Take Home Exam - Math 310 - Linear Algebra - Spring 2008

1. Let $A=\left[\begin{array}{llll}1 & 1 & 2 & 3 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 5\end{array}\right]$. Consider the system $A\left[x_{1}, x_{2}, x_{3}, x_{4}\right]^{T}=[a, b, c]^{T}$.
(a) Use row reduction to determine the general solution for this system. For what values of a, b, c do there exist solutions to this system of equations? Give the vector form of the solution to

$$
A\left[x_{1}, x_{2}, x_{3}, x_{4}\right]^{T}=[1,1,1]^{T}
$$

Find a basis for the null space $N(A)$.
(b) Using your work in part (a), give the row reduced echelon form R for the matrix A. What is the rank of A ? What is the dimension of the column space of A ? Give a basis for the column space of A that is a subset of the columns of A.
(c) Let $\operatorname{Col}(A)$ denote the column space of A. Find a basis for $\operatorname{Col}(A)^{\perp}$. (Hint: Use the basis for $\operatorname{Col}(A)$ that you found in part (b).)
2. (a) Let

$$
M=\left[\begin{array}{ll}
t & 1 \\
0 & t
\end{array}\right]
$$

Prove by induction that

$$
M^{n}=\left[\begin{array}{cc}
t^{n} & n t^{n-1} \\
0 & t^{n}
\end{array}\right]
$$

Thinking of each entry of M^{n} as a function of t, show that

$$
d\left(M^{n}\right) / d t=n M^{n-1}
$$

for $n \geq 1$ where $M^{0}=I$ denotes the 2×2 identity matrix.
(b) Consider the oriented graph G whose incidence matrix is $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right]$. This means that there are two vertices in the graph, labeled 1 and 2. There is an oriented edge from 1 to 2 and each vertex has two oriented loops from itself, to itself. Draw a diagram of the graph G. How many oriented paths of length 137 are there in G starting at vertex 1 and ending at vertex 2?
3. Let A be an $n \times n$ matrix. Define the trace of A by the formula $\operatorname{tr}(A)=$ $\sum_{i=1}^{n} a_{i i}$. That is, the trace of a matrix is the sum of the diagonal entries of the matrix. Recall that for $n \times n$ matrices A and $B, \operatorname{tr}(A B)=\operatorname{tr}(B A)$.
(a) Prove that for two $n \times n$ matrices A and $B, \operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$.
(b) Prove that for any $n \times n$ matrix $A, \operatorname{tr}(A)=\operatorname{tr}\left(A^{T}\right)$.
(c) Show that there do not exist $n \times n(n \neq 0)$ matrices A and B such that $A B-B A=I_{n}$ where I_{n} is the $n \times n$ identity matrix. (Hint, take the trace of the left-hand side and take the trace of the right-hand side. Show that they cannot be equal.)
4. Let $S=[1 / \sqrt{2}, \cos (x), \cos (2 x), \cdots, \cos (n x), \sin (x), \sin (2 x), \cdots, \sin (n x)]$. We know that S is an orthonormal set of vectors in $C[-\pi, \pi]$ with inner product defined by $\langle f, g\rangle=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) g(x) d x$. Thus S can be taken as the basis of its span $W=\operatorname{Span}(S)$.
(a) What is the dimension of the subspace W (defined above) of $C[-\pi, \pi]$?
(b) Determine the best least squares approximation to $h(x)=x$ by a function from the subspace W. Hint: You will need to know the integrals $\int x \sin (k x) d x$ and $\int x \cos (k x) d x$. You can look these up, or do them by integration by parts.
5. In this problem and the subsequent problems we are concerned with the following question: Given an $n \times n$ matrix A, does there exist a non-zero vector $v \in R^{n}$ such that $A v=\lambda v$ for some real number λ ? If

$$
A v=\lambda v
$$

then

$$
A v-\lambda v=0
$$

Hence

$$
A v-\lambda I v=0
$$

where I is the $n \times n$ identity matrix. Hence

$$
(A-\lambda I) v=0
$$

In order for this system to have a non-zero solution v (for some choice of value for λ) we need that the determinant

$$
\operatorname{Det}(A-\lambda I)=0 .
$$

We say that

$$
C_{A}(x)=\operatorname{Det}(A-x I)
$$

is the characteristic polynomial for A and we call solutions λ to the equation $C_{A}(x)=0$ the eigenvalues of the matrix A. A non-zero vector such that $A v=\lambda v$ is said to be an eigenvector of A belonging to the eigenvalue λ.
(a) Let $L: R^{2} \longrightarrow R^{2}$ be a linear transformation whose matrix in the standard basis is

$$
A=\left[\begin{array}{cc}
4 & 1 \\
-2 & 1
\end{array}\right]
$$

Show that $C_{A}(x)=x^{2}-5 x+6$, and find the roots of $C_{A}(x)=0$. Let λ_{1} and λ_{2} denote these two roots. Find an eigenvector v_{1} belonging to λ_{1}. Find an eigenvector v_{2} belonging to λ_{2}. Show that v_{1} and v_{2} are linearly independent. Thus $E=\left[v_{1}, v_{2}\right]$ is a basis for R^{2}. Find B, the matrix of the linear transformation L in the basis E. Find an invertible matrix P such that $B=P^{-1} A P$.
(b) Let

$$
M=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Show that $C_{M}(x)=x^{2}-(a+d) x+(a d-b c)$.
(c) Give an example of a 2×2 matrix that has no real eigenvalues.
(d) Give an example of a 2×2 matrix whose characteristic polynomial is $(\lambda-5)^{2}$, and such that the space of eigenvectors with eigenvalue 5 is one-dimensional. Give a second example with the same characteristic polynomial, and such that the space of eigenvectors with eigenvalue 5 is two dimensional. Hint: Consider the properties of the following two matrices.

$$
M=\left[\begin{array}{ll}
7 & 1 \\
0 & 7
\end{array}\right]
$$

and

$$
M=\left[\begin{array}{ll}
7 & 0 \\
0 & 7
\end{array}\right]
$$

6. Let

$$
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 3 & 1 \\
0 & 0 & 4
\end{array}\right]
$$

(a) Compute the characteristic polynomial $C_{A}(x)$.
(b) Find the eigenvalues of A and determine an eigenvector for each eigenvalue.
(c) Use the eigenvectors in part (b) to form a basis for R^{3} with respect to which the linear transformation corresponding to A is diagonal. Find an invertible matrix P such that $P^{-1} A P$ is diagonal.
7. In this problem we apply eigenvectors and eigenvalues to the solution of a system of differential equations. Suppose you are asked to solve

$$
\begin{aligned}
& y_{1}^{\prime}=a y_{1}+b y_{2} \\
& y_{2}^{\prime}=c y_{1}+d y_{2}
\end{aligned}
$$

where y_{1} and y_{2} are differentiable functions of a variable t and y^{\prime} denotes $d y / d t$. Then try solutions in the form

$$
\begin{aligned}
& y_{1}=x_{1} e^{\lambda t} \\
& y_{2}=x_{2} e^{\lambda t}
\end{aligned}
$$

where x_{1} and x_{2} are constant real numbers and λ is also a constant real number. Note that

$$
\begin{aligned}
& y_{1}^{\prime}=\lambda x_{1} e^{\lambda t} \\
& y_{2}^{\prime}=\lambda x_{2} e^{\lambda t}
\end{aligned}
$$

Thus we are attempting to solve

$$
\begin{aligned}
& \lambda x_{1} e^{\lambda t}=a x_{1} e^{\lambda t}+b x_{2} e^{\lambda t} \\
& \lambda x_{2} e^{\lambda t}=c x_{1} e^{\lambda t}+d x_{2} e^{\lambda t}
\end{aligned}
$$

But since $e^{\lambda t} \neq 0$, this is the same as trying to solve

$$
\begin{aligned}
& \lambda x_{1}=a x_{1}+b x_{2}, \\
& \lambda x_{2}=c x_{1}+d x_{2} .
\end{aligned}
$$

With $v=\left(x_{1}, x_{2}\right)^{T}$, this is the eigenvalue problem for the matrix

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

That is, we are looking for the eigenvalues of this matrix and for eigenvectors that belong to them.

Find solutions to the differential system

$$
\begin{gathered}
y_{1}^{\prime}=y_{1}+y_{2} \\
y_{2}^{\prime}=-2 y_{1}+4 y_{2} .
\end{gathered}
$$

by using the method described above. You should find two different fundamental solutions to the system corresponding to two distinct eigenvalues of the matrix

$$
\left[\begin{array}{cc}
1 & 1 \\
-2 & 4
\end{array}\right]
$$

