1 Mersenne Primes and Perfect Numbers

Basic idea: try to construct primes of the form $a^{n}-1 ; a, n \geq 1$. e.g., $2^{1}-1=3$ but $2^{4}-1=3 \cdot 5$
$2^{3}-1=7$
$2^{5}-1=31$
$2^{6}-1=63=3^{2} \cdot 7$
$2^{7}-1=127$
$2^{11}-1=2047=(23)(89)$
$2^{13}-1=8191$
Lemma: $x^{n}-1=(x-1)\left(x^{n-1}+x^{n-2}+\cdots+x+1\right)$
Corollary: $(x-1) \mid\left(x^{n}-1\right)$
So for $a^{n}-1$ to be prime, we need $a=2$.
Moreover, if $n=m d$, we can apply the lemma with $x=a^{d}$. Then

$$
\left(a^{d}-1\right) \mid\left(a^{n}-1\right)
$$

So we get the following
Lemma If $a^{n}-1$ is a prime, then $a=2$ and n is prime.
Definition: A Mersenne prime is a prime of the form

$$
q=2^{p}-1, p \text { prime }
$$

Question: are they infinitely many Mersenne primes?
Best known: The 37th Mersenne prime q is associated to $p=3021377$, and this was done in 1998. One expects that $p=6972593$ will give the next Mersenne prime; this is close to being proved, but not all the details have been checked.
Definition: A positive integer n is perfect iff it equals the sum of all its (positive) divisors $<n$.
Definition: $\sigma(n)=\sum_{d \mid n} d$ (divisor function)
So u is perfect if $n=\sigma(u)-n$, i.e. if $\sigma(u)=2 n$.
Well known example: $n=6=1+2+3$
Properties of σ :

1. $\sigma(1)=1$
2. n is a prime iff $\sigma(n)=n+1$
3. If p is a prime, $\sigma\left(p^{j}\right)=1+p+\cdots+p^{j}=\frac{p^{j+1}-1}{p-1}$
4. (Exercise) If $\left(n_{1}, n_{2}\right)=1$ then $\sigma\left(n_{1}\right) \sigma\left(n_{2}\right)=\sigma\left(n_{1} n_{2}\right)$ "multiplicativity".

Consequently, if

$$
\begin{gathered}
n=\prod_{j=1}^{r} p_{i}^{e_{j}}, e_{j} \geq 1 \quad \forall j, p_{j} \text { prime } \\
\sigma(n)=\prod_{j=1}^{r} \sigma\left(p_{j}^{e_{j}}\right)=\prod_{j=1}^{r}\left(\frac{p^{e_{j}+1}-1}{p-1}\right) \\
6=1+2+3
\end{gathered}
$$

Examples of perfect numbers: $\left\{\begin{array}{l}28=1+2+4+7+14 \\ 496 \\ 8128\end{array}\right.$
Questions:

1. Are there infinitely many perfect numbers?
2. Is there any odd perfect number?

Note:
$6=(2)(3), 28=(4)(7), 496=(16)(31), 8128=(64)(127)$
They all look like

$$
2^{n-1}\left(2^{n}-1\right)
$$

with $2^{n}-1$ prime (i.e., Mersenne).
Theorem (Euler) Let n be a positive, even integer. Then
n is perfect $\Leftrightarrow n=2^{p-1}\left(2^{p}-1\right)$, for a prime p, with $2^{p}-1$ a prime.
Corollary. There exists a bijection between even perfect numbers and Mersenne primes.
Proof of Theorem. (\Leftarrow) Start with $n=2^{p-1} q$, with $q=2^{p}-1$ a Mersenne prime. To show: n is perfect, i.e., $\sigma(n)=2 n$. Since $2^{p-1} q$, and since $\left(2^{p-1}, q\right)=1$, we have

$$
\sigma(n)=\sigma\left(2^{p-1}\right) \sigma(q)=\left(2^{p}-1\right)(q+1)=q 2^{p}=2 n
$$

(\Rightarrow) : Let n be a even, perfect number. Since n is even, we can write

$$
\begin{gathered}
n=2^{j} m, \text { with } j \geq 1, m \text { odd } \neq n \\
\Rightarrow \\
\sigma(n)=\sigma\left(2^{j}\right) \sigma(m)=\left(2^{j+1}-1\right) \sigma(m)
\end{gathered}
$$

Since n is perfect,

$$
\sigma(n)=2 n=2^{j+1} m
$$

Get

$$
2^{j+1} m=\underbrace{\left(2^{j+1}-1\right)}_{\text {odd }} \sigma(m)
$$

\Rightarrow

$$
2^{j+1} \mid \sigma(m)
$$

so

$$
\begin{equation*}
r 2^{j+1}=\sigma(m) \tag{1}
\end{equation*}
$$

for some $r \geq 1$
Also

$$
2^{j+1} m=\left(2^{j+1}-1\right) r 2^{j+1}
$$

so

$$
\begin{equation*}
m=\left(2^{j+1}-1\right) r \tag{2}
\end{equation*}
$$

Suppose $r>1$. Then

$$
m=\left(2^{j+1}-1\right) r
$$

will have $1, r$ and m as 3 distinct divisors. (Explanation: by hypothesis, $1 \neq r$. Also, $r=m$ iff $j=0$ iff $n=m$, which will then be odd!) Hence

$$
\begin{aligned}
\sigma(m) & \geq 1+r+m \\
& =1+r+\left(2^{j+1}-1\right) r \\
& =1+2^{j+1} r \\
& =1+\sigma(m)
\end{aligned}
$$

Contradiction!

So $r=1$, and so (1) and (2) become

$$
\begin{align*}
& \sigma(m)=2^{j+1} \tag{1'}\\
& m=2^{j+1}-1 \tag{2'}
\end{align*}
$$

Since $n=2^{j} m$, we will be done if we prove that m is a prime. It suffices to show that $\sigma(m)=m+1$. But this is clear from (1^{\prime}) and (2^{\prime}).
$M_{n}=2^{n}-1$ Mersenne number. Define numbers S_{n} recursively by setting $S_{n}=S_{n-1}^{2}-2$, and $S_{1}=4$.
Theorem: (Lucas-Lehmer Primality Test) Suppose for some $n \geq 1$ that M_{n} divides S_{n-1}. Then M_{n} is prime.
Proof. (Very clever) Put $\alpha=2+\sqrt{3}, \beta=2-\sqrt{3}$. Note that $\alpha+\beta=4$, $\alpha \beta=1$. So $S_{1}=\alpha+\beta$.
Lemma. For any $n \geq 1, S_{n}=\alpha^{2^{n-1}}+\beta^{2^{n-1}}$.
Proof of Lemma: $n=1: S_{1}=\alpha+\beta=4$. So let $n>1$, and assume that the lemma holds for $n-1$. Since

$$
S_{n}=S_{n-1}^{2}-2
$$

we get (by induction)

$$
S_{n}=\left(\alpha^{2^{n-1}}+\beta^{2^{n-1}}\right)^{2}-2
$$

Note:

$$
\begin{aligned}
\left(\alpha^{k}+\beta^{k}\right)^{2} & =\alpha^{2 k}+2 \alpha^{k} \beta^{k}+\beta^{2 k} \\
& =\alpha^{2 k}+\beta^{2 k}+2, \text { as } \alpha \beta=1
\end{aligned}
$$

So we get (setting $k=2^{n-2}$)

$$
S_{n}=\alpha^{2^{n-1}}+\beta^{2^{n-1}}+2-2 .
$$

Hence the lemma.
Proof of Theorem (continued): Suppose $M_{n} \mid S_{n-1}$. Then we may write $r M_{n}=S_{n-1}$, some positive integer. By the lemma, we get

$$
\begin{equation*}
r M_{n}=\alpha^{2^{n-2}}+\beta^{2^{n-2}} \tag{3}
\end{equation*}
$$

Multiply (3) by $\alpha^{2^{n-2}}$ and subtract 1 to get:

$$
\begin{equation*}
\alpha^{2^{n-1}}=r M_{n} \alpha^{2^{n-2}}-1 \tag{4}
\end{equation*}
$$

Squaring (4) we get

$$
\begin{equation*}
\alpha^{2^{n}}=\left(r M_{n} \alpha^{2^{n-2}}-1\right)^{2} \tag{5}
\end{equation*}
$$

Suppose M_{n} is not a prime. Then \exists a prime ℓ dividing $M_{n}, \ell \leq \sqrt{M_{n}}$. Let us work in the number system

$$
R=\{a+b \sqrt{3} \mid a, b \in \mathbb{Z}\}
$$

Check: R is closed under addition, subtraction, and multiplication (it is what one calls a ring). Equations (4) and (5) happen in R. Define $R / \ell=$ $\{a, b \sqrt{3} \mid a, b \in \mathbb{Z} / \ell\}$.

Note: $|R / \ell|=\ell^{2}$
We can view α, β as elements of R / ℓ. Since $\ell \mid M_{n}$, (4) becomes the following congruence in R / ℓ :

$$
\begin{equation*}
\alpha^{2^{n-1}} \equiv-1(\bmod \ell) \tag{6}
\end{equation*}
$$

Similarly, (5) says

$$
a^{2^{n}} \equiv 1(\bmod \ell)
$$

Put

$$
X=\left\{\alpha^{j} \bmod \ell \mid 1 \leq j \leq 2^{n}\right\}
$$

Claim $|X|=2^{n}$.
Proof of claim. Suppose not. Then $\exists j, k$ between 1 and 2^{n}, with $j \neq k$, such that $\alpha^{j} \equiv \alpha^{k}(\bmod \ell)$.

If r denotes $|j-k|$, then $0<r<2^{n}$ and $\alpha^{r} \equiv 1(\bmod \ell)$. Let d denote the gcd of r and 2^{n}, so that $a r+b 2^{n}=d$ for some $a, b \in \mathbb{Z}$. Then we have

$$
\alpha^{d}=\alpha^{a r+b 2^{n}}=\left(\alpha^{r}\right)^{a} \cdot\left(\alpha^{2^{n}}\right)^{b} \equiv 1(\bmod \ell) .
$$

But since $d \mid 2^{n}, d$ is of the form 2^{m} for some $m<n$, and $\alpha^{d} \equiv 1(\bmod \ell)$ contradicts $\alpha^{2^{n-1}} \equiv-1(\bmod \ell)$. Hence the claim.

So $|X| \leq \ell^{2}-1$, i.e., we need $2^{n} \leq \ell^{2}-1$.
Since

$$
\ell \leq \sqrt{M_{n}}, \ell^{2}-1<M_{n}=2^{n}-1
$$

$\Rightarrow 2^{n}<2^{n}-1$, a contradiction!
So M_{n} is prime.

