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Abstract. We introduce the notion of a graph associated with a Fox p-coloring
of a knot, and show that any non-trivial p-coloring requires at least |log, p| + 2
colors. This lower bound is best possible in the sense that there is a p-colorable
virtual knot which attains the bound.

1. Introduction

A p-coloring of a diagram D of a knot K, introduced by Fox [1] in 1961, is a
map from the set of the arcs of D to Z/pZ,

7 : {the arcs of D} — Z/pZ,

such that at each crossing the sums of the images (called the colors) of the under-
crossing arcs is equal to twice the color of the over-crossing arc. We say that a
p-coloring v is trivial if it is a constant map.

Harary and Kauffman [2]| study the number of distinct colors appeared in a
non-trivially p-colored knot diagram (D,~). Let N(D,~) = #Im(y) > 1 be the
cardinality of the image of 7. For a p-colorable knot K in R?, we denote by C,,(K)
the minimal number of N (D, v) for all the non-trivially p-colored diagrams (D, )
of K. We remark that the notation C,(kK) is used in the original paper [2], and
also written as mincol,(K) in some papers.

There are several studies on this number found in [4, 5, 6, 7]. In particular,
it is known in [6, 7] that

C3(K) = 3 for any 3-colorable knot K,
C5(K) = 4 for any 5-colorable knot K,
C7(K) = 4 for any 7-colorable knot K, and
C11(K) > 5 for any 11-colorable knot K.

The first aim of this paper is to generalize these results as follows:
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THEOREM 1.1. Let p be an odd prime. Any p-colorable knot K satisfies
Cp(K) = [logy p] +2,

where | x| is the mazimal integer less than or equal to x.

All of this can be done as well for virtual knots, with virtual crossings im-
posing no conditions on the colors: An arc of a virtual knot diagram is a curve
that begins and ends at under-crossings, possibly passing through several virtual
crossings, and the coloring conditions are derived from real crossings only [3].

For a p-colorable virtual knot K, we denote by C}'(K') the minimal number of
N(D,~) for all the non-trivially p-colored diagrams (D, ) of K in virtual knot
category. The second aim of this paper is to prove that the inequality is best
possible for virtual knots as follows.

THEOREM 1.2. Let p be an odd prime. There is a p-colorable virtual knot K
with

Cy(K) = [logyp| + 2.

This paper is organized as follows: In Section 2, we introduce a graph asso-
ciated with a p-coloring which we call the pallet graph. We prove Theorem 1.1
by calculating the determinant of a matrix associated with the pallet graph. In
Section 3, we prove Theorem 1.2 by constructing a tree with |log, p| + 2 vertices
for each p which is the pallet graph of some p-colored virtual knot diagram.

2. Determinant of a matrix

We will start this section with a calculation of a matrix. Let M,, be the set
of n X n matrices with integer entries such that

e cach row contains at most two 1’s and at most one —2, and
e all the entries other than 1 and —2 are 0.

We denote by det(X) the determinant of X.
LEMMA 2.1. Any matriz X in M, satisfies |det(X)] < 2.

Proof. We prove the lemma by induction on n. For n = 1, we have X = (0), (1),
or (—2) and the inequality holds. For n > 1, we divide the proof into three cases.

(i) If X has a row which contains no —2, then the cofactor expansion along
the row induces

det(X)| <1-2""' 1.2t =2"



THE PALLET GRAPH OF A FOX COLORING 93

(ii) If X has a row which contains no 1 but one —2, then the cofactor expan-
sion along the row induces

|det(X)| <2-2"71 =2"

(iii) Consider the case other than (i) and (ii); that is, every row contains
exactly

e one 1 and one —2, or
e two 1’s and one —2.

Let ¥; be the jth column of X. We may assume that the (1, 1)-entry of X is —2.
Consider the matrix

n
Y = —E Uj, U2,y ..., Up | -
=1

Then we see that Y € M,, and the first row of Y satisfies the case (i). Therefore,
we have |det(X)| = |det(Y)| < 2™, O

DEFINITION 2.2. Let (D,~) be a non-trivially p-colored diagram. The pallet
graph G of (D,~) is a simple graph such that

(i) the vertices of G correspond to the colors on the arcs of (D, ), that is, the
elements of the image Im(~y), and

(ii) two different vertices ¢ and ¢’ of G are connected by an edge labeled ¢ =
(c+)/2 if and only if there is a crossing of (D, ) whose lower arcs admit
the colors ¢ and ¢’ and the upper admits ¢”.

We take a maximal tree of the pallet graph G. Let ey,eq,...,e,_1 be the
edges of T, and ¢y, ¢a, ..., ¢, the vertices of T, where n = N(D,~). We define
the (n — 1) x n matrix A = (a;;) with integer entries such that

e a;; = 1 if the edge ¢; is incident to the vertex c;,
e a;; = —2 if the edge e; is labeled by c¢;, and
e a;; = 0 otherwise.

LEMMA 2.3. Let A be the (n—1)xn matriz as above, and A; the (n—1)x(n—1)
submatriz obtained from A by deleting the jth column (1 < j < n).

(i) det(A;) is divisible by p.

(i) det(A;) is odd.

Proof. (i) The simultaneous equation AZ = 0 over the field Z/pZ has two in-
dependent solutions # = *(1,1,...,1),%(c1,¢a,...,¢,). Since the rank of A is at
most n — 2, we have det(A4;) =0 (mod p).
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(ii) The matrix A over Z, is coincident with the incident matrix of 7. For
each 1 <7 <n —1, let cs;) be the vertex between two endpoints of the edge e;
which is farther than the other away from the vertex c;. Since T' is a tree, we
see that

det(Aj) = U15(1)020(2) - - - On—1,0(n-1) = 1 (mod 2).
]

Proof of Theorem 1.1. Let (D,~) be a non-trivially p-colored diagram of a knot
K, and A the (n — 1) x n matrix constructed as above, where n = N(D,~). By
Lemmas 2.1 and 2.3, it holds that p < |det(A;)| < 2"!, thatis, n > logyp+1. O

REMARK 2.4. By definition, the proof of Theorem 1.1 can be also applied for
a virtual knot; any p-colorable virtual virtual knot K satisfies

CY(K) > [logyp] + 2.

3. Construction of a graph

Recall that a pallet graph G over Z/pZ satisfies the following properties:

(P1) G is a connected simple graph with two or more vertices.
(P2) If two different vertices ¢ and ¢ € Z/pZ are connected by an edge, then
the label ¢ = (¢ + ¢)/2 of the edge also appears as a vertex of G.

We remark that G has at least |log, p| + 2 vertices by Theorem 1.1.

LEMMA 3.1. There is a graph G with exactly |log,p| + 2 wvertices satisfying
(P1) and (P2).

Proof. Put k = |log, p|; that is, k is the integer satisfying 28 < p < 2¥*1. There
are integers my, ma, ..., mg uniquely satisfying

2k+1_p:2m5++2m1+1

with 1 <my; <my < --- <mg < k. Since m;y1 > m; + 1 and m; > 1, it holds
that m; > j for each j. Similarly, since m;_; < m; —1 and m, < k — 1, it holds
that m; <k —1— (s — j) for each j. Therefore, we obtain

0<m;—j<k—-s—1.
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We take 14+ (k—s+1)+s = k+2 elements a, b(0),b(1),...,b(k—s), ¢(1),¢(2), ...,
c(s) in Z/pZ such that

a =0,
b(i) = 2° fori=0,1,...,k—s, and
c(j) =2k —(2ms=i ... 4 2mi7) for j=1,2,...,s.

We connect the vertices corresponding to these numbers to obtain a graph G as
follows:
(i) b(0) is connected to a by an edge labeled
a+b0) p+1
2 2
(ii) For each 1 <i <k —s, b(4) is connected to a by an edge labeled

ok — (ms=1 .. o™il — (1),

a+ b(7)

SR 27t = p(i — 1).

(ili) For each 1 < j <s—1, ¢(j) is connected to b(m; — j) by an edge labeled

boms =)+ () _ gy _

(Qms—j—l S 2mj+1—j—1)
2

=c(j+1).
(iv) ¢(s) is connected to b(ms — s) by an edge labeled

b(ms — s) + ¢(s)

. = 25 = b(k — 5).

Since the graph G is connected, we have the conclusion. O

Figure 1 shows an example of the graph constructed in Lemma 3.1 for p = 601.

Figure 1
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LEMMA 3.2. Let G be a graph satisfying the properties (P1) and (P2). Then
there 1s a non-trivially p-colored virtual knot diagram whose pallet graph is G.

Proof. 1t is sufficient to construct a Gauss diagram instead of a virtual knot
diagram (cf. [3]). We take a closed path of G which passes all the edges of G.
Let c¢1,¢,...,c, be the vertices of G, and cy(1), Cr(2), - - -, Ck(m) the sequence of
vertices on the path in this order.

To construct a Gauss diagram, we divide a circle into m arcs by m points
Py, P, ..., P, = P, and assign the color cy;) to each arc between P;_; and F;
(1=1,2,...,m). We take m points Q1, Qs, ..., Q,, on the circle such that Q); is
in the interior of an arc labled (ci) + Cr(i+1))/2, Where Crimi1) = Cr(1)-

We consider a Gauss diagram equipped with the oriented chords Cﬁz (1 =
1,2,...,m) and any signs on them. The Gauss diagram presents a non-trivially
p-colored diagram such that P; and (); correspond to lower and upper crossings,
respectively. Then we see that G is the pallet graph of the p-colored diagram. [

Proof of Theorem 1.2. By Lemmas 3.1 and 3.2, there is a non-trivially p-colored
virtual knot diagram (D, ) such that its pallet graph G has exactly |log, p| + 2
vertices. The virtual knot K presented by D satisfies C)(K) < N(D,v) =
|log, p| + 2. The opposite inequality follows by Theorem 1.1. O

REMARK 3.3. (i) Several statements proved in this paper hold even for any
odd composite p.
(ii) It is an open question whether any p-colorable knot K satisfies

Cp(K) = [logy p] + 2.

The equality holds for p = 3,5,7 (cf. [6, 7]).
(iii) Let ¢(K) denote the crossing number of K. Since ¢(K) > C,(K), any
p-colorable knot K satisfies

¢(K) > [logyp| +2

by Theorem 1.1. It is an open question whether the equality does not hold for
other than the trefoil knot (p = 3) and the figure-eight knot (p = 5).
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