Exam2 - Math 313 - Fall 2014

1. Prove that $1=.9999 \cdots$ by using the $\epsilon-N$ definition of limit directly. Note that you will have to explain what is the meaning of an expression like $.999 \cdots$ as a limit of a certain sequence.
2. (a) Give the definition of convergence for a series $S=\sum_{n=1}^{\infty} b_{n}$ where S is a real number and b_{n} is a real number for each natural number n. Note that you should be making use of the quantities $S_{n}=\sum_{k=1}^{n} b_{k}$ in your definition.
(b) Prove $\frac{1}{2}+\frac{2}{2^{2}}+\frac{3}{2^{3}}+\cdots+\frac{n}{2^{n}}=2-\frac{n+2}{2^{n}}$ for all $n=1,2,3, \cdots$.
(c) Prove that the series $\sum_{k=1}^{\infty} \frac{k}{2^{k}}$ converges and determine its value.
3. True or False: The set of decimals $\left\{. d_{1} d_{2} \cdots d_{n} \mid n=1,2,3, \cdots\right\}$ where each d_{k} is a digit between 0 and 9 , is uncountable. Justify your answer.
4. (a) Let

$$
\rho=. d_{1} d_{2} d_{3} \cdots
$$

where $d_{n}=1$ if n is a prime number and $d_{n}=0$ if n is not a prime number. Thus

$$
\rho=.011010100010100010100010000010100000100010100 \cdots .
$$

Regarding ρ as an infinite decimal, prove that ρ is an irrational number.
(b) Consider the statement "In the decimal expansion of ρ there are infinitely many occurrences of the pattern 101.". Translate this statement into a statement about prime numbers.

