Quiz6 - Math 313 - Fall 2014
Let \mathcal{R} denote the real numbers. A function $f: \mathcal{R} \longrightarrow \mathcal{R}$ is said to be continuous at a point $a \in \mathcal{R}$ if $\lim _{x \rightarrow a} f(x)=f(a)$. In detail, this means that the above limit exists and is equal to $f(a)$. In even more detail it means that given an $\epsilon>0$ there exists a $\delta>0$ such that whenever $0<|x-a|<\delta$, then $|f(x)-f(a)|<\epsilon$.

The function f is said to be continuous on a subset S of \mathcal{R} if it is continous at every point of S. Thus f is continuous on \mathcal{R} if it is continuous at every point of \mathcal{R}.

1. (a) Show that $f(x)=x^{2}$ is continuous at every point in \mathcal{R}.
(b) Define $g: \mathcal{R} \longrightarrow \mathcal{R}$ by $g(x)=x /|x|$ when $x \neq 0$ and $g(0)=0$. Show that g is continuous at every point in \mathcal{R} except $a=0$. Describe how the definition of continuity fails for g at $a=0$.
(c) Let $f: \mathcal{R} \longrightarrow \mathcal{R}$ be given to be continuous on all of \mathcal{R} and also let it be given that $f(x)>x$ for all $x \geq 0$. Let x_{0} be a chosen non-negative real number. Define a sequence of real numbers via

$$
x_{n+1}=f\left(x_{n}\right) .
$$

Show that this sequence must diverge to positive infinity. (Hint: Show that if $\left(x_{n}\right)$ does not diverge then it has a limit x such that $f(x)=x$. Explain why this gives a contradiction, and hence a proof of divergence for the series.)

