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Certainly, any IIg,r%gy ' € N is equal to 1 in G, since each r; = 1. Con-
versely, suppose a word w = 1 in G. We shall show that each insertion or.
deletion of rf! in w can be accomplished by multiplying w by gi’ r¥ig,
for some g,. o

Note firstly that deletion of rf  can always be accomplished by insertion of
rf ! next to it, followed by cancellation (which is valid in F). Thus it remains
to deal with insertions.

Let w = up — ur;v be the insertion of r; between the factors u, v of w.
We can obtain the same result by multiplying w by v~ 'r;v, since ur;v is
freely equivalent to uv- v~ 'r;v.

Repetition of this process for each insertion in the sequence required to

convert w to 1 gives a word

—1 &k

wllgy "5k
which is freely equivalent to 1, and therefore

w=Tgr;%;' inF

Ji

so that w € N(ry, 13, - - ). Ol

Dyck’s 1882 paper is the beginning of combinatorial group theory as a
subject, and the first to recognize the fundamental role of free groups. Dyck
viewed free groups as the most general groups, since any other group is
obtainable by imposing relations on them. The explanation of relations in
terms of normal subgroups and quotients suggests a reconstruction of
combinatorial group theory in more conventional algebraic terms. This can
indeed be done, including the definition of free groups themselves, but it
proves to be an object lesson in the impotence of abstract algebra. All sub-
stantial theorems in combinatorial group theory still require honest toil with
words and relations, and the best labour-saving device turns out to be the
topological interpretation of 0.5.1, rather than algebra.

ExErciSE 0.5.6.1. If G is any group show that the result of adding relations v, =1,
vy =1,...,t0 Gis G/N(v;, v, ...).

0.5.7 The Word Problem and Cayley Diagrams

When a group G arises as a fundamental group, as in 0.5.1, null-homotopic
paths correspond to words w which equal 1 in G. Thus the problem of
deciding null-homotopy (contractibility to a point) is reduced to deciding
whether a given word w = 1 in G. Even though we can compute a presenta-
tion of G, this problem is not trivial, and its fundamental importance for
topology and group theory was first recognized by Dehn 1910, who called it
the word problem.
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Early topologists, such as Poincaré, Tietze, and Reidemeister, frequently
ooBBwsam on the difficulty of group-theoretic problems in topology, on
occasion (Reidemeister) saying that the fundamental group seemed merely to
:.ww&wﬁ hard topological problems into hard group-theoretic problems.
This pessimism was vindicated when Novikov 1955 proved that the word
wmoEoB (for specific, finitely presented G) was unsolvable. Novikov’s proof
is based on the idea of Post 1947 of simulating Turing machines by systems
of generators and relations. A word corresponds (roughly) to the tape
expression on a Turing machine M, and the relations permit the word to be
changed to reflect the atomic acts of M. (The technical difficulty, which is
absent in the semigroup case, is the presence of relations g;a;7 ! = a; 'a; = 1
which do not correspond to acts of M.) S

Solution of the word problem for G is equivalent to the construction of
a figure ¥ called the Cayley diagram of G, introduced for finite groups by
Cayley 1878 and for infinite groups by Dehn 1910. If G is generated by
ay, 4z, . . .; then € is a graph with a vertex P, for each distinct g € G and an
oriented edge labelled g, from P, to P,,, for each generator g;. It follows that
each vertex has exactly one outgoing, and one incoming, edge for each
generator. Examples (labelling each vertex g instead of P, for simplicity) are
m.?g in Figure 45. The last example is constructed by noting that there are
six distinct elements g = 1, b, b%, a, ab, ab?, then multiplying each of these
by a, b and using the defining relations to reduce each product to one of the
six forms already chosen.

Z={a;~) > : »

Z, = {a; a*)

R

Figure 45
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Each word
w=ajl - ap
determines a path from P, to P, by following the labels a;,, ..., a; in
succession, with or against the arrow according as the exponent ¢ is +1 or
—1. Tt follows that w = 1 if and only if the path is closed.
Thus if % can be effectively constructed we have a solution of the word
problem for G.

Conversely, if the word problem for G can be solved, we can construct Cs-

Effectively list the words of G as wy, W, ... and as each w; appears, use
the solution of the word problem to decide whether w; = any w; earlier on
the list (see if w;wj ! = 1). If not, put w; on a second list. The second list is
then an effective enumeration of the distinct elements of G, which we use as
labels for the vertices of €.

As each vertex P,, is constructed, we again use the solution of the word
problem to find which of the words w;a; is equivalent to a w already on the
second list (if an equivalent is not found, one will be found later by repeated
checking as the second list grows). For each such word we construct an
oriented edge labelled g; from P, to P,,,, = P,,. Thisis an effective process
which eventually gives each vertex and edge in €. |

Since G has many different presentations, % is not unique. However,
if there is a solution to the word problem for one finite presentation of G
there is a solution for any other finite presentation of G, hence the effective
constructibility of % does not depend on the presentation chosen. ’

Exercisk 0.5.7.1. Prove the last remark.
ExErCisE 0.5.7.2. Show that {w:w = | in G} is r.e. when G is finitely presented.
Exercisk 0.5.7.3. Sketch the Cayley diagram of the free group F, = {a,b; —).

Exercist 0.5.7.4. Describe the Cayley diagrams of the fiee abelian groups Z x Z x ... X
Z={Lay,...,a,;aqa; = aga(i,j < m)) asfigures in R™.

Exercist 0.5.7.5. Figure 46 shows the Cayley diagram of a group. Why is this group
nonabelian?

Show that the group is the group of symmetries of an equilateral triangle.

0.5.8 Tietze Transformations

Tietze transformations are simply the obvious ways of transforming a finite
presentation <ay, ..., @i T -+ s I'n)s
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Figure 46

T,: Add a relation r,, ,(=1) which is a consequence of ry, ..., r,,. (That
is, 7,4, is equivalent to 1 with respect to the relations ry = --- =1, = 1.
We write this 7y, ..., Fp = Ty 1)

T,: Add a generator a,,, together with a relation

Q1 = :\AQT ety hiv
which defines it as a word in the old generators.

The inverse transformations, which we denote by T7 !, T3 !, can also be
applied when meaningful.

Tietze’s Theorem. Any two finite presentations of a group G are convertible
into each other by a finite sequence of Tietze transformations.

Suppose G has presentations <@y, ..., G F1s--+» ryy and {ay, ..., Gy
¥, ..., ">, which we abbreviate to {a;; r{a;)> and aj; r'{a7)). We use the
notation w(x;) to express the fact that w is a word in the letters x;, and denote
the result of substituting a word y; for x; in w(x;) by w(x,).

Since both presentations denote the same group, there are words =; in
ay, a,, ... representing the a; and hence satisfying the relations ri(e:). Then
the r,(a;) = the rj(o;) since all relations in the g; are consequences of the
r{a;). Similarly there are words o; in a3, a5, ..., representing the a;, and the
ri{ap) = the o).

We can therefore make the following modifications of the group presenta-
tion by Tietze transfornfations:

ag; ra)>
— ag; ri{ag), ¥i(es)> by T, since the r{a;) = the rj(«)
= {ay, ag; rag), ri{ed), a; = a;> by T, .
- ay, ds (@), la), riod), ai = &> by T,
— {ay, al rar), riap), a; = ety by Ty
= {ay, az; ri{as), ¥{a), a= o, a;=0;) byT; )
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since the relations a; = o; are true in the group and hence consequences
of the relations already present. But (*) is symmetric with respect to
primed and unprimed symbols, so it could equally well be obtained from
{ai; rj(ai)). By reversing the latter derivation we obtain

Cag; ra)y = (%) — ai; ¥i{a)>. O

Since we can effectively enumerate all consequences of a given finite set of
relations, and hence all possible sequences of Tietze transformations which
can be applied to a given presentation, Tietze’s theorem shows that we can
eflectively enumerate all finite presentations of a given group. Thus the
problem of deciding when two presentations are the same, the isomor phism
problem of Tietze 1908, is similar to the word problem—in both cases we can
effectively enumerate the pairs of equal objects, and the difficulty is to find
the pairs of unequal objects. It actually follows from basic results of recursive
function theory (see Rogers 1967) that the two problems are of the same
degree of unsolvability, that is, a solution of one would effectively yield a
solution of the other. (In particular, the isomorphism problem is unsolvable.)
In individual cases, however, the isomorphism problem is usually harder to
solve than the word problem. .

On the positive side, the Tietze theorem is often a slick way to prove
existence of algorithms or semidecision procedures. For example, if G has a
property that can be recognized from one of its presentations we can eventu-
ally verily this property by enumerating all the presentations of G. Examples
of such properties are:

(i) being abelian (all generators commute)

(ii) being finite (all relations of the form g; i = a)
(iii) being a specific finite group (relations given by Ec_:@:om.:oz table)
(iv) being free (no relations).

ExERCISE 0.5.8.1. Show that {a, b; abab™ ') = (¢, d; *d*).

Exercise 0.5.8.2. Suppose that infinitely many consequence relations or new generators
can be added in a transformation of type T, or T, respectively. Deduce that any two
presentations of the same group are then convertible to each other by a finite sequence
of Tietze transformations.

Exercise 0.5.8.3. Give an algorithm for finding «; and «; from two presentations
ag; ra)y and aji; rifai)) of the same group. (This gives a “uniform” solution to
Exercise 0.5.7.1.)
ExercisE 0.5.8.4. If G has a finite presentation, show that in any presentation

G={ g, oy Aty Ty

all but a finite number of relations are superfluous.
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0.5.9 Coset Enumeration

As a final example of the way finiteness can be discovered by systematically
enumerating words, consider the case of a subgroup H of a finitely presented
group G. If the set of cosets Hg for g € G is finite, H is said to be of finite index
in G. In this case there is a finite set {g,, ..., gi} of coset representatives such
that

G = Hg,v---uUHg,.
‘We now show how to find such a set, if one exists.

G = Hg; v --- U Hg, if and only if the set {Hg,, ..., Hg,} is closed under
right multiplication by the generators of G and their inverses. That is

Hg;a; = some Hg;, Hg;a; * = some Hg.

- for each generator ay, ..., a, of G. Now assuming H is effectively enumer-

able, we can verify the equality of two cosets by enumerating their members,
along with an enumeration of equal words in G, until we find a common
element.

It therefore suffices to enumerate all the finite sets {g,, ..., g;} in G, and
for each one try to verify that {Hg,, ..., Hg,} is closed under right multi-
plication by looking for equal pairs Hg;a;, Hg; and Hg;a; ', Hg;». Eventu-
ally such a verification will succeed. O

A more practical version of the above idea is known as the Todd-Coxeter

coset enumeration method (Todd, Coxeter 1936).
¢
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