1 Mersenne Primes and Perfect Numbers

Basic idea: try to construct primes of the form $a^n - 1$; $a, n \ge 1$. e.g., $2^1 - 1 = 3$ but $2^4 - 1 = 3 \cdot 5$ $2^3 - 1 = 7$ $2^5 - 1 = 31$ $2^6 - 1 = 63 = 3^2 \cdot 7$ $2^7 - 1 = 127$ $2^{11} - 1 = 2047 = (23)(89)$ $2^{13} - 1 = 8191$

Lemma: $x^n - 1 = (x - 1)(x^{n-1} + x^{n-2} + \dots + x + 1)$

Corollary: $(x - 1)|(x^n - 1)$

So for $a^n - 1$ to be prime, we need a = 2. Moreover, if n = md, we can apply the lemma with $x = a^d$. Then

$$(a^d - 1)|(a^n - 1)|$$

So we get the following

Lemma If $a^n - 1$ is a prime, then a = 2 and n is prime.

Definition: A *Mersenne prime* is a prime of the form

$$q = 2^{p} - 1, p$$
 prime.

Question: are they infinitely many Mersenne primes?

Best known: The 37th Mersenne prime q is associated to p = 3021377, and this was done in 1998. One expects that p = 6972593 will give the next Mersenne prime; this is close to being proved, but not all the details have been checked.

Definition: A positive integer n is *perfect* iff it equals the sum of all its (positive) divisors < n.

Definition: $\sigma(n) = \sum_{d|n} d$ (divisor function)

So u is perfect if $n = \sigma(u) - n$, i.e. if $\sigma(u) = 2n$. Well known example: n = 6 = 1 + 2 + 3Properties of σ :

1. $\sigma(1) = 1$

- 2. *n* is a prime iff $\sigma(n) = n + 1$
- 3. If *p* is a prime, $\sigma(p^j) = 1 + p + \dots + p^j = \frac{p^{j+1}-1}{p-1}$
- 4. (Exercise) If $(n_1, n_2) = 1$ then $\sigma(n_1)\sigma(n_2) = \sigma(n_1n_2)$ "multiplicativity".

Consequently, if

$$n = \prod_{j=1}^{r} p_i^{e_j}, \ e_j \ge 1 \ \forall j, \ p_j \text{ prime},$$
$$\sigma(n) = \prod_{j=1}^{r} \sigma(p_j^{e_j}) = \prod_{j=1}^{r} \left(\frac{p^{e_j+1}-1}{p-1}\right)$$
Examples of perfect numbers:
$$\begin{cases} 6=1+2+3\\ 28=1+2+4+7+14\\ 496\\ 8128 \end{cases}$$

Questions:

- 1. Are there infinitely many perfect numbers?
- 2. Is there any odd perfect number?

Note:

6=(2)(3), 28=(4)(7), 496=(16)(31), 8128=(64)(127)They all look like $2^{n-1}(2^n-1).$

with $2^n - 1$ prime (i.e., Mersenne).

Theorem (Euler) Let n be a positive, *even* integer. Then

n is perfect $\Leftrightarrow n = 2^{p-1}(2^p - 1)$, for a prime p, with $2^p - 1$ a prime.

Corollary. There exists a bijection between even perfect numbers and Mersenne primes.

Proof of Theorem. (\Leftarrow) Start with $n = 2^{p-1}q$, with $q = 2^p - 1$ a Mersenne prime. To show: n is perfect, i.e., $\sigma(n) = 2n$. Since $2^{p-1}q$, and since $(2^{p-1}, q) = 1$, we have

$$\sigma(n) = \sigma(2^{p-1})\sigma(q) = (2^p - 1)(q+1) = q2^p = 2n$$

 (\Rightarrow) : Let n be a even, perfect number. Since n is even, we can write

$$n = 2^j m$$
, with $j \ge 1$, $m \text{ odd } \ne n$

$$\Rightarrow \sigma(n) = \sigma(2^j)\sigma(m) = (2^{j+1} - 1)\sigma(m)$$

Since n is perfect,

$$\sigma(n) = 2n = 2^{j+1}m$$

 Get

.

$$2^{j+1}m = \underbrace{(2^{j+1}-1)}_{\text{odd}} \sigma(m)$$
$$2^{j+1} | \sigma(m);$$

 \Rightarrow

 \mathbf{SO}

$$r2^{j+1} = \sigma(m) \tag{1}$$

for some $r \ge 1$

Also

$$2^{j+1}m = (2^{j+1} - 1)r2^{j+1}.$$

 \mathbf{SO}

$$m = (2^{j+1} - 1)r \tag{2}$$

Suppose r > 1. Then

$$m = (2^{j+1} - 1)r$$

will have 1, r and m as 3 distinct divisors. (Explanation: by hypothesis, $1 \neq r$. Also, r = m iff j = 0 iff n = m, which will then be odd!) Hence

$$\sigma(m) \ge 1 + r + m$$

= 1 + r + (2^{j+1} - 1)r
= 1 + 2^{j+1}r
= 1 + $\sigma(m)$

Contradiction!

So r = 1, and so (1) and (2) become

$$\sigma(m) = 2^{j+1} \tag{1'}$$

$$m = 2^{j+1} - 1 \tag{2'}$$

Since $n = 2^{j}m$, we will be done if we prove that m is a prime. It suffices to show that $\sigma(m) = m + 1$. But this is clear from (1') and (2').

 $M_n = 2^n - 1$ Mersenne number. Define numbers S_n recursively by setting $S_n = S_{n-1}^2 - 2$, and $S_1 = 4$.

Theorem: (Lucas-Lehmer Primality Test) Suppose for some $n \ge 1$ that M_n divides S_{n-1} . Then M_n is prime.

Proof. (Very clever) Put $\alpha = 2 + \sqrt{3}$, $\beta = 2 - \sqrt{3}$. Note that $\alpha + \beta = 4$, $\alpha\beta = 1$. So $S_1 = \alpha + \beta$.

Lemma. For any $n \ge 1$, $S_n = \alpha^{2^{n-1}} + \beta^{2^{n-1}}$.

Proof of Lemma: n = 1: $S_1 = \alpha + \beta = 4$. So let n > 1, and assume that the lemma holds for n - 1. Since

$$S_n = S_{n-1}^2 - 2$$

we get (by induction)

$$S_n = (\alpha^{2^{n-1}} + \beta^{2^{n-1}})^2 - 2$$

Note:

$$(\alpha^k + \beta^k)^2 = \alpha^{2k} + 2\alpha^k \beta^k + \beta^{2k}$$
$$= \alpha^{2k} + \beta^{2k} + 2, \text{ as } \alpha\beta = 1.$$

So we get (setting $k = 2^{n-2}$)

$$S_n = \alpha^{2^{n-1}} + \beta^{2^{n-1}} + 2 - 2.$$

Hence the lemma.

Proof of Theorem (continued): Suppose $M_n|S_{n-1}$. Then we may write $rM_n = S_{n-1}$, some positive integer. By the lemma, we get

$$rM_n = \alpha^{2^{n-2}} + \beta^{2^{n-2}}$$
(3)

Multiply (3) by $\alpha^{2^{n-2}}$ and subtract 1 to get:

$$\alpha^{2^{n-1}} = rM_n \alpha^{2^{n-2}} - 1 \tag{4}$$

Squaring (4) we get

$$\alpha^{2^n} = (rM_n \alpha^{2^{n-2}} - 1)^2 \tag{5}$$

Suppose M_n is not a prime. Then \exists a prime ℓ dividing M_n , $\ell \leq \sqrt{M_n}$. Let us work in the number system

$$R = \{a + b\sqrt{3} | a, b \in \mathbb{Z}\}$$

Check: R is closed under addition, subtraction, and multiplication (it is what one calls a ring). Equations (4) and (5) happen in R. Define $R/\ell = \{a, b\sqrt{3} | a, b \in \mathbb{Z}/\ell\}$.

Note: $|R/\ell| = \ell^2$

We can view α, β as elements of R/ℓ . Since $\ell | M_n, (4)$ becomes the following congruence in R/ℓ :

$$\alpha^{2^{n-1}} \equiv -1 \pmod{\ell} \tag{6}$$

Similarly, (5) says

$$a^{2^n} \equiv 1 \pmod{\ell}$$

Put

$$X = \{ \alpha^j \mod \ell | 1 \le j \le 2^n \}.$$

Claim $|X| = 2^n$.

Proof of claim. Suppose not. Then $\exists j, k$ between 1 and 2^n , with $j \neq k$, such that $\alpha^j \equiv \alpha^k \pmod{\ell}$.

If r denotes |j - k|, then $0 < r < 2^n$ and $\alpha^r \equiv 1 \pmod{\ell}$. Let d denote the gcd of r and 2^n , so that $ar + b2^n = d$ for some $a, b \in \mathbb{Z}$. Then we have

$$\alpha^d = \alpha^{ar+b2^n} = (\alpha^r)^a \cdot (\alpha^{2^n})^b \equiv 1 \pmod{\ell}.$$

But since $d|2^n$, d is of the form 2^m for some m < n, and $\alpha^d \equiv 1 \pmod{\ell}$ contradicts $\alpha^{2^{n-1}} \equiv -1 \pmod{\ell}$. Hence the claim.

So $|X| \le \ell^2 - 1$, i.e., we need $2^n \le \ell^2 - 1$. Since

$$\ell \le \sqrt{M_n}, \ \ell^2 - 1 < M_n = 2^n - 1.$$

 $\Rightarrow 2^n < 2^n - 1$, a contradiction!

So M_n is prime.