Quiz3 - Math 313 - Fall 2014

1. (a) Suppose that $a_{n} \geq 0$ forms an increasing, bounded sequence for n in the natural numbers. The Completeness Axiom for the Real Numbers implies that such a sequence must have a limit. Give an example of such a sequence. Give a second example of a bounded sequence of positive real numbers that does not have a limit.
(b) Find a rational number P / Q such that it is correct to say that

$$
P / Q=.11111 \cdots,
$$

and prove that you are right.
(c) (Extra Credit) Give an injective map

$$
F: P(\mathcal{N}) \longrightarrow \mathcal{R}
$$

where \mathcal{N} denotes the natural numbers, $P(\mathcal{N})$ denotes the set of subsets of the natural numbers, and \mathcal{R} denotes the real numbers. Hint: Every subset of the natural numbers can be uniquely represented by an infinite sequence of 0's and 1's.

