Quiz2 - Math 313 - Fall 2014

1. (a) Let

$$
\left(d_{1}, d_{2}, d_{3}, \cdots\right)
$$

be an infinite sequence of digits d_{i}, where a number d_{i} is said to be a digit if it is a natural number between 0 and 9 . Given such a sequence consider the infinite series

$$
\sum_{k=1}^{\infty} d_{k} / 10^{k}
$$

We abbreviate this series by

$$
. d_{1} d_{2} d_{3} \cdots=\sum_{k=1}^{\infty} d_{k} / 10^{k}
$$

Note that the partial sums for this series are

$$
S_{n}=\sum_{k=1}^{n} d_{k} / 10^{k}=. d_{1} d_{2} d_{3} \cdots d_{n}
$$

Prove that for any infinite sequence of digits, the associated series described above converges to a real number. (Hint: Show that the partial sums form a monotone, bounded sequence. Explain how the Completeness Axiom for the Real Numbers implies that such a sequence must have a limit.)
(b) Give the definition of limit for a sequence of real numbers. Prove that $1=.9999 \cdots$ by using the definition of limit.

