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ANNALS OF MATHEMATICS
Vol. 64, No. 2,September, 1956
Printed in U.S.A.

ON MANIFOLDS HOMEOMORPHIC TO THE 7-SPHERE

By JouN MILNOR!

(Received June 14, 1956)

The object of this note will be to show that the 7-sphere possesses several
distinct differentiable structures.

In §1 an invariant X is constructed for oriented, differentiable 7-manifolds M’
satisfying the hypothesis (*) H*(M") = H*M’) = 0. (Integer coefficients are
to be understood.) In §2 a general criterion is given for proving that an n-mani-
fold is homeomorphic to the sphere S”. Some examples of 7-manifolds are
studied in §3 (namely 3-sphere bundles over the 4-sphere). The results of the
preceding two sections are used to show that certain of these manifolds are
topological 7-spheres, but not differentiable 7-spheres. Several related problems
are studied in §4.

All manifolds considered, with or without boundary, are to be differentiable,
orientable and compact. The word differentiable will mean differentiable of
class C”. A closed manifold M™" is oriented if one generator u ¢ H,(M") is dis-
tinguished.

§1. The invariant A(M7)

For every closed, oriented 7-manifold satisfying (*) we will define a residue
class A(M") modulo 7. According to Thom [5] every closed 7-manifold M’ is
the boundary of an 8-manifold B®. The invariant A(M") will be defined as a
function of the index r and the Pontrjagin class p; of B®.

An orientation » ¢ Hg(B®, M") is determined by the relation v = u. Define a
quadratic form over the group H*(B%, M")/(torsion) by the formula a — (», ).
Let 7(B%) be the index of this form (the number of positive terms minus the
number of negative terms, when the form is diagonalized over the real numbers).

Let p; e H'(B®) be the first Pontrjagin class of the tangent bundle of B.
(For the definition of Pontrjagin classes see [2] or [6].) The hypothesis (*) im-
plies that the inclusion homomorphism

i:H'B®, M) — H'(B®
is an isomorphism. Therefore we can define a ‘‘Pontrjagin number”
9(B%) = (v, @ 'p)?).

THEOREM 1. The residue class of 2q(B%) — 7(B®) modulo 7 does not depend on
the choice of the manifold B®.

Define A\(M") as this residue class.” As an immediate consequence we have:

CoROLLARY 1. If N(M") 5 0 then M’ is not the boundary of any 8-manifold
having fourth Betti number zero.

1 The author holds an Alfred P. Sloan fellowship.
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400 JOHN MILNOR

Let B}, B} be two manifolds with boundary M’. (We may assume they are
disjoint.) Then C* = Biu B; is a closed 8-manifold which possesses a differ-
entiable structure compatible with that of B} and BS . Choose that orientation
v for C* which is consistent with the orientation », of B} (and therefore con-
sistent with —»,). Let ¢(C®) denote the Pontrjagin number (», p(C®)).

According to Thom [5] or Hirzebruch [2] we have

T(Cs) = (v, 75 (7132(08) - Pi(CS»;

and therefore

457(C% + q¢(C%) = (v, p2(C*)) = 0 (mod 7).
This implies
(1) 2¢(C*% — 7(C* =0 (mod 7).
LemMa 1. Under the above conditions we have
) 7(C*) = =(BY) — 7(B2)
and
(3) ¢(C") = ¢(Bi) — q(BY).
Formulas 1, 2, 3 clearly imply that
2¢(BY) — 7(BY) = 2¢(B3) — 7(BY) (mod 7):

which is just the assertion of Theorem 1.
Proor or LEmma 1. Consider the diagram

H'(Bi, M) ® H'(Bs, M) " H"(C, M)

21 D 172 _7
1
H'(B) ® H'(B:) —— H"(C)
Note that for n = 4, these homomorphisms are all isomorphisms. If
o = jh (1 ® a) e H(C), then
@) (a)y= (el @a) = (m® (—m), 1 & @)= (m,ai) — (», a).

Thus the quadratic form of C® is the “direct sum” of the quadratic form of B}
and the negative of the quadratic form of Bj. This clearly implies formula (2).
Define oy = 7 p1(B1) and as = i3 p1(Bs). Then the relation

k(i(C)) = pi(B1) @ pi(Bs)
implies that

2 Similarly for n = 4k — 1 a residue class A(M ™) modulo siu(Lx) could be defined. (See
[2] page 14.) For k = 1, 2, 3, 4 we have syu(Lx) = 1, 7, 62, 381 respectively.
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Jh (e @ a) = pu(0).
The computation (4) now shows that
<V; p%(0)> = <V1 ) ai) - <V2a ag)a

which is just formula (3). This completes the proof of Theorem 1.
The following property of the invariant A is clear.
LemMA 2. If the orientation of M is reversed then N(M") is multiplied by —1.
As a consequence we have
CorROLLARY 2. If N(M") 5 0 then M’ possesses no orientation reversing diffeo-
morphism® onto itself.

§2. A partial characterization of the n-sphere

Consider the following hypothesis concerning a closed manifold M "™ (where R
denotes the real numbers).

(H) There exists a differentiable function f:M" — R having only two critical
points o , 1 . Furthermore these critical points are non-degenerale.

(That is if w, ---, u, are local coordinates in a neighborhood of z, (or z;)
then the matrix (8°f/du.0u;) is non-singular at z, (or z,).)

THEOREM 2. If M™ satisfies the hypothesis (H) then these exists a homeomorphism
of M™ onto S™ which is a diffeomorphism except possibly at a single point.

Added in proof. This result is essentially due to Reeb [7].

The proof will be based on the orthogonal trajectories of the manifolds f =
constant.

Normalize the function f so that f(x,) = 0, f(x1) = 1. According to Morse
([3] Lemma, 4) there exist local coordinates v; , - - - , v, in a neighborhood V of x4
so that f(z) = vl + --- + v% for 2 ¢ V. (Morse assumes that f is of class C°,
and constructs coordinates of class C'; but the same proof works in the C®
case.) The expression ds° = dvi + --- + dv defines a Riemannian metric in
the neighborhood V. Choose a differentiable Riemannian metric for M™ which
coincides with this one in some neighborhood* V’ of 2, . Now the gradien of f
can be considered as a contravariant vector field.

Following Morse we consider the differential equation

o _
dt

In the neighborhood V’ this equation has solutions
@@, -+, va®) = @O, -+, @ ®)")

for0 <t < ¢ where a = (a1, -+, a,) is any n-tuple with Za'ﬁ = 1. These
can be extended uniquely to solutions z,(¢) for 0 =< ¢ = 1. Note that these solu-
tions satisfy the identity

grad f/ || grad f |I”.

3 A diffeomorphism f is a homeomorphism onto, such that both f and f~1 are differentiable.
4 This is possible by [4] 6.7 and 12.2.
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f(@a(®) = ¢
Map the interior of the unit sphere of R” into M " by the map
(al(t)%) ) an(t)%) - xd(t)'

It is easily verified that this defines a diffeomorphism of the open n-cell onto
M"™ — (z;). The assertion of Theorem 2 now follows.

Given any diffeomorphism ¢: 8" — S™ !, an n-manifold can be obtained as
follows.

ConstructioN (C). Let M"(g) be the manifold obtained from two copies of R™
by matching the subsets R* — (0) under the diffeomorphism

=)

(Such a manifold is clearly homeomorphic to S™. If ¢ is the identity map then
M"(g) is diffeomorphic to S".)

COROLLARY 3. A manifold M™ can be obtained by the construction (C) if and
only f it satisfies the hypothesis (H).

Proor. If M"(g) is obtained by the construction (C) then the function

f@ = lul/@ +ul) =1/0+ o]

will satisfy the hypothesis (H). The converse can be established by a slight
modification of the proof of Theorem 2.

§3. Examples of 7-manifolds

Consider 3-sphere bundles over the 4-sphere with the rotation group SO(4)
as structural group. The equivalence classes of such bundles are in one-one
correspondence’ with elements of the group m3(SO(4)) =~ Z + Z. A specific
1s0rnorph1sm between these groups is obtamed as follows. For each (h,)) eZ+ Z
let f,;:8° — SO(4) be defined by fi;(u)-v = u "0u?, for v e R*. Quaternion multipli-
cation is understood on the right.

Let ¢ be the standard generator for H*(8%). Let &, denote the sphere bundle
corresponding to (fi;) e m(SO(4)).

LemMA 3. The Pontrjagin class pi(ks;) equals £ 2(h — j)e.

(The proof will be given later. One can show that the characteristic class
t(t;) (see [4]) is equal to (b + j) )

For each odd integer k let M, be the total space of the bundle &,; where h
and j are determined by the equations h + j = 1, h — j = k. This manifold
M) has a natural differentiable structure and orlentatlon which will be de-
scribed later.

LeMMA 4. The invariant N(ME) is the residue class modulo 7 of k* — 1.

LeMMA 5. The manifold My, satisfies the hypothesis (H).

Combining these we have:

5 See [4] §18.
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TarorEM 3. For k¥ 5 1 mod 7 the manifold M} is homeomorphic to S' but not
diffeomorphic to S'.

(For k& = =1 the manifold M} is diffeomorphic to S’; but it is not known
whether this is true for any other £.)

Clearly any differentiable structure on 8’ can be extended through R® — (0).
However:

COROLLARY 4. There exists a differentiable structure on S* which cannot be ez-
tended throughout R®.

This follows immediately from the preceding assertions, together with Corol-
lary 1.

Proor or LEmmA 3. It is clear that the Pontrjagin class pi(£;) is a linear
function of h and j. Furthermore it is known that it is independent of the orienta-
tion of the fibre. But if the orientation of S° is reversed, then &,; is replaced by
¢_;_» . This shows that pi(&;) is given by an expression of the form c¢(h — j)..
Here c is a constant which will be evaluated later.

Proor oF LemMA 4. Associated with each 3-sphere bundle M} — S* there is a
4-cell bundle p;:Bi — 8. The total space Bi of this bundle is a differentiable
manifold with boundary M} . The cohomology group H*(BY) is generated by the
element o = pg (1). Choose orientations g, » for M} and Bj so that

( (Ta)) = +1.

Then the index 7(B:) will be +1.

The tangent bundle of B} is the “Whitney sum” of (1) the bundle of vectors
tangent to the fibre, and (2) the bundle of vectors normal to the fibre. The first
bundle (1) is induced (under p;) from the bundle £; , and therefore has Pontrjagin
class py = pt (c(h — j)t) = cka. The second is induced from the tangent bundle
of S% and therefore has first Pontrjagin class zero. Now by the Whitney product
theorem ([2] or [6])

pi(BY) = cka + 0.

For the special case k = 1 it is easily verified that Bj is the quaternion pro-
jective plane P,(K) with an 8-cell removed. But the Pontrjagin class p:(P:(K))
is known to be twice a generator of H*(P,(K)). (See Hirzebruch [1].) Therefore
the constant ¢ must be &2, which completes the proof of Lemma 3.

Now ¢(B}) = (v, (" (£2ka))’) = 4k’;and 2¢ — r = 8k* — 1 =k — 1
(mod 7). This completes the proof of Lemma 4.

ProoF oF LEmMa 5. As coordinate neighborhoods in the base space S* take
the complement of the north pole, and the complement of the south pole. These
can be identified with euclidean space R* under stereographic projection. Then
a point which corresponds to u e R* under one projection will correspond to
v = u/|| u|* under the other.

The total space M; can now be obtained as follows.” Take two copies of
R* X S® and identify the subsets (R* — (0)) X S° under the diffeomorphism

(@, 0) = @, ) = @/||w |, w'oi/|| )
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(using quaternion multiplication). This makes the differentiable structure of
M, precise.

Replace the coordinates (w/, »') by (u”, ©’) where w” = u'(v')"". Consider
the function f: M; — R defined by

f@) = RE)/A + [ u]H = R@”)/A + | v [P

where R(v) denotes the real part of the quaternion v. It is easily verified that f
has only two critical points (namely (%, »v) = (0, £=1)) and that these are non-
degenerate. This completes the proof.

§4. Miscellaneous results

THEOREM 4. Either (a) there exists a closed topological 8-manifold which does not
possess any differentiable structure; or (b) the Pontrjagin class p. of an open 8-mani-
fold is not a topological tnvariant.

(The author has no idea which alternative holds.)

Proor. Let X} be the topological 8-manifold obtained from B; by collapsing
its boundary (a topological 7-sphere) to a point zo. Let & ¢ H*(X}) correspond
to the generator a ¢ H'(B}). Suppose that X% , possesses a differentiable structure,
and that p;(X; — (z0)) is a topological invariant. Then p;(X3) must equal
+2ka, hence

20X} — (X)) =8 —1=k —1 (mod 7).

But for &* 3 1 (mod 7) this is impossible.

Two diffeomorphisms f, g: M1 — My will be called differentiably isotopic if
there exists a diffeomorphism M7 X R — M3 X R of the form (z, t) — (h(z, £), )
such that

t=<0
h@0=@8 éz&

LemMa 6. If the diffeomorphisms f, g:S™ " — 8" are differentiably isotopic,
then the manifolds M"(f), M"(g) obtained by the construction (C) are diffeomorphic.

The proof is straightforward.

TaEOREM 5. There exists a diffeomorphism f:8° — S° of degree +1 which is
not differentiably isotopic to the identity.

Proof. By Lemma 5 and Corollary 3 the manifold M3 is diffeomorphic to
M'(f) for some f. If f were differentiably isotopic to the identity then Lemma 6
would imply that M3 was diffeomorphic to S”. But this is false by Lemma 4.

PrINCETON UNIVERSITY
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