Quiz6 - Math 313 - Fall 2014

Let \mathcal{R} denote the real numbers. A function $f : \mathcal{R} \longrightarrow \mathcal{R}$ is said to be continuous at a point $a \in \mathcal{R}$ if $\lim_{x \longrightarrow a} f(x) = f(a)$. In detail, this means that the above limit exists and is equal to f(a). In even more detail it means that given an $\epsilon > 0$ there exists a $\delta > 0$ such that whenever $0 < |x - a| < \delta$, then $|f(x) - f(a)| < \epsilon$.

The function f is said to be continuous on a subset S of \mathcal{R} if it is continuous at every point of S. Thus f is continuous on \mathcal{R} if it is continuous at every point of \mathcal{R} .

1. (a) Show that $f(x) = x^2$ is continuous at every point in \mathcal{R} .

(b) Define $g : \mathcal{R} \longrightarrow \mathcal{R}$ by g(x) = x/|x| when $x \neq 0$ and g(0) = 0. Show that g is continuous at every point in \mathcal{R} except a = 0. Describe how the definition of continuity fails for g at a = 0.

(c) Let $f : \mathcal{R} \longrightarrow \mathcal{R}$ be given to be continuous on all of \mathcal{R} and also let it be given that f(x) > x for all $x \ge 0$. Let x_0 be a chosen non-negative real number. Define a sequence of real numbers via

$$x_{n+1} = f(x_n).$$

Show that this sequence must diverge to positive infinity. (Hint: Show that if (x_n) does not diverge then it has a limit x such that f(x) = x. Explain why this gives a contradiction, and hence a proof of divergence for the series.)