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Abstract. We introduce the notion of a graph associated with a Fox p-coloring
of a knot, and show that any non-trivial p-coloring requires at least ⌊log2 p⌋ + 2
colors. This lower bound is best possible in the sense that there is a p-colorable
virtual knot which attains the bound.

1. Introduction

A p-coloring of a diagram D of a knot K, introduced by Fox [1] in 1961, is a
map from the set of the arcs of D to Z/pZ,

γ : {the arcs of D} → Z/pZ,

such that at each crossing the sums of the images (called the colors) of the under-
crossing arcs is equal to twice the color of the over-crossing arc. We say that a
p-coloring γ is trivial if it is a constant map.

Harary and Kauffman [2] study the number of distinct colors appeared in a
non-trivially p-colored knot diagram (D, γ). Let N(D, γ) = #Im(γ) > 1 be the
cardinality of the image of γ. For a p-colorable knot K in R3, we denote by Cp(K)
the minimal number of N(D, γ) for all the non-trivially p-colored diagrams (D, γ)
of K. We remark that the notation Cp(K) is used in the original paper [2], and
also written as mincolp(K) in some papers.

There are several studies on this number found in [4, 5, 6, 7]. In particular,
it is known in [6, 7] that

• C3(K) = 3 for any 3-colorable knot K,
• C5(K) = 4 for any 5-colorable knot K,
• C7(K) = 4 for any 7-colorable knot K, and
• C11(K) ≥ 5 for any 11-colorable knot K.

The first aim of this paper is to generalize these results as follows:
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THEOREM 1.1. Let p be an odd prime. Any p-colorable knot K satisfies

Cp(K) ≥ ⌊log2 p⌋ + 2,

where ⌊x⌋ is the maximal integer less than or equal to x.

All of this can be done as well for virtual knots, with virtual crossings im-
posing no conditions on the colors: An arc of a virtual knot diagram is a curve
that begins and ends at under-crossings, possibly passing through several virtual
crossings, and the coloring conditions are derived from real crossings only [3].

For a p-colorable virtual knot K, we denote by Cv
p (K) the minimal number of

N(D, γ) for all the non-trivially p-colored diagrams (D, γ) of K in virtual knot
category. The second aim of this paper is to prove that the inequality is best
possible for virtual knots as follows.

THEOREM 1.2. Let p be an odd prime. There is a p-colorable virtual knot K
with

Cv
p (K) = ⌊log2 p⌋ + 2.

This paper is organized as follows: In Section 2, we introduce a graph asso-
ciated with a p-coloring which we call the pallet graph. We prove Theorem 1.1
by calculating the determinant of a matrix associated with the pallet graph. In
Section 3, we prove Theorem 1.2 by constructing a tree with ⌊log2 p⌋+2 vertices
for each p which is the pallet graph of some p-colored virtual knot diagram.

2. Determinant of a matrix

We will start this section with a calculation of a matrix. Let Mn be the set
of n × n matrices with integer entries such that

• each row contains at most two 1’s and at most one −2, and
• all the entries other than 1 and −2 are 0.

We denote by det(X) the determinant of X.

LEMMA 2.1. Any matrix X in Mn satisfies |det(X)| ≤ 2n.

Proof. We prove the lemma by induction on n. For n = 1, we have X = (0), (1),
or (−2) and the inequality holds. For n > 1, we divide the proof into three cases.

(i) If X has a row which contains no −2, then the cofactor expansion along
the row induces

|det(X)| ≤ 1 · 2n−1 + 1 · 2n−1 = 2n.
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(ii) If X has a row which contains no 1 but one −2, then the cofactor expan-
sion along the row induces

|det(X)| ≤ 2 · 2n−1 = 2n.

(iii) Consider the case other than (i) and (ii); that is, every row contains
exactly

• one 1 and one −2, or
• two 1’s and one −2.

Let v⃗j be the jth column of X. We may assume that the (1, 1)-entry of X is −2.
Consider the matrix

Y =

(
−

n∑

j=1

v⃗j, v⃗2, . . . , v⃗n

)
.

Then we see that Y ∈ Mn and the first row of Y satisfies the case (i). Therefore,
we have |det(X)| = |det(Y )| ≤ 2n.

DEFINITION 2.2. Let (D, γ) be a non-trivially p-colored diagram. The pallet
graph G of (D, γ) is a simple graph such that

(i) the vertices of G correspond to the colors on the arcs of (D, γ), that is, the
elements of the image Im(γ), and

(ii) two different vertices c and c′ of G are connected by an edge labeled c′′ =
(c + c′)/2 if and only if there is a crossing of (D, γ) whose lower arcs admit
the colors c and c′ and the upper admits c′′.

We take a maximal tree of the pallet graph G. Let e1, e2, . . . , en−1 be the
edges of T , and c1, c2, . . . , cn the vertices of T , where n = N(D, γ). We define
the (n − 1) × n matrix A = (aij) with integer entries such that

• aij = 1 if the edge ei is incident to the vertex cj,
• aij = −2 if the edge ei is labeled by cj, and
• aij = 0 otherwise.

LEMMA 2.3. Let A be the (n−1)×n matrix as above, and Aj the (n−1)×(n−1)
submatrix obtained from A by deleting the jth column (1 ≤ j ≤ n).

(i) det(Aj) is divisible by p.
(ii) det(Aj) is odd.

Proof. (i) The simultaneous equation Ax⃗ = 0⃗ over the field Z/pZ has two in-
dependent solutions x⃗ = t(1, 1, . . . , 1), t(c1, c2, . . . , cn). Since the rank of A is at
most n − 2, we have det(Aj) ≡ 0 (mod p).



94 T. NAKAMURA, Y. NAKANISHI, AND S. SATOH

(ii) The matrix A over Z2 is coincident with the incident matrix of T . For
each 1 ≤ i ≤ n − 1, let cσ(i) be the vertex between two endpoints of the edge ei

which is farther than the other away from the vertex cj. Since T is a tree, we
see that

det(Aj) ≡ a1σ(1)a2σ(2) . . . an−1,σ(n−1) ≡ 1 (mod 2).

Proof of Theorem 1.1. Let (D, γ) be a non-trivially p-colored diagram of a knot
K, and A the (n − 1) × n matrix constructed as above, where n = N(D, γ). By
Lemmas 2.1 and 2.3, it holds that p ≤ |det(Aj)| < 2n−1, that is, n > log2 p+1.

REMARK 2.4. By definition, the proof of Theorem 1.1 can be also applied for
a virtual knot; any p-colorable virtual virtual knot K satisfies

Cv
p (K) ≥ ⌊log2 p⌋ + 2.

3. Construction of a graph

Recall that a pallet graph G over Z/pZ satisfies the following properties:

(P1) G is a connected simple graph with two or more vertices.
(P2) If two different vertices c and c′ ∈ Z/pZ are connected by an edge, then

the label c′′ = (c + c′)/2 of the edge also appears as a vertex of G.

We remark that G has at least ⌊log2 p⌋ + 2 vertices by Theorem 1.1.

LEMMA 3.1. There is a graph G with exactly ⌊log2 p⌋ + 2 vertices satisfying
(P1) and (P2).

Proof. Put k = ⌊log2 p⌋; that is, k is the integer satisfying 2k < p < 2k+1. There
are integers m1,m2, . . . ,ms uniquely satisfying

2k+1 − p = 2ms + · · · + 2m1 + 1

with 1 ≤ m1 < m2 < · · · < ms < k. Since mj+1 ≥ mj + 1 and m1 ≥ 1, it holds
that mj ≥ j for each j. Similarly, since mj−1 ≤ mj − 1 and ms ≤ k − 1, it holds
that mj ≤ k − 1 − (s − j) for each j. Therefore, we obtain

0 ≤ mj − j ≤ k − s − 1.



THE PALLET GRAPH OF A FOX COLORING 95

We take 1+(k−s+1)+s = k+2 elements a, b(0), b(1), . . . , b(k−s), c(1), c(2), . . . ,
c(s) in Z/pZ such that

⎧
⎨

⎩

a = 0,
b(i) = 2i for i = 0, 1, . . . , k − s, and
c(j) = 2k−j+1 − (2ms−j + · · · + 2mj−j) for j = 1, 2, . . . , s.

We connect the vertices corresponding to these numbers to obtain a graph G as
follows:

(i) b(0) is connected to a by an edge labeled

a + b(0)

2
=

p + 1

2
= 2k − (2ms−1 + · · · + 2m1−1) = c(1).

(ii) For each 1 ≤ i ≤ k − s, b(i) is connected to a by an edge labeled

a + b(i)

2
= 2i−1 = b(i − 1).

(iii) For each 1 ≤ j ≤ s − 1, c(j) is connected to b(mj − j) by an edge labeled

b(mj − j) + c(j)

2
= 2k−j − (2ms−j−1 + · · · + 2mj+1−j−1)

= c(j + 1).

(iv) c(s) is connected to b(ms − s) by an edge labeled

b(ms − s) + c(s)

2
= 2k−s = b(k − s).

Since the graph G is connected, we have the conclusion.

Figure 1 shows an example of the graph constructed in Lemma 3.1 for p = 601.

Figure 1



96 T. NAKAMURA, Y. NAKANISHI, AND S. SATOH

LEMMA 3.2. Let G be a graph satisfying the properties (P1) and (P2). Then
there is a non-trivially p-colored virtual knot diagram whose pallet graph is G.

Proof. It is sufficient to construct a Gauss diagram instead of a virtual knot
diagram (cf. [3]). We take a closed path of G which passes all the edges of G.
Let c1, c2, . . . , cn be the vertices of G, and ck(1), ck(2), . . . , ck(m) the sequence of
vertices on the path in this order.

To construct a Gauss diagram, we divide a circle into m arcs by m points
P1, P2, . . . , Pm = P0, and assign the color ck(i) to each arc between Pi−1 and Pi

(i = 1, 2, . . . ,m). We take m points Q1, Q2, . . . , Qm on the circle such that Qi is
in the interior of an arc labled (ck(i) + ck(i+1))/2, where ck(m+1) = ck(1).

We consider a Gauss diagram equipped with the oriented chords
−−→
QiPi (i =

1, 2, . . . ,m) and any signs on them. The Gauss diagram presents a non-trivially
p-colored diagram such that Pi and Qi correspond to lower and upper crossings,
respectively. Then we see that G is the pallet graph of the p-colored diagram.

Proof of Theorem 1.2. By Lemmas 3.1 and 3.2, there is a non-trivially p-colored
virtual knot diagram (D, γ) such that its pallet graph G has exactly ⌊log2 p⌋+ 2
vertices. The virtual knot K presented by D satisfies Cv

p (K) ≤ N(D, γ) =
⌊log2 p⌋ + 2. The opposite inequality follows by Theorem 1.1.

REMARK 3.3. (i) Several statements proved in this paper hold even for any
odd composite p.

(ii) It is an open question whether any p-colorable knot K satisfies

Cp(K) = ⌊log2 p⌋ + 2.

The equality holds for p = 3, 5, 7 (cf. [6, 7]).
(iii) Let c(K) denote the crossing number of K. Since c(K) ≥ Cp(K), any

p-colorable knot K satisfies

c(K) ≥ ⌊log2 p⌋ + 2

by Theorem 1.1. It is an open question whether the equality does not hold for
other than the trefoil knot (p = 3) and the figure-eight knot (p = 5).
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