctured torus

with the property that the action of S1 on the interior of T2 gives a family

of punctured tori fibering S3 minus the trefoil. If ^ = 7r/3 in «S1, then the

action of i is to map each fibre onto itself by a homeomorphism of period 6,

and so the group of the bundle is Z6. So now let us describe T2.

T2 will be the union of five disks Ax, A2, By,B2, B3 as follows. AX,A2 will

be the two disks in the solid torus £ ê 1/2 given by 02 = 0 and 02 = v. The

action of S1 on Ax fibres the solid torus £ ̂  1/2 by the disks 62 — constant.

In particular if \p = t/3, then the action of \p is to interchange Ax and A2.

( ) Added in proof. C. H. Giffen has now shown that the Smith conjecture is false for all

n g 4, by using the branched coverings of twisted spun knots.
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If i = 27t/3 the action of \p is to map each disk onto itself with a rotation

of 4tt/3.
The description of the P's is a little harder. Let RX D2 be the solid

cylinder that is the universal cover of the other solid torus t ^ 1/2. Co-

ordinates in R X D2 are given by 6X X it, 02) where dx E R and 6X = dx reduced

modulo 27T, while 0 ^ t ^ 1/2, 02ESi and it,6i) are polar coordinates in

D2. The trefoil lifts to the double helix on the surface of the cylinder given by

t = 1/2,    30J = 202 modulo 2tt.

The boundaries of the disks AX,A2 lift into the straight lines

í=l/2,       02=O,7T.

Given X, 0 ^ X ̂  7T, let /x be the straight interval in RX D2 joining the

points 2X/3 X (1/2, X) and 2(tt - X)/3 X (1/2, 2tt - X).

Define 5! to be the ruled surface (see Figure 2) Ëx = UosxstP, and

let Pi be the image of Ëx under the covering projection. The boundary

3BX consists of 4 arcs, one contained in each of 3Ax,dA2 and the other two

contained in the trefoil. The action of S1 on the solid torus t i£ 1/2 lifts to

the isometric action of R on the solid cylinder given by screwing the solid

cylinder along the double helix. The images of Ëx under this action consist

of a family of disks which are disjoint except for where their boundaries

intersect the double helix. (This can be shown by elementary Euclidean

geometry.) Therefore the disks minus the double helix fibre the solid

cylinder minus the double helix. Down below in the solid torus t ^ 1/2, the

images of Pi under the action of Sl induce a fibering of the solid torus

minus the trefoil. In particular if \p = w/3, let P2 = iBx, B3 = \pB2; then

Pi = ^P3 and so \p permutes the three disks.

If \p = ir then \p maps each disk B¡ onto itself with a rotation of 7r about

the centre. Since 3iBx\jB2\jB3) = ö(AiUA2) U the trefoil, we have

that T2 = AX\J A2U BX\J B2\J B3 is a 2-manifold spanning the trefoil.

Since T2 is orientable with Euler characteristic — 1 it must be a bounded

punctured torus, and so the interior is a punctured torus. By construction

the action of Sl on the interior of T2 generates a fibering of S3 minus the

trefoil. In particular if \p = w/3 then the action of \p maps each fibre to

itself so as to interchange the A disks and permute the B disks, i.e., give

a homeomorphism of period 6. Hence the bundle

(pune torus)-* (S3 - trefoil)-> S1

has group Z6.

Remark 1. Not every Neuwirth knot has finite bundle group.

Remark 2. Comparing §§2 and 3 we conclude: Had we started with a

torus M2 and the homeomorphism ft: M2—>M2 of period 6 keeping a point
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(i) Minimal surface spanning (ii) Minimal surface as union of

trefoil. five disks.

(iii) Solid torus £ = \. (iv) Universal cover of the

solid torus t zg \.

Figure 2

fixed, and then applied Mazur's construction (with suitable choice of tubu-

lar neighbourhood) then we should have recovered the sphere S3, and the

knot involved would be the trefoil. This gives the intuitive picture of

Mazur's construction.

Remark 3. It is interesting to note that although the trefoil and the

action of S1 on S3 are algebraic, yet the fibering of the complement does

not seem to be expressible algebraically (only differentially or piecewise

algebraically). This is brought out more strongly in Lemma 2 below, where

the existence of the fibering turns out to be a homotopy property.

Before leaving our digression we mention a 4-dimensional corollary to

the Stallings' theorem.
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Corollary. Let S2 C S4 be the suspension of a Neuwirth knot of genus g.

Let H2g be a handlebody of genus 2g, formed by glueing 2g solid handles onto

a 3-ball. Then there is a fibre bundle

(int H32e)-> (S4 - S2)-> SK

Proof. Since S2CS4 is the suspension of S'C-S3 we have S4 - S2

^ (S3 - Sl) X R. Since S3 - Sl is fibered by puncM2 it follows that S4 - S2

is fibered by (pune M|) X R. To see that (pune M¡) X R = int H2g we

illustrate the case of a torus.

Figure 2(ii) shows the bounded punctured torus T2 as two disks joined

by three strips. Then T2 X I is obtained by thickening P2 into two balls

joined by three solid pipes. The thickness of the pipes enables us to untwist

them and so establish a homeomorphism T2 X / = H2. Taking interiors we

have (int T2) X R^ int H2. The case for higher genus is similar.

Remark 4. The above corollary is also a digression because throughout

the rest of this paper we shall confine ourselves to smooth knots. In the

corollary the knots were not smooth at the suspension points. In a sense

the fibering of the complement is therefore the more surprising. However,

the nonsmoothness is reflected in the fact that although each fibre P is an

open manifold, the closure P of each fibre (obtained by adding the knot to

the fibre) is not a bounded manifold. For P is the suspension of a bounded

punctured torus and therefore fails to be a manifold at the two suspension

points. One may describe P as the generalisation to nonsmooth knots of the

concept of minimal surface spanning a smooth knot.

4. The 5-twist-spun trefoil. We shall describe intuitively how to twist-spin

the trefoil into Mazur's knot. The description is repeated rigorously with

formulae in §6, and a much more general theorem is proved, but for the

moment let us continue in the spirit of the last section and try to construct

a picture. Firstly, the process of spinning was initiated by Artin [l] in 1925.

The formula Spin D1 = S2 means map the arc D1 onto a meridian of S2 and,

keeping 3D1 fixed at the poles, multiply the interior of D1 by S1, or in other

words spin the meridian about the poles to form S2. Similarly Spin Dn = Sn+1

means keep 3D" fixed and multiply the interior of D" by S1. In particular

SpinP3 = S4.

Now in D3 draw an arc P1 running from the North pole to the South

pole via a trefoil knot. The spinning process induces S2 = spin Z)1 C spin P3

= S4, which is the Artin knot. The additional refinement that we now add

is to rotate the knotted arcP1 about the polar axis relative to P3 during

the spinning. We call this process "twisting" and we actually twist 5 times

during the spinning. The result is that we obtain a different knot from

Artin's. For Artin's knot with zero twist has group



1965] TWISTING SPUN KNOTS 479

7n(S4 - S2) = irx(D3 - D1)

= group of the trefoil

= {a,b; aba = bob \.

Whereas the 5-twist-spun trefoil has group

*X(S4 - S2) = [a,b;aba = bab,b = a-'ba5}.

The extra relation comes in as follows. Represent b by a path consisting

of a loop and a tail. The loop is a little loop looping the arc marked "6"

in Figure 3, and the tail runs from the base point to the loop. The path

North pole

South pole

Figure 3

representing b goes along the tail, round the loop, and back along the tail.

Now twist-spin the loop, or more precisely homotop the loop round the

twist-spin back to its original position. If we extend the homotopy of the

loop to a homotopy of the path representing 6 keeping the base point fixed

of course, then the tail gets wound5 times round the axis of twist, namely a.

Therefore the new path represents oT56a5, and so b = a~5bab. Since a5 com-

mutes with generators a, b it lies in the centre of the group. By Artin's

argument [l] it can be shown that there are no other generators, and all

the new relations follow from a5 lying in the centre. We can now show that

the two groups



480 E. C. ZEEMAN [March

irx(S4 - S2) = j a, b; aba = bab, b = a ~bbab},

GxZ= ¡x,y,z;x5 = (xy)3 = (xyx)2,z-1xz = y,z_1;yz = yx"1)

are isomorphic by making the substitution a = z, b = xz. Admittedly they

do not look isomorphic at first sight, and still less do they look like G X Z,

but this admission is an illustration of how group theory can at first sight

obscure a geometrical problem rather than illuminate it. However, knowing

the group itself is useful because, since it has elements of finite order, this

shows that the 5-twist-spun trefoil is not the same as Artin's original 0-twist-

spun trefoil, because the latter has the same group as the trefoil with no

elements of finite order.

We have shown that the 5-twist-spun trefoil has the same group as

Mazur's knot. We shall show that they are actually the same knot, which

renders our above computations redundant. However the computation has

been useful in verifying the structure of the group and in relating the

geometry to the structure and in detecting the elements of finite order.

We conclude this section by describing how the punctured dodecahedral

spaces sit inside S4. The fibering described in §3 of the complement of a

trefoil induces a fibering of D3 — D1 by surfaces Fl, <b E Sl. The surface

Fl is in fact a "half-bounded" punctured torus, with boundary dFl = Ml

= the meridian of dD3 with longitude <j>. The interior of Fl is a punctured

torus, while the closure of Fl is a bounded punctured torus, whose boundary

contains in addition to M\ the knotted arc D1 (see Figure 4).

Figure 4

Given 0 E S1, let D3 denote the position of D3 at time 6 in the spinning
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process. Let D] denote the corresponding position of the knot, which re-

member has been twisted through 50 relative to P3. Let P2,¿ denote the

corresponding fibre, which since it also has been twisted through 50 has

boundary dP2^ = M\+m (remember all the boundaries of the Df are identi-

fied). Now consider the union

m¡= Up?,,-«-
ees

This union consists of an ¿^-family of punctured tori all glued onto the

single meridian M]. The S^family of punctured tori is the 5-fold cyclic

covering of

(intP3 - intP1) = iS3 - trefoil),

and the addition of M\ has the effect of adding to this covering an open

arc of the branch locus in the 5-fold branched covering of S3, branched over

the trefoil. Now the 5-fold branched covering of S3 branched over the trefoil

is none other than the dodecahedral space M3 [9, §65], and puncturing the

latter has the same effect as removing a tame closed arc. In particular we

can remove the closed arc in the branch locus complementary to the open

arc mentioned above. In other words M3, = puncM3, and as \p varies we

obtain the fibering of S4 — S2 over Sl. There remains to check up that this

is the same as Mazur's fibering, and then we shall have established the

homeomorphism between the pairs S4,S2 and Mazur's Q4,S2. We do this

as follows.

We can lift the covering Ä—»S1 to a covering «: M3 X P—>S4 — S2 and

define the homeomorphism ft so that the diagram

M3->M3

XO X2tt

M3X0—"—^ M03«——M3X2tt

is commutative. There is a slightly subtle point here because ft depends

upon the product structure M3 X R chosen in the covering space, and if

we choose a different product structure (still covering the fibering below),

we then obtain a different ft, isotopic to the original one. To make sure

that we get the correct ft, of period 5, it is necessary to resort to explicit

formulae, which we do in the next section. Here it suffices to say that the

product structure is equivalent to isotoping each P2^ onto F2e+2l/5A by

keeping <b fixed and giving 0 one fifth of a spin; this maps M\,+t onto itself

with the canonical covering homeomorphism of the 5-fold branched covering,

which has period 5, and can be identified with Mazur's. This establishes

the homeomorphism
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(S\S2)^(Q\S2).

Remark. There is another obvious looking candidate for the product

structure equivalent to isotoping each F2^ onto itself by keeping 6 fixed

and giving <b a whole twist (twist as opposed to spin). At first sight this

looks like the homeomorphism of the punctured torus onto itself of period

6 (rather than period 5) described in §3; but at second sight this is not so

because the homeomorphism must keep the meridian M\, + t fixed, and

therefore keeps the boundary of F2A fixed. But any homeomorphism of a

bounded punctured torus keeping the boundary fixed cannot be periodic

unless it is the identity. Hence the corresponding homeomorphism of M3

is not periodic.

The fact that the trefoil is a Neuwirth knot, and that its complement

is fibered with group Z6 is irrelevant to the fact that the 5-twist-spun tre-

foil has fibered complement with group Z5. Whatever knot we start with,

the resulting A-twist-spun knot always has fibered complement with group

Zk. In our intuitive description above, it is true that we have made use of

the fibering of the trefoil, but really this is a red herring. In Lemmas 2

and 6 it appears that the fibering is a homotopy property, and different

fibrations are homotopic.

5. Branched coverings of knots.

Notation. Let n £ 3 and let S"'n'2 = (S",Sn-2) denote a smooth knot,

in other words a smooth embedding of <S"~2 in Sn. We shall always assume

n ^ 3 and that the embedding is smooth. Let N denote a closed tubular

neighbourhood of S""2 in S", and V the closure of the complement,

V=closure(Sn-iV).

Therefore dN = d V.

Lemma 1. The normal bundle of a smooth knot is trivial.

Proof. The normal bundle has group S1 and is therefore trivial in n ^ 4,

because then Wn-AS1) = 0. If n = 4, let A G ^AS1) be the characteristic

class of the associated principal bundle dN—>S"~2. If A ¿¿ 0 the cohomology

spectral sequence gives ^(dN) = 0. But by Alexander duality ^(dN)

==; H2(S* — dN) ^ Z, because S4 — dN is the disjoined union of a homotopy

S2 (the interior of N) and a homology S1 (the exterior of N). This contra-

diction shows A = 0, and hence the bundle is trivial.

Corollary. We can choose a homeomorphism t:S"~2X D2—>N such that

t(x X 0) = x for all x E Sn~2.

We use the words "tubular neighbourhood" ambiguously to denote

both N and t.
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Lemma 2. Given Sn,n 2, n è 4, and given a tubular neighbourhood t, then

there exists a map p: V—>S\ unique up to homotopy, such that the composition

(*) S"-2X3D2-t—^dN=3V     P    »S1

is the projection on the second factor. If n = 3 then there exists a tubular neigh-

bourhood t, for which the same property holds.

Corollary 1. p can be extended to Sn - Sn~2 so that ptixX (r,0)) = 0

for all xES"-2, ir,e)ED2, t>0.

Corollary 2. Py approximation p can be made differentiable or piecewise

linear, according to taste.

Proof of Lemma 2. Consider the first case n g 4. There is a unique map

p0: ¿) V—»S1 such that (*) is true. Then p0 represents a generator of [d V.S1]

= HA3V) ^ Z. From the cohomology exact sequence of the pair iV,3V),

using the fact that V is a homology S1 and n ^ 4, we have an isomorphism

H\V) —>aP'(ôV). Therefore in terms of homotopy classes

[V,Sl]^[dV,S1].

Therefore p0 can be extended to a map p: V—>S\ which is unique up to

homotopy.

Now consider the case n = 3. The additional complication, is that 3 V

^S1 X Sl and so [V,Sl]^'[d V.S1] (where i: 3VC V) is no longer an iso-

morphism, but only a monomorphism. We have to choose t so that [p0]

lies in the image of i* as follows. Choose £ G HA3V) to generate the kernel

of i*: HAdV) ->HAV). Choose t:S1xD2^N such that US1 X x) lies in the

class £ for some (and therefore for every) x E 3D2. Define p0 as before, and

then [po] G [d V, S1] = H\d V) is the Poincaré dual of £.

From the commutativity of the diagram

HA3V)-^->HAV)

H\3 V)-> H2i V, 3 V)

we have 5p0 = 0, because i*£ = 0, and so [p0] lies in the image of i*: HliV)

—» Hxi3 V) as desired. Therefore as in the previous case p0 can be extended

to p and is unique up to isotopy. Lemma 2 is proved.

Definition of branched covering. Given a smooth knot Sn,n~2, we define

the k-fold cyclic branched covering of Sn,n~2 as follows. Choose a tubular

neighbourhood t, and a map p: V—»S1 to satisfy  (*)  of Lemma 2. Let
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ks:S1^>S1 be the A-fold covering given by 0—>A0. Let kv: V—> V be the A-

fold covering induced by p from ks.. Observe that kv does not depend upon

the choice of p, since any two choices are homotopic, and homotopic maps

induce the same covering. In other words we have a commutative diagram

V-£->S'

where

V= jyX0;yG V,0GS1,py = A0[C VXS1.

Since d V = £(S""2 X dD2) we have, by Lemma 2,

dV=kvAdV) = {£(xXA0)X0;xGS"-2,0GS1}.

Let e = diV—>dV be the homeomorphism given by

Define

£(xX0)->£(xX A0) X0,        xES"-2,6EdD2

Mn = N(jV.

We call Mn the ¿-fold cyclic branched covering of S"'"~2. We have already

observed that M° does not depend upon the choice of p; by the theorem on

the "uniqueness" of tubular neighbourhoods one can show also that M" does

not depend on £.

The canonical covering homeomorphism. We shall define a homeomorphism

k:M"—>Mn, of period A, whose fixed point set is the branch locus S"~2 of

the covering map Mn—>S". We call k the canonical covering homeomorphism.

Recall that N = t(Sn-2 X D2). Define kn:N^N by

£(xX (r,d))^t(xX (r,0-2ir/A)),

where xG-S""2 and (r, 0) are polar coordinates for D2. Define kv: V—> V

by y X 0—»y X (0 - 2ir/A)). The image of kv is contained in V all right be-

cause y X 0 G V implies py = kB = A(0 — 2tt/A). The diagram
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is commutative, and so the pair kn, kv determine a homeomorphism

k: Mn^>M", which is of period k since both kn and kv are. The fixed point

set of kv is empty, and so the fixed point set of k is the same as that of kn,

which is i(S"-2 X 0) = S""2.

6. The main theorem.

Latitude and longitude. Let A" denote the unit ball in Euclidean n-space

P\ We introduce latitude and longitude coordinates in the unit sphere 3A"

as follows. Write E" as the product P" = P""2 X P2. Given a point x E 3A"

define the latitude of z to be the projection of z on E""2, and the longitude

of 2 to be the angular polar coordinate of the projection of z on P2. There-

fore the latitude of 2 is a unique point of A"-2, and the longitude of z is

either a unique point of Sl if z (JE ÔA""2, or else is indeterminate if 2 G dA"~2.

Definition of k-twist-spinning. Given a smooth knot Sn,n~2, and an integer

k, the ^-twist-spinning process determines a smooth knot Sn+1,n'1 one di-

mension higher as follows. Choose a point x* G S" 2, and by the smoothness

choose a coordinate neighbourhood g:En—>Sn such that giO) = x%, and

g-iSn-2 = fi»-2> the linear subspace 0f En. Let P"/~2 = £An'"-2, the image

under g of the unit ball pair A"""2 in P"""2. Let D"""2 be the complementary

ball pair (see Figure 1)

P"'""2 = closureiS"'"-2 - P"*n_2).

Then Dn,n~2 is a knotted ball pair, in effect the same knot as the given knot

Snn-2. The boundary is unknotted because 3Dn-n~2 = 3DT'2 = gidA™-2).

Therefore we can introduce via g latitude and longitude coordinates (x, <p)

into 3Dn, where x G P*~2 and <b E S\ Let (r, 0) be polar coordinates in P2.

Let

X = X^1'""1 = 3Dn-n-2 X D2 = idD" X D2,3Dn'2 X D2),

y = y«+i,«-i _ ¡yw-i x dD2 = (£)« x ¿7j2; jy-2 x dL>2y

Let /: 3X->áY be the homeomorphism given by

(x, <t>) X 0 -» (x, <b + kd) X 0,        where (x, <f>) E 3D", 0 G S\

Notice that 3X,3Y are pairs of manifolds and that / is a homeomorphism

of pairs; in defining / we have only mentioned coordinates in the larger

manifold of each pair 3Xn+1-*dY"+1 but this is all right because it induces

also a homeomorphism of the smaller manifold of each pair dXn~1—*dYn~1.

This procedure of defining the map of a pair by the coordinates of the

larger will be used frequently below. The purpose of / is to put in the k-

twist. Define the ft-twist-spun knot to be

Sn+1'n~1 = XUY.

f
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Lemma 3. Sn+1" 1is a smooth knot, uniquely determined by Snn 2 and |A|.

Proof. We first have to verify that X U/ Y is a pair of spheres. Now the

homeomorphism of dDn X dD2 onto itself given by / can be extended to a

homeomorphism, /' say, of D" X dD2 to itself (just twist the interior of the

ball Dn along with its boundary). Hence there is a homeomorphism

d(DnX fl2) = dD" XD2(jD"X dD2  1U^> dD"XD2(jDnX dD2.
i i

Therefore the right-hand side is an (n + l)-sphere. Similarly the smaller

one is an (n — 1)-sphere, although a homeomorphism different from /' must

be used for the smaller one in general. Therefore Sn+ln-1 ¡s a pair of spheres,

knotted in general.

The only point where smoothness is not trivial is at the boundary between

the two pairs; but by construction the smaller of each pair meets the bound-

ary orthogonally, and so smoothness follows. To show uniqueness we must

show that Sn+1 •n~1 is independent of (1) choices made during the construc-

tion, and (2) the sign of A.

Now the only choice made in the construction is in effect the embedding

g: a"'"-2—>Sn'"~2; any two such choices are ambient isotopic, and hence

the resulting A-twist-spun knots are diffeotopic.

Now to deal with the sign of A. If S"?1*'1 and Sü.+1,"_1 are knots corre-

sponding to + A and — A respectively, then there is a homeomorphism be-

tween them given by reflecting D2, or in other words mapping 0—> — 0 in

the construction. Thus Sn+1'n-1 depends only on | A|, and Lemma 3 is proved.

The main theorem. Given Sn,n~2, let sn+1'n~1 be the k-twist-spun knot.

Then:

1. If k j¿ 0, there exists a bundle

(puncM")-> (Sn+1 - S"-1)-»S1

with group Zk, where M" is the k-fold cyclic branched covering of Sn'"~2 and

the generabr of Zk is the fibre homeomorphism induced by the canonical covering

homeomorphism of Mn.

2. The closure of each fibre is a smooth bounded punctured M" spanning the

knot S""1 (like a minimal surface).

3. S1 acts on Sn+1 leaving the knot S"_1 setwise invariant, and mapping the

complement fibrewise. The fixed point set is Sn~3ESn~1, and the action of S1

on the knot S"_1 is to rotate it once about S"~3.

Before proving the theorem we deduce some corollaries.

Corollary 1. // S3,1 = <Ae trefoil and k = 5 we recover Mazur's knot (see

§§2 arad 4) and deduce that Mazur's homotopy 4-sphere Q4 is a true 4-sphere.



1965] TWISTING SPUN KNOTS 487

Corollary 2. If k = ±1 then Sn+1'n ' is unknotted.

For the 1-fold branched covering of S"" 2 is S", and so S"'1 is spanned

by a smooth ball, which is a criterion for unknottedness.

Corollary 3. // Sn'"~2 is unknotted then so is Sn+U~l.

For the A-fold branched covering of an unknotted Sn'"~2 is S".

Consequently, we do not get any joy out of twist-spinning S20, in spite

of the fact that Mazur's construction can be reproduced nontrivially one

dimension lower (see §3).

Corollary 4. // M" is the k-fold cyclic branched covering of Sn,n~2 then we

can embed pune M" C Sn+1 differentially, and M"CSn+2 piecewise linearly

(by putting a cone on the puncture hob).

Corollary 5. // p odd, then the punctured lens spaces L(p,q) can be em-

bedded in S4 differentially.

For by Schubert [8, Satz 6], L(p,q) is the double branched covering of

a knot.

7. Proof of the main theorem. We shall prove the main theorem in several

steps. The first step gives the action of S1.

Action of S1. Recall X = dD"'n-2 X D2, Y= Dnn~2 X dD2. Given i ES\

define

*X:X^X    by    ix,<b)Xir,B)^ix,<b + kxF)Xir,6-t),

tY:Y->Y   by   y X B^y X (0 - *)■

The diagram

is commutative, and so the pair \I/x,4>y determine a homeomorphism

is.Sn+1'n-1^Sn+1'n-\ Since fttf- it + t')s this is a group action. By def-

inition S""1 is an invariant submanifold. If \p is not a multiple of 2ir/A,

then \pY has no fixed points and so the fixed point set of fo equals that of

ix which is dDn~2 X 0, namely the "polar" S""3 of S"_1. If ^ is a multiple

of 2t/A and not the identity, the fixed point set of \pY remains empty, but

that of \f/s and \f/x expands to dD"X0, which is an unknotted in — 1)-

sphere in Sn+1 meeting the &-twist-spun knot Sn_1 in its polar Sn~3.

The fibering. The map p: V—»S1 of Lemma 2 can be extended naturally

inside the tubular neighbourhood to a map p: iS" — S"'2) —>S1. Moreover
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we can choose the coordinate neighbourhood g used in the construction of

the knot to be compatible with the tubular neighbourhood t used in Lemma

3; in other words there are embeddings jx: En~2—>S"~2 and j2:E2—»P2 such

that the triangle

En-2 x E2      7lX72    )g»-2 x D1

is commutative. Consequently p determines a map

p:iDn-Dn-2)^S1

such that pix,<b) = <f> for (x, <p) E 3Dn — 3D"2. We use p to define a pro-

jection q as follows: Define

fa:(X»+1-X'-1)-*S1    by    ix,4>)Xir,0)^*,

gy:(Y"+1-Y"-1)-^1    by   yX6->py-kd.

In particular if y = (x,0) G 3iYn - Y""2)  then gy(y X 0) = <f> - kd. There-

fore the triangle

3iXn+1 - X""1)-» 3iYn+l - Y""1)

<7x    \. s^  q-i

is commutative, and so the pair qx, q y determines a projection q: (<S"+1 — Sn~l)

—»S1. Since, by Lemma 2, p was unique up to homotopy, the same can be

said of q.

We now show that q is compatible with the action of S1. More precisely

let us introduce a new definition. Let S1 act on S1 with k-rotation; that is

to say given tES1 (the group S1) let \f/k:S1—>S1 be the homeomorphism

(of the space S1) given by 0 —* 0 + k\p.

SupposeS1 acts on a space W, by the homeomorphisms \pw: W—> W, and

suppose s: W—»S1 is a map. We say S1 acts on s with a k-rotation if for

each ^GS1, the diagram

is commutative.
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Lemma 4. S1 acts on the map q: (S"+1 - S""1) -^S1 with a k-rotation.

Proof. S1 acts on qx with a ¿-rotation, because, given ((x, <t>) X(r, 0))

G Xn+1 - X"'1, then

qxtxiix,<t>) X ir.e)) = <f> + H

= Mx((x,0)X(r,0)).

Similarly S1 acts on qY with a ¿-rotation, because given (y, 0) G Y"+1 — Y"-1,

then

qrtviy xe) =py-kd+ki

= ikqYiyxe).

Therefore, combining, we have S1 acts on q with a ft-rotation.

Lemma 5. Let s: W—»S1 6e a map on wfticft S1 acts with a k-rotation. Then

s is the projection of a fibre bundle with group Zk-

Proof. Let P = s_10 be the fibre above 0 G S1. We shall choose coordinate

neighbourhoods [0, w] and [— 7r,0] in «S1, and embeddings

cï.Fx[0,*]-+W,

c2:Fx[-w,0]^W

by vXk\f/^> \pwiv), where vEF and — */k S ^ Ú it Ik.

Then, for each i = 1,2, we have sciiv X fy) = k\p, and so cx,c2 are co-

ordinate functions for the bundle structure. To obtain the group of the

bundle, it is necessary to examine the homeomorphisms of P induced by the

coordinate functions. There are only two homeomorphisms to consider, be-

cause the coordinate neighbourhoods overlap in only two points, namely

0 and it. The first of these is trivial, since both coordinate functions map

P onto the fibre s_10 by the identity map. The second is nontrivial, be-

cause the coordinate functions map P—>s~Sr by the homeomorphisms

iw/k)w, (— Tï/k)w, respectively.

Therefore, the induced homeomorphism h:F—>F is

k= \~k~)w   \k)w = \T/w'

But ft* = (2t) w = the identity, and so ft is periodic with period k, and the

bundle group = the group of homeomorphisms of P generated by ft = Zk.

Corollary 1 to Lemmas 4 and 5. The map q: iSn+1 - S"'1)—>S1 is a

fibre bundle with group Zk- The generator ft of Zk is the homeomorphism of

the fibre given by the action of 2ir/k E S1.

Corollary 2. The fibres of q can be made smooth by choosing p to be
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differentiabb iCorolbry 2 to Lemma 2).

The next step in the proof is the longest: we have to identify the fibre

with the punctured branched covering. In the notation of §5 let M" denote

the A-fold cyclic branched covering of Sn,n~2, and let M% = bounded puncM".

Let F denote the closure of the fibre F.

Lemma 6. There is a homeomorphism m:M"—>F mapping the boundary

dM% onb the knot Sn~l, and the interior onto the fibre.

Proof. The notations of §§5 and 6 have been chosen carefully so that

they can be combined for this proof. Recall that for the definition of the

branched covering M" we needed to choose a tubular neighbourhood

t:S"-2XD2->Sn, and a function p: V^S1. Meanwhile for the definition

of the A-twist-spun knot we needed to choose a coordinate neighbourhood

g: En—>S", and for the fibering we could use the extension of p to (S" — S"~2)

—»S1 provided that g was compatible with £; in other words the triangle

En-2 x E2       ÁXJ2     )gn_2 x D2

g     N. /   t

N

was commutative. Having arranged for the choices involved in the two

constructions to be compatible, we now define the bounded punctured

branched covering M% by removing a particular open cell from Mn, and

shall then define the homeomorphism in two parts (corresponding to X, Y).

Recall the definition

D'32 = gAn-2CSn-2,

D"'2 = closureOS"-2 - D%~2).

Define M%= M" - £(intD""2 X intD2). We may express M% as the union

of two parts as follows:

LetAf* = £(Dr2X.D2).

Write dN* = dxN*\J d2N* where

dxN* = tidD\~2xD2),

d2N* = tiD%~2XdD2).

Write dV= dxV(Jd2V where dxV=kv1idlV)  and

dxV=tiDn~2XdD2),

d2V=tiD%~2XdD2) = d2N*.

Then e maps d2N* homeomorphically onto d2V, and
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m;=n*\jv,
e

dMl=dxN*UdxV.

Notice that the canonical homeomorphism k maps M* to itself.

Now look at the fibre F = f'O. Write F = FXU FY where Fx,FY denote

the intersections of F with Xn+1, Y"+1, respectively. The first part of m is

constructed as follows.

Let mx denote the embedding mx: N*—>dDn~2 X D2 given by £(x X (r,6))

-> (x, 0) X (r, 0), where x G D%~2 and (r, 0) G D2.

In particular, d^/V* is given by restricting x to values xED%~2= dDn~2,

and so mx induces homeomorphisms

dxN*—^— dD*-2XDs,

(N*~dXN*)—^— Fx.

The second part is a little harder, and we need a sublemma.

Sublemma. There is a map p: V—>D" that maps dxV (nonhomeomorphi-

cally) onto D"~2 and maps V — dxV homeomorphically onto D" — D"~2, such

that pp = p.

Proof. Let N+ be a slightly larger tubular neighbourhood than N, and

define p = 1 outside N+. Next define p: dxV^>Dn~2 by £(z X <b) —>z, where

z G D"-2, <f> E dD2. Next define p.: d2V^ dDn by £(f X <b)-> (x, 0) where

xED%~2, <bEdD2.

So far we have defined p on the whole of V except on the interior of the

tubular annulus N+ — N; we complete the definition by extending p radially

to the tubular annulus. More precisely if D\ denotes the standard disk of

radius 2, we can extend t:S"~2XD2-^N to £: Sn~2 X D\ ->N+, and so a

point in N+ is of the form

£(x X (r, <b))        where x G S"'2, <b E S1 and 0 zi r zi 2.

A radius of JV+ is given by fixing x,<j> and varying r, 0 zi r zi 2. The

radius meets the tubular annulus, closure (iV+ — N), in the subradius given

by 1 ^ r ^ 2. By extending p. radially, we may map the subradius linearly

into the radius, the map being determined by the images of the end points,

which are already known. If we wish, we can smooth this homeomorphism.

We deduce that piV - dxV) = D" - Dn 2. Outside N+ it is trivial that

pp = p, because u is the identity. Inside the tubular annulus p maps

£(x X (r,<b))—><b, and so pp = p because u preserves <fr.

We now return to the proof of Lemma 6. Let mY denote the product map

mv-nXl: VxS'^D'XdD2.
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Then mY maps 3XV homeomorphically onto Dn~2X 3D2 because_£(2X kd)

X 0^2X0, where zEDn2 and OES1. Also mY maps V- 3XV homeo-

morphically onto Py, because if (y X 0) G V — 3XV, then yE V — 3XV and

so py = kd. Therefore py E D" - P""2 and qipy X 0) = p ipy) - kd = py - kd

= 0, and so py X 0 G Py-

Next we verify that the diagram

32N*

32V-

mx

mY

dFx

f
■ 3FY

is commutative, because given i(x X 0) G 32N*, where x G D

then

n-2
*    > 0 G 3D2,

fmxtixXtp) = /((*, 0) X0)

= (x, ¿0) X 0

= my(i(x X ¿0) X 0)

= mYeix X 0).

Therefore mx,mY combine to give a homeomorphism m: M%—>F that maps

3Ml=dxN*(J3xV

onto

S""1 = idD"-2 X P2) U (P"~2 X P2).
/

This completes the proof of Lemma 6.

Corollary to Lemma 6. // k is the canonical covering homeomorphism

of M" and ft the homeomorphism of F generating Zk, then the diagram of

homeomorphisms

puncAf"-

K

punc Äf-

ft

is commutative.

Proof. Given uGAr*-ôiiV*, then u = i(xX(r,0))   for  some  xGP*"2

and (r, 0) G P2, and
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hmu = hiix,0) X(r,0))

= (x,0)X (r,d--£\

/       / 2»
= mil xX ( r,e--r

= mnu.

Given u G V^ - ôi V, then u = y X 0 for some yEV' - di V and 0 G S1, and

ftmu = ftixy X 0)

-*yx(»-|)

= m(yx(0-^))

= TWacU.

This completes the proof of the corollary.

Combining the corollaries to Lemmas 4, 5 and 6 completes the proof of

the theorem.

8. Questions.

Question 1. Is there a branched covering M* of a knot Sn'"~2 that cannot

be smoothly embedded in S"~2? For if so this would give an example of a

difference between differential and piecewise linear embeddings of mani-

folds (in view of Corollary 4 to the theorem).

Question 2. Let S2 C S4 be Mazur's knot. Corresponding to the nontrivial

bundle structure of S4 — S2 there is a nontrivial group extension structure

to the fundamental group 7ri(S4 — S2). But the latter also has a product

structure Gx Z. Is there a corresponding product structure S4 — S2

^(puncM^XS1?

Question 3. In Mazur's construction there were two choices involved,

the choice of ft and the choice of tubular neighbourhood. Do we get Q4 = S4

if we choose a different ft? For example what about ft2? By glancing at the

behaviour of ft and ft2 near the fixed point we see that they are not conju-

gate homeomorphisms. Can a new factor i be introduced in the ¿-twist-

spinning process such that the fibre homeomorphism be not the canonical

covering homeomorphism k but k, where 1 ^ i ^ k, analogous perhaps to

torus knots?

Question 4. In Mazur's construction what happens if we choose a different

tubular neighbourhood? There are three problems involved

))
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1. Is Q4 = S4?

2. If so do we get the same knot?

3. How does the action of S1 affect the knot?

The first two questions depend upon the homeotopy group of S2 X S1

(the group of homeomorphisms modulo those isotopic to the identity) be-

cause isotopic tubular neighbourhoods induce difleomorphic surgeries. Gluck

[4] has shown this group to be Z2 + Z2+ Z2, where the first two terms

correspond to orientation reversals, and the third term is represented by

the homeomorphism g:S2 X S1->S2X S1 given by (r, <b) X 8 -> (r, <b + 6) X 0.

Therefore, problem 1 reduces to the single question posed by Gluck [4]:

Given an S2 knot in S4, if we remove a tubular neighbourhood and plug it

back by the homeomorphism g are we left with S4?

Similarly problem 2 is reduced to considering only the effect of g. An

alternative statement of the problem is to ask if a knot is determined by

its complement (Fox [3, Problem 7]). As far as I know both 1 and 2 are

unsolved in general, and also unsolved in the particular case of the 5-twist-

spun trefoil. In the special case of the 2-twist-spun trefoil, then the answer

to both 1 and 2 is yes by [4, §17] because the knot bounds the lens space

L (3,1) which can be "spun" in the sense of Gluck. Similarly for the other

lens spaces.

Problem 3 is answerable and illustrates a more delicate property of

the product structure of the tubular neighbourhood. Recall that in §2

we said that "provided the tubular neighbourhood is chosen correctly,"

then S1 rotates the knot S2 once about a diameter. If we now remove the

tubular neighbourhood and plug it back by the homeomorphism gx, and

then use the product structure to extend the action of S1, we find that S1

now rotates the knot 5A + 1 times. In the theorem part 3 we prove that

S1 rotates the knot once: therefore this identifies the choice of tubular

neighbourhood in Mazur's construction to which our theorem refers.
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