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Abstract

This paper is a survey of the theory of virtual knots. We dedicate this paper
to the memory of Professor Mario Pezzana.

1 Introduction

This paper is a survey of virtual knot theory, a generalisation of classical
knot theory [6], [7]. Here we give the basic definitions, some fundamental
properties,a collection of examples and discussion of the work that T and other
people have so far contributed to this idea. This paper is an outgrowth of
the lectures that I gave at the "Knots in Hellas” conference in the summer of
1998 [12]. Tt is also a companion version to the paper [7] by this author that
introduces this theory of virtual knots. This paper goes beyond the lectures
for "Knots in Hellas” by bringing in recent work that detects subtle knotted
virtuals and also work relating virtual knot theory to embedded surfaces in
four dimensional space. Throughout this paper I shall refer to knots and
links by the generic term “knot”. In referring to a trivial fundamental group
of a knot, T mean that the fundamental group is isomorphic to the integers.

The paper is organised as follows. Section 2 gives the definition of a virtual
knot in terms of diagrams and moves on diagrams. Section 3 discusses both
the motivation from knots in thickened surfaces and the abstract properties



of Gauss codes. Section 3 proves basic results about virtual knots by using
reconstruction properties of Gauss codes. Section 4 discusses the fundamen-
tal group and the quandle extended for virtual knots. Examples are given of
non-trivial virtual knots with trivial (isomorphic to the integers) fundamen-
tal group. An example shows that some virtual knots are distinguished from
their mirror images by the fundamental group, a very non-classical effect.
Section 5 shows how the bracket polynomial (hence the Jones polynomial)
extends naturally to virtuals and gives examples of non-trivial virtual knots
with trivial Jones polynomial. Examples of infinitely many distinct virtuals
with the same fundamental group are verified by using the bracket poly-
nomial. An example is given of a knotted virtual with trivial fundamental
group and unit Jones polynomial. Tt is conjectured that this phenomenon
cannot happen with virtuals whose shadow code is classical. Section 6 shows
how to construct infinitely many non-trivial virtual knots with unit Jones
polynomial. Tt is an open question whether any of these examples are equiv-
alent to classical knots. In Section 7 we discuss the general framework for
the biquandle, an algebraic invariant of virtual knots that can detect virtuals
that are undectable by the fundamental group, quandle and Jones polyno-
mial. Specific representations of the biquandle are discussed. These include a
generalization of the Alexander module, and the group defined by Silver and
Williams [24]. Silver and Williams and independently Sawollek [31] found
the generalization of the Alexander polynomial described here in the con-
text of invariants of virtuals. The generalization first appeared in [9] as an
invariant of knots in thickened surfaces. In this section we show how the
generalized Alexander module naturally arises in finding the simplest linear
representation of the biquandle. This section also discusses informally the
problems involved in making a fully general definition of the biquandle. Tt
turns out the the axioms for a biquandle make demands that universal alge-
bra in its usual context cannot meet. We explain how a generalization of the
untyped lambda calculus of Church and Curry (originally devised for math-
ematical logic) can be used to formulate an appropiate algebraic category
for biquandles. These issues will be taken up in papers to follow the present
one, including a joint paper with Roger Fenn and Mercedes Jordan [4]. In
Section 8 we discuss the four dimensional application of virtual knots due to
Shin Saton. Section 9 is a short epilogue.
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2 Defining Virtual Knots and Links

A classical knot [1] can be represented by a diagram. The diagram is a 4-
regular plane graph with extra structure at its nodes. The extra structure is
classically intended to indicate a way to embed a circle in three dimensional
space. The shadow of a projection of this embedding is the given plane graph.
Thus we are all familiar with the usual convention for illustrating a crossing
by omitting a bit of arc at the node of the plane graph. The bit omitted is
understood to pass underneath the uninterrupted arc. See Figure 1 .

From the point of view of a topologist, a knot diagram represents an
“actual” knotted (possibly unknotted) loop embedded in three space. The
crossing structure is an artifact of the projection to the plane.

I shall define a virtual knot (or link) diagram. The definition of a virtual
diagram is just this: We allow a new sort of crossing, denoted as shown in
Figure 1 as a 4-valent vertex with a small circle around it.
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Figure 1 Crossings and Virtual Crossings

This sort of crossing is called virtual. Tt comes in only one flavor. You cannot



switch over and under in a virtual crossing. However the idea is not that a
virtual crossing is just an ordinary graphical vertex. Rather, the idea is that
the virtual crossing is not really there.

If T draw a non-planar graph in the plane it necessarily acquires virtual
crossings. These crossings are not part of the structure of the graph itself.
They are artifacts of the drawing of the graph in the plane. The graph
theorist often gets rd of a crossing in the plane by making it into a knot
theorist’s crossing, thereby indicating a particular embedding of the graph
in three dimensional space. This is just what we do not do with our virtual
knot crossings, for then they would be indistinct from classical crossings. The
virtual crossings are not there. We shall make sense of that property by the
following axioms generalising classical Reidemeister moves. See Figure 2.

The moves fall into three types: (A) Classical Reidemeister moves relating
classical crossings; (B) Shadowed versions of Reidemeister moves relating
only virtual crossings; (C) A triangle move that relates two virtual crossings
and one classical crossing.

The last move (type C) is the embodiment of our principle that the virtual
crossings are not really there. Suppose that an arc is free of classical crossings.
Then that arc can be arbitrarily moved (holding its endpoints fixed) to any
new location. The new location will reveal a new set of virtual crossings if
the arc that is moved is placed transversally to the remaining part of the
diagram. See Figure 4 for illustrations of this process and for an example of
unknotting of a virtual diagram.

The theory of virtual knots is constructed on this combinatorial basis -
in terms of the generalised Reidemeister moves. We will make invariants
of virtual knots by finding functions well-defined on virtual diagrams that
are unchanged under the application of the virtual moves. The remaining
sections of this paper study many instances of such invariants.

Remark. In Figure 3 we have illustrated the allowed analog for virtuals
of the third Reidemeister move, and two suggestive relatives of that move
that we call the Forbidden Moves of type F'1 and F'2. These moves are not,
part of the equivalence relation for virtual knots, but it is actually interesting
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Figure 2 Generalised Reidemeister Moves for Virtual Knot Theory
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to include one or both of them to obtain a quotient theory of the theory of
virtual knots and links. We shall call the theory obtained by adding the move
F1 the theory of Welded Knots and Links in analogy to the welded braids of
Rourke and Fenn [30]. Tt turns out that if both of the forbidden moves are
added to the theory, then it is possible to unknot any knot [19], [16]. The
theory with both forbidden moves added will be called the theory of Fused
Links and will be the subject of a separate paper. In regard to these forbidden
moves, we point out that the allowed analog of the third Reidemeister move
is actually an exemplar of a single generalized type of virtual move, namely
if in a virtual diagram one encounters an arc with a consequtive sequence of
virtual crossings, then one can excise this arc and reconnect the endpoints by
a new arc placed anywhere transversal to the diagram with virtual crossings.
We call this generalized move a wirtual detour. See Figure 4. Tt is easy to
see that the equivalence relation for virtual knots and links is generated by
the classical Reidemeister moves plus the virtual detour. In this sense the
virtual knots are diagrammatic analogues of the trajectories of a particle
that is moving in three dimesional space, but occasionally "tunnels” from
one location to another distant location. The virtual detours in the diagram
are connections to indicate these tunnels.

3 Motivations

While it is clear that one can make a formal generalisation of knot theory in
the manner so far described, it may not be yet clear why one should generalize
in this particular way. This section explains two sources of motivation. The
first is the study of knots in thickened surfaces of higher genus (classical knot
theory is actually the theory of knots in a thickened two-sphere). The second
is the extension of knot theory to the purely combinatorial domain of Gauss
codes and Gauss diagrams. Tt is in this second domain that the full force of
the virtual theory comes into play.

3.1 Swurfaces

Consider the two examples of virtual knots in Figure 5. We shall see later in
this paper that these are both non-trivial knots in the virtual category. In
Figure 5 we have also illustrated how these two diagrams can be drawn (as



knot diagrams) on the surface of a torus. The virtual crossings are then seen
as artifacts of the projection of the torus to the plane.

The knots drawn on the toral surface represent knots in the three manifold
T x I where I is the unit interval and T is the torus. If S, is a surface of
genus ¢, then the knot theory in S, x I is represented by diagrams drawn on
S, taken up to the usual Reidemeister moves transferred to diagrams on this
surface.

As we shall see in the next section, abstract invariants of virtual knots
can be interpreted as invariants for knots that are specifically embedded in
S, x I for some genus g. The virtual knot theory does not demand the use of
a particular surface embedding, but it does apply to such embeddings. This
constitutes one of the motivations.

In fact, we can formulate the theory of virtual knots in terms of knots
embedded in thickened surfaces. To do this we take a standard interpretation
of each virtual crossing by regarding it as a representative of one arc passing
through a handle that has been attached to the two dimensional sphere on
which the original diagram is drawn. See Figure 6. Two representations are
said to be equivalent if one can be obtained from the other by Reidemeister
moves on the surface combined with the addition and subtraction of empty 7-
handles from the surface. (Each handle is restricted to have no more than one
arc passing through it.) Tt is easy to see that the addition and subtraction of
the empty handles allows exactly the detour properties of the diagrams that
we have emphasized. Thus virtual knots are knots in thickened surfaces up
to stabilization by empty handles. The author is indebted to Dror Bar Natan
for pointing out this formulation in terms of empty handle stabilization. See

also [13].

3.2 Gauss Codes

A second motivation comes from the use of so-called Gauss codes to represent
knots and links. The Gauss code is a sequence of labels for the crossings
with each label repeated twice to indicate a walk along the diagram from a
given starting point and returning to that point. In the case of multiple link



Figure 5 Two Virtual Knots
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Figure 6  Handle Detours
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components we mean a sequence labels, each repeated twice and intersticed
by partition symbols “/” to indicate the component circuits for the code.

A shadow is the projection of a knot or link on the plane with transverse
self-crossings and no information about whether the crossings are overcross-
ings or undercrossings. In other words, a shadow is a 4-regular plane graph.
On such a graph we can count circuits that always cross (i.e., they never use
two adjacent edges in succession at a given vertex) at each crossing that they
touch. Such circuits will be called the components of the shadow since they
correspond to the components of a link that projects to the shadow.

A single component shadow has a (Gauss code that consists in a sequence
of crossing labels, each repeated twice. Thus the trefoil shadow has code
123123. A multi-component shadow has as many sequences as there are
components. For example 12/12 is the code for the Hopf link shadow.

Along with the labels for the crossings one can add the symbols O and U
to indicate that the passage through the crossing was an overcrossing (O) or
an undercrossing (U). Thus

123123

is a Gauss code for the shadow of a trefoil knot and

O102030102U3

is a (Gauss code for the trefoil knot.

The Hopf link itself has the code O1U2/U102. See Figure 7.

Suppose that ¢ is such a sequence of labels and that ¢ is free of any
partition labels. Every label in ¢ appears twice. The first necessary criterion
for the planarity of ¢ is given by the following definition and L.emma.

Definition. A single component Gauss code g is said to be evenly intersticed
if there is an ewven number of labels in between the two appearances of any

label.

Lemma 1. If ¢ is a single component planar Gauss code, then ¢ is evenly
intersticed.

12
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Figure 7 Planar and Nonplanar Codes
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Proof. This follows directly from the Jordan curve theorem in the plane.//

Example. The necessary condition for planarity in this Lemma is not suf-
ficient. The code ¢ = 1234534125 is evenly intersticed but not planar as is
evident from Figure 7.

Non-planar Gauss codes give rise to an infinite collection of virtual knots.

local orientations at the crossings give rise to another phenomenon: vir-
tual knots whose Gauss codes have planar realisations with different local
orientations from their classical counterparts.

By orienting the knot, one can give orientation signs to each crossing
relative to the starting point of the code using the convention shown in
Figure 8. This convention designates each oriented crossing with a sign of
+1 or —1. We say that the crossing has positive sign if the overcrossing line
can be turned through the smaller angle (of the two vertical angles at the
crossing) to coincide with the direction of the undercrossing line. The signed
code for the standard trefoil is

1=014+0U24034+U1+ 02+ U3+,
while the signed code for a figure eight knot is

f=014+U2+4+03 U4t 02+U1 +04 U3 —.

Here we have appended the signs to the corresponding labels in the code.
Thus, crossing number 1 is positive in the figure eight knot, while crossing
number 4 is negative. See Figure 8 for an illustration corresponding to these
codes.

Now consider the effect of changing these signs. For example let

g=014+U24+03 Ul +02+U3 .

Then g is a signed Gauss code and as Figure 8 illustrates, the corresponding
diagram is forced to have virtual crossings in order to accommodate the
change in orientation. The codes ¢ and ¢ have the same underlying (unsigned)

14



g = 01+U2+03-U1+02+U3-

Figure 8  Signed Gauss Codes

Gauss code O1U203U102U3, but g corresponds to a virtual knot while t

represents the classical trefoil.

Definition of Virtuality. Carrying this approach further, we define
a virtual knot as an equivalence class of oriented (Gauss codes under ab-
stractly defined Reidemeister moves for these codes with no mention of
virtual crossings. (We omit here the enumeration of the abstract moves on
the Gauss codes. They are easily obtained by translation from the diagrams
of the oriented Reidemeister moves.) The virtual crossings become artifacts
of a planar representation of the virtual knot. The move sets of type B and
C for virtuals are diagrammatic rules that make sure that this representation
of the oriented Gauss codes is faithful. Note, in particular, that the move of
type C does not alter the Gauss code. With this point of view we see that the
signed codes are knot theoretic analogues of the set of all graphs, and that
the classical knot (diagrams) are the analogues of the planar graphs. This is
the fundamental combinatorial motivation for our definitions of virtual knots
and their equivalences.
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4 Fundamental Group, Crystals, Racks and
Quandles

The fundamental group of the complement of a classical knot can be described
by generators and relations, with one generator for each arc in the diagram
and one relation for each crossing. The relation at a crossing depends upon
the type of the crossing and is either of the form ¢ = b 'ab or ¢ = bab™' as

shown in Figure 9.

c=bab™ ] c=p~ 1 ab

Figure 9 Generators and Relations for the Fundamental Group

We define the group G(K) of an oriented virtual knot or link by this
same scheme of generators and relations. An arc of a virtual diagram pro-
ceeds from one classical undercrossing to another (possibly the same) classical
undercrossing. Thus no new generators or relations are added at a virtual
crossing. It is easy to see that (G(K') is invariant under all the moves for

virtuals and hence is an invariant of virtual knots.

There are virtual knots that are non-trivial but have trivial fundamental
group. (We say that the fundamental group of a knot is trivial if it is iso-
morphic to the infinite cyclic group.) The virtual K’ in Figure 5 is such an

16



example.. We shall show that K’ is a non-trivial virtual in the next section
by using a generalisation of the bracket polynomial.

A generalization of the fundamental group called the quandle, rack or
crystal (depending on notations and history) also assigns relations (in a dif-
ferent algebra) to each crossing. The quandle generalises to the virtual cat-
egory. We first discuss the involutory quandle, TQ(K), for a (virtual) knot
or link K. The TQ(K') does not depend upon the local orientations of the
diagram and it assigns to each crossing the relation ¢ = a*x b as in Figure 10.

The operation axb is a non-associative binary operation on the underlying
set of the quandle, and it satisfies the following axioms:

1. axa = a for all a.

2. (axb)*b=a for all a and b.
3. (axb)xc=(ax*xc)*(bx*c)foralla,b,c.

The algebra under these axioms with generators and relations as defined
above is called the involutory quandle, TQ(K). Tt is easy to see that the
IQ(K) is well-defined for K virtual.

An important special case of TQ(K') is the operation a*xb = 2b—a where a
and b are elements of a cyclic group 7 /n/ for some modulus n. In the case of
a classical knot K, there is a natural choice of modulus D(K) = Det(M(K))
where M(K') is a minor of the matrix of relations associated with the set
of equations ¢ = 2b — a. This is called the determinant of the knot, in the
classical case. More generally, one can define the determinant for any finite
group presentation whose abelianization is the integers (as is the case with
virtual knot groups). In our case one takes the greatest common divisor of
the set of (n — 1) X (n — 1) minors of the n X n coloring relation matrix
associated with the knot. In this way we can define the determinant |D(K)]
of any virtual knot. If K is virtual then |D(K)| is an invariant of K. The
virtual knot labelled K in Figure 5 has determinant equal to 3. The non-
triviality of the determinant shows that this knot is knotted and in fact that
it has non-trivial fundamental group. For more information on virtual knot
groups see [23].

17
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Another example of an involutory quandle is the operation a b = ba"'b.
In classical knot theory this yields the fundamental group of the two-fold
branched covering along the knot.

Here is a useful lemma about the Q) for virtuals.

Lemma 5.
T1Q(Koyww) = TQ(K7)

where = denotes a crossing in the diagram K, vzv denotes that x is flanked
by virtuals, and K% denotes the diagram obtained by smoothing the flanking
virtuals, and switching the intermediate crossing.

In other words the 1Q) for a classical crossing flanked by two virtual crossings
is the same as the 1Q) of the diagram where the two virtual crossings are
smoothed and the classical crossing is switched.

Proof. See Figure 10. //
Remark. In Figure 10 we illustrate that TQ(K) = TQ(T) where K is the

virtual knot also shown in Figure 8 and T' is the trefoil knot.

Finally we discuss the full quandle of a knot and its generalization to
virtuals. For this discussion the exponential notation of Fenn and Rourke
[11] is convenient. Instead of a * b we write a” and assume that there is an
operation of order two

a—a
so that

a=a,
and for all @ and b

ab =a".

This operation is well-defined for all @ in the underlying set () of the quandle.

By definition
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for all a,b and ¢ in Q).

The operation of exponentiation satisfies the axioms

1. a" =a
2. a® =a

3 g — g7t
It follows that the set of the quandle acts on itself by automorphisms

r — 2%

This group of automorphisms is a representation of the fundamental group
of the knot. Note that if we define a® by the formula

a’ = bab™"

and

b="b"

bl

then we get the fundamental group itself as an example of a quandle. The
rack [11] or erystal [15] is obtained by eliminating the first axiom. This makes
the rack/crystal an invariant of framed knots and links. The three axioms
correspond to invariance under the three Reidemeister moves.

If we now compare LLemma 5 with its possible counterpart for the full
fundamental group or the quandle, we see that it no longer holds. Figure 11
shows the new relations in the quandle that are obtained after smoothing the
two virtual crossings and switching the classical crossing. While the quandle
of the simplified diagram is no longer isomorphic to the original quandle, the
fact that we can articulate the change is often useful in computations.

Example. Consider the virtual knot K of Figure 8. We have seen that K
has the same 7() as the trefoil knot. However, the quandle and fundamental
group of K are distinct from those of the trefoil knot, and K is not equivalent
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to any classical knot. To see this consider the Alexander quandle [15] defined
by the equations

(],b:t(l,—l—(] —1)b

and

a® =1"a + (1— tq)b.

This quandle describes a module (the Alexander module) M over Z[t, ¢ '].
In the case of the virtual knot K in Figure 8, we have the generating quandle
relations a® = b, b* = ¢, ¢® = a. This results in the Alexander module relations
b=ta+(1—t)c,e=1tb+(1 —t)a,a =1 "c+ (1 —1")b. From this it is easy
to calculate that the module M(K) = {0,m,2m} for a non-zero element m
with 3m = 0 and tm = 2m. Thus the Alexander module for K is cyclic of
order three. Since no classical knot has a finite cyclic Alexander module, this
proves that K is not isotopic through virtuals to a classical knot.

It should be remarked that the Alexander polynomial of a knot can be re-
garded as a generalization of the determinant of a knot. The colors are taken
to be elements of the Alexander moddule (See [15] and [22]). Just as with the
determinant of a knot, the Alexander polynomial is defined to be a greatest
common divisor the the set of (n — 1) X (n — 1) minors of the n x n relation
matrix for the Alexander module. Since, as we shall see below, there are actu-
ally two fundamental quandles associated with a virtual knot (The second,in
our language, is the quandle of the mirror image of the original knot.), there
are two Alexander polynomials associated with a virtual. There are many
questions related to the Alexander polynomials of virtual knots. We shall
treat these matters elsewhere.

Finally, it should be remarked that the full quandle Q(K) classifies a
classical prime unoriented knot K up to mirror images. By keeping track of
a longitude for the knot, one gets a complete classification. In the context of
the quandle, the longitude can be described as the automorphism

A:Q(K) — Q(K)
defined by the formula
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AMz) = P

where {ay,as,...,ax} is an ordered list of quandle generators encountered (as
one crosses underneath) as overcrossing arcs as one takes a trip around the
diagram. The e denotes whether the generator is encountered with positive
or negative orientation, and z° denotes = if ¢ = 1 and 7 if ¢ = —1. For a
given diagram the longitude is well-defined up to cyclic re-ordering of this
list of encounters. FExactly the same definition applies to virtual knots. Tt
is no longer true that the quandle plus longitude classifies a virtual knot, as
our examples of knotted virtuals with trivial fundamental group show.

On the other hand, we can use the quandle to prove the following result.
This proof is due to Goussarov, Polyak and Viro [29].

Theorem 6. If K and K’ are classical knot diagrams such that K and K’
are equivalent under extended virtual Reidemeister moves, then K and K’
are equivalent under classical Reidemeister moves.

Proof. Note that longitudes are preserved under virtual moves (adding vir-
tual crossings to the diagram does not change the expression for a longitude).
Thus an isomorphism from Q(K) to Q(K’) induced by extended moves pre-
serves longitudes. Since the isomorphism class of the quandle plus longitudes
classifies classical knots, we conclude that K and K’ are classically equiva-
lent. This completes the proof. //

Remark. We would like to see a purely combinatorial proof of Theorem 6.

5 Bracket Polynomial and Jones Polynomial

The bracket polynomial [27] extends to virtual knots and links by relying on
the usual formula for the state sum of the bracket, but allowing the closed
loops in the state to have virtual intersections. Fach loop is still valued at
d= —A? — A~? and the expansion formula

<K>=A<K,>4+A"< K, >

still holds where K, and K, denote the result of replacing a single crossing
in K by smoothings of type a and type b as illustrated in Figure 12.
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Figure 12 Bracket Smoothings

We must check that this version of the bracket polynomial is invariant
under all but the first Reidemeister move (See the moves shown in Figure 2 ).
Certainly the usual arguments apply to the moves of type (A). Moves of type
(B) do not disturb the loop counts and so leave bracket invariant. Finally
the move of type (C) receives the verification illustrated in Figure 13. This
completes the proof of the invariance of the generalised bracket polynomial
under move (C).

We define the writhe w(K') for an oriented virtual to be the sum of the
crossing signs  just as in the classical case.
The f-polynomial is defined by the formula
fr(A) = (=AY ™) < K > (A).

The Laurent polynomial, fx(A) is invariant under all the virtual moves in-
cluding the classical move of type I.

Remark. Tt is worth noting that fx can be given a state summation of its
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own. Here we modify the vertex weights of the bracket state sum to include
a factor of —A~? for each crossing of positive sign, and a factor of A*? for
each factor of negative sign. Tt is then easy to see that

fry = A frg — A i
fk', - *A+2.fk'0 - A+4.ff(m

where K, denotes K with a selected positive crossing, K_ denotes the result
of switching only this crossing, Ky denotes the result of making the oriented
smoothing of this crossing, and K, denotes the result of making an un-
oriented smoothing at this crossing. The states in this oriented state sum
acquire sites with unoriented smoothings, but the procedure for evaluation is
the same as before. For each state we take the product of the vertex weights

multiplied by d¥I-1 where d = —A? — A=% and ||S

loops in the state. Then fx is the sum of these products, one for each state.

| denotes the number of

The following T.emma makes virtual calculations easier.

Lemma 7. < K,,, >=< K, > where = denotes a crossing in the diagram
K, vrv denotes that = is flanked by virtuals, and K, denotes the diagram
obtained by smoothing the flanking virtuals, and leaving the crossing the

same.
Proof. The proof is shown in Figure 14.//

Note that this result has a different form from our corresponding L.emma
about the involutory quandle TQ(K). As a result we get an example of a
virtual knot that is non-trivial (via the 7Q) but has fx = 1. Hence we have
a virtual knot K with Jones polynomial equal to 1. The example is shown in
Figure 15. Note that in Figure 10 we illustrated that this K has the same
involutory quandle as the trefoil knot. We will see in Section 6 that K is not
equivalent to a classical knot.

We now compute the bracket polynomial for our previous example with
trivial fundamental group and we find that < K’ >= A2 +1 — A=* and
fr=(—A")"< K'>= A4+ A7 — A7'° Thus K’ has a non-trivial Jones
polynomial. See Figure 16.
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Figure 14 Removal of Flanking Virtual Crossings
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Figure 15 A Knotted Virtual with Trivial Jones Polynomial
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In Figure 16 we also indicate the result of placing a tangle W into another
knot or link. Since this is the same as taking a connected sum with K’ it
has the effect of multiplying the bracket polynomial by A% +1 — A~*. Thus
if L is any knot or link and K’ + I denotes the connected sum of K’ along
some component of I, then < K’ + [, >= (A2 + 1 — A74) < L > while
Q(K'+ L) = Q(L) (as we verified in the last section). Thus for any knot
I., successive connected sums with K’ produces an infinite family of distinct,
virtual knots, all having the same quandle (hence same fundamental group).

Finally, we note that if the knot is given as embedded in S, x T for a
surface of genus g, and if its virtual knot diagram K is obtained by projecting
the diagram on S, into the plane, then < K > computes the value of the
extension of the bracket to the knots in S, x I where all the loops have the
same value d = —A? — A~2%. This is the first order bracket for link diagrams
on a surface.

In Figure 5 we illustrated the non-trivial knot K with trivial Jones poly-
nomial as embedded in S; x I. This knot in Sy x [ is actually not trivial
as can be seen from the higher Jones polynomials that discriminate loops in
different isotopy classes on the surface.

In Figure 17 is another example of a virtual knot F and a corresponding
embedding in Sy x I. In this case, F is a trivial virtual knot (as is shown in
Figure 4), but the embedding of F in Sy x I is non-trivial (even though it has
trivial fundamental group and trivial bracket polynomial). The non-triviality
of this embedding is seen by simply observing that it carries a non-trivial first
homology class in the thickened torus. In fact, if you expand the state sum
for the bracket polynomial and keep track of the isotopy classes of the curves
in the states, then the bracket calculation also shows this non-triviality by
exhibiting as its value a single state with a non-contractible curve.

Virtual knot theory provides a convenient calculus for working with knots
in S, x I. The virtuals carry many properties of knots in S, x I that are
independent of the choice of embedding and genus. This completes our quick
survey of the properties of the bracket polynomial and Jones polynomial for
virtual knots and links. Just as uncolorable graphs appear when one goes
beyond the plane (for planar graph coloring problems) so knots of unit Jones
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Figure 17 A Knot in Sy x I with Trivial Jones Polynomial



polynomial appear as we leave the diagrammatic plane into the realm of the
(GGauss codes.

6 Making Infinitely Many Virtuals with Unit
Jones Polynomial

The purpose of this section is to give a generalization of the examples in
the previous section that gave non-trivial virtual knots with unit Jones poly-
nomial. Consider the following operation on a crossing in a knot or link
diagram: Switch the crossing and place two virtual crossings on either side
of it as shown in Figure 18 (Compare Figures 10 and 14) Call this operation
on a crossing in a diagram K a wirtual switch of the crossing.

<

Virtual Switch

{m} - <

S

IQ

il

Figure 18 - Virtual Crossing Switch



Lemma. Tet K be a (virtual) link diagram. Let K’ be obtained from the dia-
gram K by asingle virtual switch of a crossing 7in K. Then TQ(K) = IQ(K")
and Vi = Vsxg where SK is the diagram obtained from K by switching the
crossing 7 without and virtual replacement.

Proof. This Lemma follows directly from the results in the previous two
sections where we saw that the bracket polynomial was unchanged by the
addition or removal of flanking virtuals at a crossing, while the involutory
quandle of a virtual diagram with virtual crossings flanking a real crossing is
isomorphic to the diagram obtained by removing the virtuals and switching
the crossing. //

Theorem. Tlet K be any classical non-trivial knot diagram. Tet S =
{#1,...,7,} be a subset of the crossings of K such that the knot K’ obtained by
switching these crossings is unknotted. Let K be the virtual knot diagram
obtained from K by performing a virtual switch at each of the crossings in
the set S. Then K" is a non-trivial virtual knot with unit Jones polynomial.

Proof. By the Lemma we know that TQ(K" = TQ(K). Winker [32] has
shown that K is a non-trivial classical knot if and only if TQ(K') is non-
trivial. Thus, we know that TQ(K" is non-trivial and hence that K" is
non-trivial. On the other hand, the Jones polynomial of K" is equal, by
the L.emma, to the Jones polynomial of the knot K’ obtained from K by
switching all the crossings in the set S. Since K’ is unknotted, it follows that
K" has unit Jones polynomial.//

This Theorem shows that there are infinitely many non-trivial virtual
knots with unit Jones polynomial. Are any of these knots (constructed as in
the Theorem) equivalent to classical knots? If any one of the virtual knots
K" is equivalent to a classical knot, then this will be an example of a classical
non-trivial knot with unit Jones polynomial. Tt may be that no knot KV is
equivalent to a classical knot. An answer to this question in either direction
will be exceedingly interesting. See Figure 19 an example of a pair K, K"
where K is classical and knotted and KV is virtual, knotted and with unit
Jones polynomial.



Figure 19 - A Diabolical Pair



7 Biquandles and the Silver-Williams Group

In [23] Dan Silver and Susan Williams define a group associated with a virtual
knot or link that can detect virtual knottedness unseen by the fundamental
group or by the rack or quandle. The Silver-Williams group is an example
of a biquandle, a generalization of the quandle that involves both the upper
and the lower arcs at a crossing as operators. We will begin this section with
a discussion of the notion of a biquandle. We thank Roger Fenn for helpful
conversations about the potential of the birack and biquandle for studying
virtual knots and links. A joint paper on biracks and biquandles with Roger
Fenn and Mercedes Jordan is in preparation [4].

4a” = abl iaP=alb

- -=i

ba=bﬂ bﬁzb@

Figure 20 - Biquandle Relations at a Crossing

View Figure 20. In this Figure we have repeated the format for the
operations in a quandle, but now the overcrossing arcs have two labels, one
on each side of the crossing. In a biquandle there is an algebra label on each
edge of the diagram. An edge of the diagram corresponds to an edge of the
underlying plane graph of that diagram. let the edges oriented toward a
crossing be called the input edges for the crossing, and the edges oriented
away from the crossing be called the output edges for the crossing. let a
and b be the input edges for a positive crossing, with a the label of the
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undercrossing input and b the label on the overcrossing input. Then in the
biquandle, we label the undercrossing output by

c=a
just as in the case of the quandle, but the overcorossing output is labelled
d=b,.

We usunally read a” as  the undercrossing line a is acted upon by the over-
crossing line b to produce the output ¢ = a®. In the same way, we can read
b, as  the overcossing line b is operated on by the undercrossing line a to
produce the output d = b,. The biquandle labels for a negative crossing are
similar but with an overline (denoting an operation of order two) placed on
the letters just as we did in case of the quandle. Thus in the case of the
negative crossing, we would write

and

(]:bﬁ

To form the biquandle, BQ(K), we take one generator for each edge of
the diagram and two relations at each crossing (as described above). This
system of generators and relations is then regarded as encoding an algebra
that is generated freely by the biquandle operations as concatenations of
these symbols and subject to the biquandle algebra axioms. These axioms
are a transcription in the biquandle language of the requirement that this
algebra be invariant under Reidemeister moves on the diagram.

Another way to write this formalism for the biquandle is as follows

b

@ —a b
—a b
o —alb
o= alb

We call this the operator formalism for the biquandle. The operator formal-
ism has advantages when one is performing calculations, since it it possible
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to maintain the formulas on a line, rather than extending them up and down
the page as in the exponential notation. On the other hand the exponential
notation has intuitive familiarity and is good for displaying certain results.
The axioms for the biquandle, are exactly the rules needed for invariance
of this structure under the Reidemeister moves. Note that in analyzing in-
variance under Reidemeister moves, we visualize representative parts of link
diagrams with biquandle labels on their edges. The primary labelling occurs
at a crossing. At a positive crossing with over input b and under input a,
the under output is labelled aﬂ and the over output is labelled b a|. Af
a negative crossing with over input b and under input a, the under output is
labelled (1,‘ b and the over output is labelled b|a . At a virtual crossing there
is no change in the labellings of the lines that cross one another. In Figure 21
we illustrate the effect of these conventions and how it leads to the following
algebraic transcription of the directly oriented second Reidemeister move.

a=a b|b aj
a bl.

b=b> a

The reverse oriented second Reidemeister move gives a different sort of iden-
tity, as shown in Figure 22. For the reverse oriented move, we must assert,
that given elements a and b in the biquandle, then there exists an element =
such that

and that

a=2=x

b=bhl

.

See Figure 22. The assertion about the existence of x can be viewed as
asserting the existence of a fixed point for a certain operator. In this case
the operator is F(z) = a b|x |. Tt is characteristic of certain axioms in

the biquandle that they demand the existence of such fixed points. Another

36



Figure 21 Direct Two Move
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Figure 22 Reverse Two Move
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Figure 23 First Move
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2Hd = ac BT

Figure 24 Third Move
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example is the axiom corresponding to the first Reidemeister move (one of
them) as illustrated in Figure 23. This axiom states that given an element a
in the biquandle, then there exists an 2 in the biquandle such that » =a x|
and that = a]= a. In this case the operator is G(z) = a x/|. It is unusual
that an algebra would have axioms asserting the existence of fixed points
with respect to operations involving its own elements. We plan to take up
the study of this aspect of biquandles in a separate publication. Here, we shall
not write a complete list of biquandle axioms. However, another one of them
(invariance under a third Reidemeister move, generalizing the distributive
law in the quandle) is illustrated in Figure 24. The complete axioms will be
published elsewhere. The version of the third Reidemeister move shown in
this figure has algebraic form

a bl ¢cl=ac bl b ¢l

At the end of this section we discuss that nature of a general algebraic appa-
ratus that can handle existence of fixed points required for the definition of
the general biquandle. For now, we look at a specific biquandle structure.

In order to uncover a specific example of a biquandle structure, suppose that

a h|=1ta+ sb
ai‘zva—l—ub

where a,b,c are members of a module M over a ring R and #,s,v and u are in
R. We use invariance under the Reidemeister moves to determine relations
among these coefficients.

As a first example, suppose that we want to implement the axiom for
the first Reidemeister move, as explained above. Then, for any element a we
require the existence of an element = such that

r=a x|

Here this means

r = va + ux

thus
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(1 —u)r =va.

We see that we can solve for the fixed point via

r=wva/(l — u)

when (1-u) is invertible in the base ring for the module. A formal solution is

r=wva(l +u+ u? 4+ ud - )

and this formal power series corresponds to the use of infinitary words in
the algebra. This example illustrates the issues related to fixed points, but
in fact in this case we find that a more persipciuous analysis of the whole
situation occurs by starting with an analysis of invariance under the third
Reidemeister move.

Taking the equation for the third Reidemeister move discussed above, we
have

07})‘7\ = t(ta 4 sb) + sc = 120 + tsh & sc

a c ;b‘ b cll= t(ta 4 s(ve+ ub)) + s(th + sc)
— 1204 ts(u+ 1)b 4+ s(tv + s)c.

From this we see that we have a solution to the equation for the third Reide-
meister move if u = 0 and s =1 — fv. Assuming that £ and v are invertible,
it is not hard to see that the following equations not only solve this single
Reideimeister move, but they give a biquandle structure, satisfying all the
moves.

a bl=ta+ (1 —tv)b
a bl=va
alb =ta+ (1 —t"v")b
alb =v7'b.

Thus we have a simple generalization of the Alexander quandle and we shall
refer to this structure, with the equations given above, as the Alexander
Biquandle.
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Just as one can define the Alexander Module of a classical knot, we have
the Alexamder Biquandle of a virtual knot or link, obtained by taking one
generator for each edge of the knot diagram and taking the relations in the
above linear form. Let ABQ(K) denote this module structure for an oriented

link K.

For example, consider the virtual knot in Figure 15. This knot gives rise

to a biquandle with generators a,b,c,d and relations

d=c a|
b=a c
c=b d|
a=d b

writing these out in ABQ(K), we have

d=1tc+ (1 —vt)a

b=wva
c=1tb+ (1 —vt)d
a = vd.

eliminating b and d and rewriting, we find

v 'a=te+ (1 —vt)a
c=1tva+ (1 — 7775)7)_1(1,.

Eliminating ¢, we are left with a module generated by a with relation

[(f1 — 1)+ (7)71 —v)+ (vt — 7)717‘,71)](1, =0.

The polynomial that annihilates a can be regarded as a two variable gen-
eralization of the Alexander polynomial. The non-triviality of the module
ABQ(K) shows that K is a non-trivial virtual knot. We had previously
checked this fact using the Jones polynomial. The classical Alexander poly-
nomial (via the fundamental group) is trivial since the fundamental group of

K is isomorphic to the integers.
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Here is another example of the use of this polynomial. T.et I denote
the diagram in Figure 25. Tt is not hard to see that this virtual knot has
unit Jones polynomial, and that the fundamental group is isomorphic to the
integers. The biquandle does detect the knottedness of D. The relations are

from which we obtain the relations (eliminating ¢, e and f)

b=rta+ (1 —tv)d
d=1tv b+ (1 —tv)vd
a—1""v%d + (1 — 7‘,_11)_1)6.

The determinant of this system is the generalized Alexander polynomial for

D:

t2(7)2 1)+ 75(7)71 +1—v— 7)2) + (v — 7)2).

This proves that 1) is a non-trivial virtual knot.

In fact the polynomial that we have computed is the same as the poly-
nomial invariant of virtuals of Sawollek [31] and defined by an alternative
method by Silver and Williams [24]. Sawollek defines a module structure
essentially the same as our Alexander Biquandle. Silver and Williams first
define a group. The Alexander Biquandle proceeds from taking the abelian-
ization of the Silver-Williams group. We will explain this, beginning with the
Silver-Williams group. This generalization of the Alexander polynomial and
Alexander module first appeared in [9] as an invariant of knots in thickened
surfaces. The idea was also explored by Oleg Viro in unpublished work [26]
and by Scott Carter and Masahico Saito in unpublished work.

let G be a group written multiplicatively. Assume that G admits an
action of 7 x 7, the direct product of the integers with itself. We view 7
as an infinite cyclic group, and take t and v to be multiplicative generators
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Figure 25  Unit Jones, Integer Fundamental Group
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of 7 x 7. For g in (G, we write ¢" and ¢" for the actions of £ and v on the
element g. We now define the following operations:

j (bh) —1 fb
=

(]r_ b bﬁ)

a‘b =

where 7 = 27! for elements in the operator group 7 x 7. Tt is easy to verify
that these operations define a biquandle. Given a group (G with an operation
of 7 x 7, we let SW((G) denote the biquandle structure on G defined by
these equations. The Silver-Williams group is the group associated to a link
diagram that is obtained by taking one generator for each edge of the diagram
and the two relations at each crossing corresponding to the above equations.
Here we have used the operators ¢ and v. Silver and Williams construct a
more general group where there is one operator ¢; for each link component,
plus the extra operator v. They note that if v is set equal to the identity,then
the resulting group is isomorphic to commutator subgroup of the fundamental
group of the link complement. Note that if we abelianize the equations for the
Silver-Williams biquandle, writing the abelianized group additively (keeping
the operators ¢ and v in multiplicative form), then the resulting equations
are exactly the equations for the Alexander Biquandle described above. This
puts all these structures in the same framework.

7.1 Fixed Points and the Lambda Calculus of Church
and Curry

First lets recall the need for fixed points in the definition of a Biquandle. The
axiom for the invariance under the first Reidemeister move reads: Given an
element a in a biquandle BQ, there exists an x in BQ) satisfying the equation
r=x a|=a,and a =2 a|= 2" In this definition the second equation
is a normal relation involving the elements = and a, but the first equation
is an existence statement about = satisfying the equation = = a,. Consider
the simplest instance of this situation. Tet BQ = (a|) denote the "free
biquandle” generated by the single element a. In the usual case of universal
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algebras the "free object” on a single generator is constructed by taking all
finite algebraic expressions involving the formalism of the algebra and the
generating element, subject to the natural equivalence relations that ensue
for this algebra (this depends on the axioms which usually are expressed
as relations, not as existence statements). But here we are asked to know
that there is an z satisfying the equation above. One solution for x is the
infinitary expression

T =dg,,

since this formally satisfies the equation =z = a,. It is not clear to this author
how to add infinitary expressions in a controlled way to obtain an adequate
definition of a free biquandle. The alternative that we choose here is a con-
struction based on the Chruch-Curry untyped lambda calculus [2]. In order to
explain this construction we will first describe the standard untyped lambda
calculus, and then we explain how it is modified to fit the biquandle. For
another point of view about the relationship of lambda calculus with knot
theory, see the author’s paper “Knot Logic” [8].

Suppose that A is a non-associative algebra with one binary operation,
denoted by justaposition ab for elements a and b of A. An algebraic expression
F(z) of one variable in A is an appropriately parenthesized expression using
elements of A and appearances of the variable #. Such an expression can
be regarded as a mapping F' : A — A and we shall call such mappings
algebraic mappings from A to A. A is said to be a lambda algebra if for every
algebraic mapping F' from A to A there is a corresponding element F'in A
(we denote them by the same letter) such that for all z in A

Fo = F(z).

For example, if we define F(z) = zz, then there is an element F in the
lambda algebra A such that Fa = aa for every a in A. FEvery algebraic
mapping of a lambda algebra is represented by an element of the algebra.
Now we prove the basic fixed point theorem for lambda algebras [2].

Theorem. l.et A be a lambda algebra and let F' be any element in A. Then
there exists an element .J in A sucn that F'(J) = F.J = .J. Thus every element,
of A has a fixed point, and consequently, every algebraic mapping of A to
itself has a fixed point.
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Proof. Define a new algebraic mapping (7 by the formula

GX = F(XX).

Then by the axiom for lambda algebra, (7 is an element of A and so we can
apply GG to itself, obtaining

GG = P(GG).

This shows that J = GGG satisfies the equation F'(.JJ) = .J. This completes the
proof. //

A lambda algebra can be approximated from a given non-associative alge-
bra Aq by an infinite tower of adjoinings of algebraic mappings of successive
algebras. That is, given an algebra A, we let A* denote the algebraic map-
pings of A to itself, and we let A’ denote the new algebra obtained from A
by adjoining A* to A so that for F'in A*, FX = F(X) for all X in A. No
relations are imposed on X F for X in A unless X itself has a definition as
an algebraic mapping, in which case X F = X(F). Tt is important to note
that X might be defined as an algebraic mapping “after” the definition of F.
We then define a sequence of algebras A,.1 = Al and continue this sequence
through infinite ordinals via unions of the algebras in the case of limit ordi-
nals. Let A(w) denote the algebra constructed to the level of the ordinal w.
Fach of these algebras approximates the concept of a lambda algebra, and
each will have algebraic mappings that are not yet realized inside the alge-
bra. Since there is no final ordinal, this bare process of approximation will
not give a set theoretic model of a lambda algebra. In order to produce such
models one needs to put further restrictions on the structure of the mapping
set, as in the topological models of Dana Scott [20].

Another point of view on lambda algebra is that it is analogous to a com-
puter programming language in which one can always make new definitions
of functions that are to be included in the language (such as GX = F(X X)).
et I. denote this language. Then the syntax of I, is specified beforehand, and
along with this is a capacity to define new symbols in terms of the original
alpbabet of the language. The underlying set of defined symbols that repre-
sent elements of the algebra can evolve in time. Two users of the language
may start with the same formal structure and evolve quite different patterns
of user-defined structures. It can be arranged that two such structures can
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be merged into a larger structure that encompasses them both. Tet us call a
structure of this sort a lambda language I.. Tt is understood that in a lambda
language there is a well-defined notion of algebraic mapping of the language
to itself. An algebaic mapping is any well-formed expression £ in I that has
one free variable

Now lets turn to the biquandle structure. Note that up until now, we do
not have any binary operation in the biquandle that corresponds to (non-
associative) juxtaposition of symbols unless these symbols are of the form

o bla blalb,alb.

In other words, we use the operator formalism to delineate the different bi-
nary operations in the biquandle. For the purpose of using a lambda calculus
formalism in the biquandle it is useful to add to the operator formalism a
non-associative binary operation denoted ab for elements a and b of the bi-
quandle. This operation can be interpreted in terms of diagrams by extending
the diagrams for the virtual knots and links to include trivalent graphical ver-
tices. This will be the subject of another paper. For our purposes the binary
operation is simply given without any further relations except the usual rules
for cancelling parentheses as in ((ab)(c)) = (ab)e. With this in mind, we can
posit that the biquandle is a lambda algebra with respect to this binary oper-
ation. Then the desired fixed points exist just as in the abstract discusssion
above. For example, if we need an x such that x = a, then we consider first
the function defined by

Gr = a,p,

using the juxtaposition operation to define the element zx. Then, regarding
(7 as an element of the lambda algebra, we have

GG = 4dGG,

and so (G(7 is the desired fixed point.

By taking every (universal) biquandle to be a lambda algebra in this
way, we obtain the needed existences of fixed points and can proceed in the
usual way of universal algebra to take the equivalence classes generated by
the axioms for the biquandle plus the consequences of the specific relations.
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This completes our sketch of the general construction of biquandles and their
relation to the lambda calculus of Church and Curry.

8 Embeddings in Four-Space, Welded Braids
and Welded Knots

In this section we describe a beautiful application of virtual knot theory that
is due to Shin Satoh [21]. Satoh discovered that virtual knot diagrams can be
interpreted as representing special embeddings of a torus in four dimensional
space. That is, each component of a virtual link corresponds to an embedded
torus. This correspondence is obtained as follows: First view Figure 26.
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Figure 26  Linking Tubes in Four Space




Here we have illustrated a "movie” of two tubes embedded in four dimensions
so that in each three dimesional hyperspace there are two embedded circles.
Fach circle traces out one of the tubes in four-space. We denote the fourth
spatial coordinate by ¢ and refer to it as "time”. At time zero the two circles
are separated from one another. As time proceeds, the left circle and the
right circle approach one another, and the left circle slides through the right
circle and continues on the right while the right circle continues on to the
left. Tn this process, the left circle is seen to first slide under the right circle
and then slide out over it. The result is two tubes in four-space that are non-
trivially braided with one another. If we were to make an immersion diagram
of these tubes in three-space (by projection from four-space), one tube would
appear to enter the side of the other and then leave it by piercing it once
more. We indicate this immersion in Figure 26. Figure 26 also illustrates
Satoh’s ingenious coding of this tubular braiding in four dimensions: He uses
the real crossing to indicate the four dimensional braiding of the tubes as
shown in Figure 26. The assymetry of the real crossing allows us to identify
the undercrossing arc with the tube whose circle goes under and through the
circle of the other tube. Satoh identifies the virtual crossing with the situation
where the circles just go around each other. In a three space immersion, this
can project as simply two tubes that do not touch and it does not matter
whether one tube is depicted as overpassing or underpassing the other tube
in three space as these give the same embedding in four space. Thus Satoh
obtains a mapping

S:VK — RT

where VK denotes virtual knot diagrams depicted in the plane, and RT
denotes ribbon tori in four space. A ribbon torus embedding is exactly what
we have described, namely an embedding of a torus in four space that has an
immersion diagram whose only singularities correspond to braidings of the
type represented by a crossing as described above.

The Satoh mapping S is not an isomorphism. Many different virtual
diagrams can represent the same torus embedding in four space. In fact the
first (F'1) of our forbidden moves of type III is an isotopy of ribbon torus.
See Figure 3 for an illustration of the two forbidden moves (types F'1 and
F'2). Thus we can define WK | the Welded Knots to be the quotient of VK

by the equivalence relation generated by forbidden move A. We then have a
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factorization of the Satoh map

P: VK — WK

S" WK — RK

so that
S'oP =S5

where S’ is the Satoh mapping from welded knots to ribbon torus embed-
dings, and P is the projection of virtual knots to welded knots.

Of course this description raises at once the question of invariants of
welded knots. The most direct observation that we can make is that the
quandle of a virtual knot is invariant under the forbidden move F1. And
Satoh proved that the quandle of a virtual knot K is isomorphic to the
quandle of the corresponding ribbon torus embedding in four space. Thus the
invariants related to the fundamental group carry through in this pattern. On
the other hand, we do not know how to easily extend the Jones polynomial
and other quantum invariants to welded knots. Welded knots are clearly
worth study, but present new challenges for their classification.

The classification of welded knots is also distinct from the classification of
ribbon torus embeddings in four space. Such embeddings have to be studied
on their own grounds via analogs of the Reidemeister moves in four-space.
In this way Satoh’s construction raises a host of new problems and ideas.

The reader should note that it follows from our description that the fun-
damental groups of virtual knot diagrams are isomorphic to the fundamental
groups of certain ribbon torus embeddings in four space. This fact was first
observed by Silver and Williams [23] by an algebraic argument. These con-
structions give a direct topological interpretation of this fact.

Finally, we note that the term em welded knots has been assigned because
the welded braids of Rourke, Fenn and Rimanyi [30] are precisely the braids
that correspond to the theory of welded knots. The Rourke-Fenn moves con-
sist in the rules for virtual braids plus the moves on braids that correspond
to forbidden move F'1. The interpretation we have given of welded braid-
ing in terms of embedded tubes in four space shows that the Rourke-Fenn
welded braids map to the braid group whose configuration space is the set of
disjoint unlinked unknotted circles in three space. This is sometimes called

52



the motion group of circles in three space [3]. In fact, it follows from this
interpretation and calculations of Tom Imbo [25] that the welded braids on n
strands are isomorphic to the motion group of n unknotted unlinked circles
in three space. This gives a beautiful and unexpected interpretation to the

welded braids of Rourke and Fenn.

Remark. It is worthwhile pointing out that the virtual braid group is an
extension of the classical braid group by the symmetric group. If V,, denotes
the n strand virtual braid group, then V,, is generated by braid generators
o1y --ry 0,1 and virtual gnerators cq,..., ¢, where each virtual generator ¢;
has the form of the braid generator o; with the crossing replaced by a virtual
crossing. Among themselves the braid generators satisfy the usual braiding
relations. Among themselves, the virtual generators are a presentation for
the symmetric group S,. The relations that relate virtual generators and
braiding geneerators are as follows:

+ _ +
T; Cit1C = Ci1CiT, 44,
+ +
CiCi10; = 0,41CiCit1,

+ +
C,j0'7:+1 C; = Cip10,; Ciyn.

It is easy to see from this description of the virtual braid groups that all the
braiding generators can be expressed in terms of the first braiding generator
o1 (and its inverse) and the virtual generators. One can also see that Alexan-
der’s Theorem generalizes to virtuals: Every virtual knot is equivalent to a
virtual braid. In [14] a Markov Theorem is proven for virtual braids.

9 Discussion

This paper has been a survey of aspects of virtual knot theory. Two problems
that arose here should be underlined. The first is the construction of Section
6 of infinitely many virtual knots with unit Jones polynomial. Tt is an open
question whether any of these are isotopic to classical knots. This gives a new
twist to the problem of classical knot detection by the Jones polynomial. The
second is the construction and use of the biquandle as an invariant of virtuals.
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This structure presents conceptual problems in its very definition due to the

need for the existence of certain fixed points in the algebra. On the other

hand there are concrete examples of biquandles that are quite well-defined

and useful. More exploration is needed in this domain.
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