Quiz1 - Math 313 - Fall 2014

1. (a) Give the definition of convergence for $S=\sum_{n=1}^{\infty} b_{n}$ where S is a real number and b_{n} is a real number for each natural number n.
(b) Prove that the series $1+x+x^{2}+x^{3}+x^{4}+\ldots$ converges when $|x|<1$, and that one can say that

$$
1 /(1-x)=1+x+x^{2}+x^{3}+x^{4}+\ldots
$$

(c) Letting $x=-1$ in the above series, we seem to get that

$$
1 / 2=1-1+1-1+1-1+\ldots
$$

Comment on this.

