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CHAPTER 2
ELEMENTS OF SET THEORY

TFinite, Countable, and Uncountable Sets

We begin this section with a definition of the function concept.

9.1. Definition. Consider two sets 4 and B, whose elements may be
any objects whatsoever, and suppose that with each element x of 4
there is associated, in some MANDET, an element of B, which we denote
by f(z). Thenf is said to be a function from A to B (or, & mapping of A
into B). Theset 4 is called the domain of definition of f (we also sy,
f is defined on A), and the clements f(z) are called the values of f. The
set of all values of fis called the range of f.

2.2. Definition. We say that two sets A and B can be put into 1-1
(one-to-one) correspondence if there exists a function f from A to B with
the following properties. :

(@) If 212 4, 228 A, and z1 7 Te, then f(z:) # f(&2)-

(b) For every y & B there is an z € A such that y = f(@)-

(The notation @1 # %2 means that z: and Zz are distinct elements;
otherwise we write 1 = Ta.)

9.8, Definition. If two sets A and B can be put into 1-1 correspond-
ence, we say that 4 is equivalent to B (or, A and B are equipotent), and
write A ~ B. The relation ~ just defined clearly has the following

properties:
It is reflexive: ‘ A~A.
Tt is symmetric: i A ~ B, then B~ 4. '
Tt is transitive: if A ~ Band B~ C, then 4 ~C.

Any relation with these three properties is called an equivalence

relation.

9.4. Definition. For any positive integer 7, let J, be the set whose
clements are the integers, 1L,2,.--,7 let J be the seb consisting of all
positive integers. For any set 4, we say: '

(a) A is finite ¥ A ~ J, for some 7 (the vacuous seb is also considered
to be finite). -

(b) A is infinite if A is not finite.

(¢) Ais countable fA~J.

(dy Ais uncountable if A is neither finite nor countable.

(e) 4 is at most countable if A is finite or countable.
i8
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Countable sets are sometimes called enumerable, or denumerable.
For two finite sets A and B, we evidently have 4 ~ B if and only if 4

“and B contain the same number of elements. For infinite sets, however,

the idea of “having the same number of elements’” becomes quite vague,

- whereas the notion of 1-1 correspondence retains its clarity.

2.5. Example. Let 4 be the set of all integers. Then A is countable,
For, consider the following arrangement of the sets 4 and J:
0,1, -1,2, —2,3, -3, . ..
1,2,8,4,5,6,7,

We can, in this example, even give an explicit formula for the function f
from J to A which sets up the 1-1 correspondence:

(n even),

f(n) =
- ’lg—l (n 0dd).

2.6. Definition. We say that A is a subset of B, and write 4 CB

: (or B D A) if every element of 4 is an element of B. If, in addition,

there is an element of B which is not in 4, then 4 is said to be a proper

- subset of B.

In particular, the vacuous set is a subset of every set, and 4 C 4 for
every set A.

It A CBand BC 4, we write 4 = B,

2.7. Remark. The fact that the vacuous set is & subset of every set is
based on a point of logic which often causes difficulty to beginners.

By Definition 2.6, it is clear that if 4 is not a subset of B, the following
statement must be true: “There is an element g such that ze 4 and

‘2¢B.” Butif 4is vacuous, there is no z such that z ¢ 4, and the above

statement is false. .

Similar arguments apply whenever we wish to verify that certain
conditions are satisfied by the vacuous set. '

2.8. Remark. A finite set cannot be equivalent to one of its proper
subsets. That this is, however, possible for infinite sets, is shown by
Example 2.5, in which J is a proper subset of 4.

In fact, we could replace Definition 2.4(b) by the statement: 4 is
infinite if 4 is equivalent to one of its proper subsets. ,

2.9. Definition. By a sequence we mean the values of a function f
defined on the set J of all positive integers. If f(n) = T, for ne J, we
use the notation {z,} to denote the sequence whose elements are 2y, z,
L3y oL

Note that these elements need not be distinet.
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e seb is the range of a 1-1 function defined on J,

5 countable set as & sequence of distinet elements.
ubset of a countable set A is countable.
Arrange the elements o of A

Construct a sequence {n} as

Since every countabl
we can always think of

2.10. Theorem. Every infinite s

Proof: Suppose B C A,and Eis infinite.
in a sequence {@.} of distinct elements.
follows:

Let ny be the smallest positive integer such
Ng—1 (]G = 2,3,4:, .. .), let ng

that o, ¢ E. Having
be the smallest integer B

chosen N, « + - »
greater than 7x—1 such that .. € B.
Putting f(k) = Tm (b = 1,23, - - .), we obtain a 1-1 correspondence
between E and J.
aking, countable sets represent

The theorem shows that, Toughly spe
the “smallest” infinity: no uncountable set can be a subset of &

countable set.
2.11. Definition. Let A be any set, and suppose that with each ele-
ment o of A there is associated a set which we denote by E.. The ele-

ments of E, may or may not be elements of A.
The set whose elements are the sets E. will be denoted by {Ee}-

Instead of speaking of sets of sets, we shall sometimes speak of a collec-

tion of sets, or & family of sets.
The union of the sets B, is defined to be the set S such that ze S if
and only if & E. for at least one a g 4. Weuse the notation

¢} S = angAEa.

1f A consists of the integers 12, ...,mone usually writes

@) S = ,,Q B

or

8§ = EsuEsu - - - U E,.

(3)
| If A is the set of all positive integers, the usual notation is ‘
4) 8= U En

The symbol « in (4) merely indicates that the union of a countable
collection of sets is taken, and should not be confused with the symbols

4o, — oo, introduced in Definition 1.39.
The intersection of the sets B, is defin
z ¢ Pif and only if ¢ e B for every o€ A.

) P = ﬂAEa,

Abecal= ==

ed to be the set P such that .
We use the notation

e
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or

(6)

or

(7)

as for unions.

2.12. Examples. (a) Suppose E; consists of 1, 2, 3 and E; consists of
2,3, 4. Then E:U E; consists of 1, 2, 3, 4, whereas By n B consists of
2, 3.

(b) Let A be the set of real numbers z such that 0 < z < 1. For every
ze A, let E, be the set of real numbers y such that 0 < y < . Then

)} E:CE;iffandonlyif 0 <z <z < 1;
(i) UAEx = Ey;

(iii) N E, is vacuous;

ze A
(i) and (ii) are clear. To prove (iii), we note that'for every y > 0,
y¢E.ifx <y. Henceyg N E,.

zed
2.13. Remarks. Many properties of unions and intersections are quite
similar to those of sums and products; in fact, the words sum and product
are frequently used in this connection, and the symbols = and I are
written in place of U and .
The commutative and associative laws are trivial:

8 AuB =Bud4; AnB=RBnA.
()] AuB)uC=A4AuBul); (AnB)nC = An(Bn ().

Thus the omission of parentheses in (3) and (6) is justified.
The distributive law also holds:

(10) An(BUC)=(AnB)U(AnC’).

To prove this, let the left and right members of (10) be denoted by &
and F, respectively.

Suppose ze E. Then szt A4 and zeBu C, that is, ze B or ze(C
(possibly both). Hence e A nB or zeAn C, so that zeF. Thus
ECPF.

Next, suppose ze 7. Then ze 4 nB or ze 4 n C. That is, z¢ 4,
andze BuC. Hencezedn (Bu (), so that F C E.

It follows that B = F.

We list a few more relations which are easily verified:
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(11) A CAuB,
(12) AnBC A.

If 0 denotes the vacuous set, then

(13) Aul =4, Ano

If A C B, then

(14) AuB =B, AnB=A.

2.14. Theorem. Let {E.},n =1,2,3, . . ., bea sequence of countable
sets, and put

(15)

Then S 1s countable.
Proof: Let every set FE, be arranged in a sequence {z.}, k¥ = 1, 2,
3, . . ., and consider the infinite array

in which the elements of E, form the nth row. The array contains all
elements of S. As indicated by the arrows, these elements can be.
arranged in a sequence :

(17) 115 X21y, Ta2; T3y, Loz, B1s; Tai, T3e, L3, Pi4; . - .

If any two of the sets E, have elements in common, these will appear:
more than once in (17). Hence there is a subset T of the set of all:
positive integers such that S ~ T, which shows that S is at most count-
able (Theorem 2.10). Since E; C 8, and E; is infinite, S is infinite ’
and thus countable.

Corollary. Suppose A is at most.countable,-and, for every ae A, Ba is ab
most countable. Put .

Then T is at most countable. :
For T is equivalent to a subset of (15). ‘ o
2.15. Theorem. Let A be a countable set, and let B, be the set of ‘al

n-tuples (a1, . . . ,0n), where are A (k =1, ..., n), and the elements

aiy, . . . , G need not be distinct. Then Bn ts countable. '
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Proof: That B, is countable is evident, since B; = A. Suppose B,,_l is
. countable (n = 2,34, . . .). The elements of B, are of the form

. (18) (b,a) (beB,_1, ac A).

For every fixed b, the set of pairs (b,a) is equivalent to A, and hence
countable. Thus B, is the union of a countable set of countable sets
By Theorem 2.14, B, is countable.

The theorem follows by induction.

Corollary. The set of all rational numbers is countable
5 Proof: We apply Theorem 2.15, with n = 2, noting that every rational r

" is of the form b/a, where a and b are integers. The set. of pairs (a,b),
and therefore the set of fractions b/, is countable.

In fact, even the set of all algebraic numbersis countable (see Exercise 6).

That not all infinite sets are, however, countable, is shown by the next
theorem.

2.16. Theorem. Let A be the set of all sequences whose elements are the
digits O and 1. This set. A s uncountable.

The elements of 4 are sequences like 1,0,0,1,0, 1, 1, 1,

Proof: Let E be a countable subset of 4, and let B consist of the
sequences 8y, 83, 83, . . . . We construct a sequence s as follows. Ifthe
nth digit in s, is 1, we let the nth digit of s be 0, and vice versa. Then
the sequence s differs from every member of E in at least one place;
hence s ¢ E. But clearly se 4, so that E is a proper subset of 4.

We have shown that every countable subset of 4 isa proper subset of 4.
It follows that A4 is uncountable (for otherwise 4 would be a proper
subset of 4, which is absurd).

The idea of the above proof was first used by Cantor, and is called
Cantor’s diagonal process; for, if the sequences sy, s, 83, . . . are placed
in an array like (16), it is the elements on the diagonal which are involved
in the construction of the new sequence. ’

The reader who is familiar with the binary representation of the real
numbers (base 2 instead of 10) will notice that Theorem 2.16 implies
that the set of all real numbers is uncountable. We shall give a second
proof of this fact in Theorem 2.40.

Metric Spaces

2.17. Definition. A set X, whose elements we shall call points, is
said to be a metric space if with any.two points p and ¢ of X there is
associated a real number d(p,g), called the distance from p to ¢, such that

(@) d(p,q) > 0 if p # g d(p,p) = 0;

(e) dp,g) < d(p,r) -+ d(r,q), for any re X



