## Final Exam - Math 215 - Fall 2009

Do problems $1,2,3,4,5,6,7$. Write all your proofs with care, using full sentences and correct reasoning.

1. Prove $1^{3}+2^{3}+\cdots n^{3}=n^{2}(n+1)^{2} / 4$ for all $n=1,2,3, \cdots$.
2. Prove that the following two statements are equivalent:

$$
(B \Rightarrow A) \wedge(C \Rightarrow A)
$$

and

$$
(B \vee C) \Rightarrow A
$$

In your proof, do not use truth tables. Use facts of the type

$$
A \Rightarrow B=(\sim A) \vee B
$$

and

$$
\sim(A \wedge B)=(\sim A) \vee(\sim B)
$$

and give a completely algebraic proof.
3. Define the composition of the function $f: X \longrightarrow Y$ and the function $g: Y \longrightarrow Z$ to be the function $h=g \circ f: X \longrightarrow Z$ with $h(x)=g \circ f(x)=$ $g(f(x))$ for all $x \in X$. Prove that if $f$ is surjective and $g$ is surjective, then $h$ is surjective. Given an example where $h$ is surjective but not both $f$ and $g$ are surjective.
4. The sets in this problem are all finite.
(i) Given sets $A$ and $B$ prove the inclusion-exclusion formula

$$
|A \cup B|=|A|+|B|-|A \cap B| .
$$

(ii) Given sets $A, B$ and $C$ prove the inclusion-exclusion formula
$|A \cup B \cup C|=|A|+|B|+|C|-|A \cap B|-|A \cap C|-|B \cap C|+|A \cap B \cap C|$.
(iii) Let $D_{3}$ denote the number of bijections

$$
f:\{1,2,3\} \longrightarrow\{1,2,3\}
$$

such that $f(k)$ is not equal to $k$ for $k=1,2,3$. Determine the value of $D_{3}$ by using the principle of inclusion-exclusion. Check your answer by directly constructing all such bijections.
5. (a) Let $X$ be any set. Let $P(X)$ denote the set of subsets of $X$. Let $S: X \longrightarrow P(X)$ be any well-defined mapping from $X$ to its power set $P(X)$. Show that $S$ is not surjective. Your proof should apply to both finite and infinite sets.
(b) Give an example of a proper subset $X$ of the real numbers $R$ that is in 1-1 correspondence with all of $R$. Explain why your subset has this property.
(c) Prove that the set $N \times N$ of ordered pairs of natural numbers is countable.
6. Let $C_{r}^{n}$ denote the binomial choice coefficient. Thus $C_{r}^{n}$ is equal to the number of $r$-element subsets of a set with $n$-elements. This is sometimes phrased as the number of ways to choose $r$ things from $n$ things.
(a) State the binomial theorem for $(x+y)^{n}$ in terms of the coefficients $C_{r}^{n}$. Give the shortest correct proof of the binomial theorem that you know.
(b) Find a general formula for $(x+y+z)^{n}$ by applying the binomial theorem.
7. Let $S \subset\{1,2, \ldots, 2 n\}$ where $S$ has $n+1$ elements. Then $S$ contains two numbers such that one divides the other. [Any number can be written uniquely as an odd number times a power of $2, m=(2 k-1) 2^{j}$. Show that there are exactly $n$ odd numbers in the list $\{1,2, \ldots, 2 n\}$, and use this to conclude that in a selection of $n+1$ numbers there must be an occurence of at least two numbers of the form $(2 k-1) 2^{j}$ with the same $k$ and different values of $j$.]

