
1 Mersenne Primes and Perfect Numbers

Basic idea: try to construct primes of the form an − 1; a, n ≥ 1. e.g.,
21 − 1 = 3 but 24 − 1 = 3 · 5
23 − 1 = 7
25 − 1 = 31
26 − 1 = 63 = 32 · 7
27 − 1 = 127
211 − 1 = 2047 = (23)(89)
213 − 1 = 8191

Lemma: xn − 1 = (x − 1)(xn−1 + xn−2 + · · ·+ x + 1)

Corollary: (x − 1)|(xn − 1)

So for an − 1 to be prime, we need a = 2.
Moreover, if n = md, we can apply the lemma with x = ad. Then

(ad − 1)|(an − 1)

So we get the following

Lemma If an − 1 is a prime, then a = 2 and n is prime.

Definition: A Mersenne prime is a prime of the form

q = 2p − 1, p prime.

Question: are they infinitely many Mersenne primes?
Best known: The 37th Mersenne prime q is associated to p = 3021377,
and this was done in 1998. One expects that p = 6972593 will give the next
Mersenne prime; this is close to being proved, but not all the details have
been checked.
Definition: A positive integer n is perfect iff it equals the sum of all its
(positive) divisors < n.

Definition: σ(n) =
∑

d|n d (divisor function)

So u is perfect if n = σ(u)− n, i.e. if σ(u) = 2n.
Well known example: n = 6 = 1 + 2 + 3
Properties of σ:

1. σ(1) = 1
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2. n is a prime iff σ(n) = n + 1

3. If p is a prime, σ(pj) = 1 + p + · · ·+ pj = pj+1−1
p−1

4. (Exercise) If (n1, n2) = 1 then σ(n1)σ(n2) = σ(n1n2) “multiplicativity”.

Consequently, if

n =
r∏

j=1

p
ej

i , ej ≥ 1 ∀j, pj prime,

σ(n) =
r∏

j=1

σ(p
ej

j ) =
r∏

j=1

(
pej+1 − 1

p − 1

)

Examples of perfect numbers:

{ 6=1+2+3
28=1+2+4+7+14
496
8128

Questions:

1. Are there infinitely many perfect numbers?

2. Is there any odd perfect number?

Note:
6=(2)(3), 28=(4)(7), 496=(16)(31), 8128=(64)(127)
They all look like

2n−1(2n − 1),

with 2n − 1 prime (i.e., Mersenne).

Theorem (Euler) Let n be a positive, even integer. Then

n is perfect ⇔ n = 2p−1(2p − 1), for a prime p, with 2p − 1 a prime.

Corollary. There exists a bijection between even perfect numbers and
Mersenne primes.

Proof of Theorem. (⇐) Start with n = 2p−1q, with q = 2p − 1 a Mersenne
prime. To show: n is perfect, i.e., σ(n) = 2n. Since 2p−1q, and since
(2p−1, q) = 1, we have

σ(n) = σ(2p−1)σ(q) = (2p − 1)(q + 1) = q2p = 2n.
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(⇒): Let n be a even, perfect number. Since n is even, we can write

n = 2jm, with j ≥ 1, m odd 	= n

.
⇒ σ(n) = σ(2j)σ(m) = (2j+1 − 1)σ(m)

Since n is perfect,
σ(n) = 2n = 2j+1m

Get
2j+1m = (2j+1 − 1)︸ ︷︷ ︸

odd

σ(m)

⇒
2j+1|σ(m);

so

r2j+1 = σ(m) (1)

for some r ≥ 1
Also

2j+1m = (2j+1 − 1)r2j+1 ,

so

m = (2j+1 − 1)r (2)

Suppose r > 1. Then
m = (2j+1 − 1)r

will have 1, r and m as 3 distinct divisors. (Explanation: by hypothesis,
1 	= r. Also, r = m iff j = 0 iff n = m, which will then be odd!)
Hence

σ(m) ≥1 + r + m

=1 + r + (2j+1 − 1)r

=1 + 2j+1r

=1 + σ(m)

Contradiction!
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So r = 1, and so (1) and (2) become

σ(m) = 2j+1 (1’)

m = 2j+1 − 1 (2’)

Since n = 2jm, we will be done if we prove that m is a prime. It suffices to
show that σ(m) = m + 1. But this is clear from (1’) and (2’).

Mn = 2n −1 Mersenne number. Define numbers Sn recursively by setting
Sn = S2

n−1 − 2, and S1 = 4.

Theorem: (Lucas-Lehmer Primality Test) Suppose for some n ≥ 1 that Mn

divides Sn−1. Then Mn is prime.

Proof. (Very clever) Put α = 2 +
√
3, β = 2 − √

3. Note that α + β = 4,
αβ = 1. So S1 = α + β.

Lemma. For any n ≥ 1, Sn = α2n−1
+ β2n−1

.

Proof of Lemma: n = 1 : S1 = α + β = 4. So let n > 1, and assume that
the lemma holds for n − 1. Since

Sn = S2
n−1 − 2

we get (by induction)

Sn = (α2n−1

+ β2n−1

)2 − 2

Note:

(αk + βk)2 = α2k + 2αkβk + β2k

= α2k + β2k + 2, as αβ = 1.

So we get (setting k = 2n−2)

Sn = α2n−1

+ β2n−1

+ 2− 2.

Hence the lemma.

Proof of Theorem (continued): Suppose Mn|Sn−1. Then we may write
rMn = Sn−1, some positive integer. By the lemma, we get

rMn = α2n−2

+ β2n−2

(3)
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Multiply (3) by α2n−2
and subtract 1 to get:

α2n−1

= rMnα2n−2 − 1 (4)

Squaring (4) we get

α2n

= (rMnα2n−2 − 1)2 (5)

Suppose Mn is not a prime. Then ∃ a prime � dividing Mn, � ≤ √
Mn. Let

us work in the number system

R = {a + b
√
3|a, b ∈ Z}

Check: R is closed under addition, subtraction, and multiplication (it is
what one calls a ring). Equations (4) and (5) happen in R. Define R/� =
{a, b

√
3|a, b ∈ Z/�}.

Note: |R/�| = �2

We can view α, β as elements of R/�. Since �|Mn, (4) becomes the fol-
lowing congruence in R/�:

α2n−1 ≡ −1 (mod �) (6)

Similarly, (5) says
a2n ≡ 1 (mod �)

Put
X = {αj mod �|1 ≤ j ≤ 2n}.

Claim |X| = 2n.

Proof of claim. Suppose not. Then ∃j, k between 1 and 2n, with j 	= k,
such that αj ≡ αk (mod �).

If r denotes |j − k|, then 0 < r < 2n and αr ≡ 1 (mod �). Let d denote
the gcd of r and 2n, so that ar + b2n = d for some a, b ∈ Z. Then we have

αd = αar+b2n

= (αr)a · (α2n

)b ≡ 1 (mod �).

But since d|2n, d is of the form 2m for some m < n, and αd ≡ 1 (mod �)
contradicts α2n−1 ≡ −1 (mod �). Hence the claim.

So |X| ≤ �2 − 1, i.e., we need 2n ≤ �2 − 1.
Since

� ≤
√

Mn, �2 − 1 < Mn = 2n − 1.

⇒ 2n < 2n − 1, a contradiction!
So Mn is prime.
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