Final Exam - Math 215 - Fall 2010

Do problems $1,2,3,4,5,6,7,8,9,10$. Write all your proofs with care, using full sentences and correct reasoning.

1. Give a proof by mathematical induction of the following statement:

$$
1+3+5+\cdots+(2 n-1)=n^{2}
$$

for all $n=1,2,3, \cdots$.
2. Suppose that there are n straight lines in the plane, positioned so that each line intersects each of the other lines once. Prove that the total number of intersection points among these n lines is equal to $n(n-1) / 2$ for $n=$ $1,2,3, \cdots$. (Hint: You can proceed by induction on n and ask: If there are already n lines in the plane, how many new intersection points will occur when a new line is added to the set of n lines?)
3. Find integers r and s such that $30 r+43 s=1$.
4. Recall that a natural number p is said to be prime if it has no divisors other than 1 and itself. By convention, the number 1 is not taken to be a prime, so the prime numbers begin with $2,3,5,7,11,13, \cdots$. Prove that there are infinitely many distinct prime numbers.
5. Prove that there exist irrational numbers a and b such that a^{b} is rational.
6. Prove that the following two statements are equivalent:

$$
(A \Rightarrow B) \Rightarrow C
$$

and

$$
(A \vee C) \wedge(B \Rightarrow C)
$$

In your proof, do not use truth tables. Use the facts that $A \Rightarrow B=(\sim A) \vee B$ and $\sim(A \wedge B)=(\sim A) \vee(\sim B)$, and give a completely algebraic proof.
7. (a) Give the definitions of the terms injective and surjective for a function $f: X \longrightarrow Y$ from a set X to a set Y.
(b) We define the composition of the function $f: X \longrightarrow Y$ and the function $g: Y \longrightarrow Z$ to be the function $g \circ f: X \longrightarrow Z$ with $g \circ f(x)=g(f(x))$ for all $x \in X$. A map $f: X \rightarrow Y$ between two sets is said to be bijective if it is both injective and surjective. Prove that if $f: X \rightarrow Y$ and $g: Y \longrightarrow Z$ are both bijective, then $g \circ f: X \longrightarrow Z$ is also bijective.
8. Let there be given an infinite list of sequences of 0 's and 1 's

$$
s^{1}, s^{2}, s^{3}, \cdots
$$

That is, for each natural number n we have

$$
s^{n}=\left(s_{1}^{n}, s_{2}^{n}, s_{3}^{n}, \cdots\right)
$$

where each entry s_{k}^{n} is equal either to 0 or to 1 . Construct a sequence s,

$$
s=\left(s_{1}, s_{2}, s_{3}, \cdots\right)
$$

of 0 's and 1 's such that $s \neq s^{n}$ for any $n=1,2,3, \cdots$.
9. Let X be any set. Let $P(X)$ denote the set of subsets of X. Let

$$
F: X \longrightarrow P(X)
$$

be any well-defined mapping from X to its power set $P(X)$. Show that F is not surjective.
10. Recall that we say that two integers n and m are congruent modulo p

$$
n \equiv m(\bmod p)
$$

exactly when

$$
n-m=k p
$$

for some integer k.
(a) Prove that if $a \equiv b(\bmod p)$ and $b \equiv c(\bmod p)$, then $a \equiv c(\bmod p)$.
(b) Prove that for any integer $x,(x-p)^{2} \equiv x^{2}(\bmod p)$.

