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Abstract

We find families of prime diagrams of knots with arbitrary extreme
coeflicients in their Jones polynomials. Some graph theory is presented
in connection with this problem, generalizing ideas by Yongju Bae and
Morton [4] and giving a positive answer to a question in their paper.

1 Introduction

Let L be an oriented link, and V() its Jones polynomial with normalization
one. We are interested in exhibiting examples of links with arbitrary extreme
coefficients in their Jones polynomials. Consider an unoriented diagram D of
L. We denote by (D) its Kauffman bracket with normalization {()) = 1 (see
[2]). Since Vi (t) = (—A)~3¥(D)(D) after the substitution A = t~1/4, we have
that span(Vp(t)) = span({D))/4 and the coefficients of both polynomials are
the same, maybe up to sign.

Hence we will work with the Kauffman bracket of unoriented diagrams. We
recall the definition of this polynomial using the states sum:

(D) = Z(D,S)

k]

where the sum is taken over all states s of D and (D,s) = A%(8)=b(s)(—4-2 .
A2)ls|—l'

A state s of D is a labelling of each crossing of D by either an A-chord or a
B-chord. We write a(s) (resp. b(s)) for the number of A-chords (resp. B-chords)
of the state s, and |s| for the number of components of the diagram sD, which
is D after the s-smoothing of D. Precisely sD is obtained smoothing every
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crossing in D according to the type of chord associated to the crossing by the
state, as shown in Figure 1. We will draw a small chord with the letters A or B
to remember which was the state. In this way we can reconstruct the diagram D
from sD and the chords, by just reversing the smoothings shown in Figure 1. An
example is shown in Figure 2. For a state s we denote by maz(s) (resp. min(s))

>< sa- smoothmg\ sp-smoothing >—<

Figure 1: s4 and sg-smoothing of a crossing and corresponding chords.

/N

Figure 2: From sD and the chords to D.

the highest (resp. the lowest) degree of (D,s). The extreme states s4 and sp
are defined by the equalities a(s4) = ¢(D) and b(sg) = ¢(D) respectively, where
¢(D) is the number of crossings of the diagram D. Write m = min(sg) and
M = max(ss). Clearly m = —¢(D) — 2|sg| + 2 and M = ¢(D) + 2|s4| — 2.
These numbers m and M will be called the extreme states degrees of (D) and
their corresponding coefficients a,, and aps in (D) will be called the extreme
states coefficients of (D). It turns out that (see Proposition 1)

(D) = @amA™ + amaa A" 4+ bap_ g AM T g AM.

In this paper we deal with the question of finding arbitrary extreme coefli-
cients for (D). Two different approachings will be given:

The first approaching follows Yonju Bae and Morton [4]. In their paper a
connection between ajr and graph theory is given. The coefficient a,s appears
to be, up to sign, the value f(Gp) of a certain graph Gp, constructed from
s4D and called the Lando’s graph of sD. In general, for any graph G, f(G) =
> c(=1)!! where C runs over all the independent subsets of vertices of @,
where independent means that there is no edge joining two vertices of C. In
[4] there arises the question of if any integer can be realized as f(G) for some
graph Gp. We have found a positive answer to this question. In fact, we will
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exhibit examples (in fact complete families) of graphs, and from these we will
reconstruct prime diagrams of knots with arbitrary extreme states coefficients
om and aps. This will be done in the second section. The third section will
be dedicated to explain further constructions of graphs, which in many cases
give easier examples of knots with the wanted extreme states coefficients. Here
“easier” means much fewer crossings.

The second approaching is treated in the fourth and final section. Here
we exhibit examples of prime diagrams of knots for which the extreme states
coefficients a,, and ays are zero, and the next coefficients a,,14 and aps_4 take
arbitrary values. The idea is just to look at the more general circle graph
defined by sD, rather than the Lando’s graph Gp, and use a very simple trick
for counting anr—4 in special cases. We do not know if there is a complete nice
interpretation of aps_4 in terms of graph theory, parallel to that one in which
ans is described in terms of Gp in the second section. A really more interesting
question is the following: is it possible to get any extreme coefficient when the
spread of the Jones polynomial is previously fixed?

2 Extreme states coefficients of Jones polyno-
mials and graph theory

We begin by recalling some very basic facts about the Kauffman bracket (D) of
an unoriented diagram D.

Proposition 1 (i) All degrees in (D) are congruent modulo four.
(i) max(s) < M = maz(sa) with equality if and only if |s| = |sa| + b(s).
(i) min(s) > m = min(sp) with equality if and only if |s| = |ss| + a(s).

(tv) The highest (resp. lowest) degree of (D) is less than (resp. greater than) or
equal to M (resp. m).

(v) A state s contributes to aps if and only if s € T a4 = {s/|s| = |sa| +b(s)}.
The contribution of s € T4 to aps is (—1)154171(=1)b(s),

(vi) A state s contributes to am, if and only if s € T'p = {s/|s| = |sp| + a(s)}.
The contribution of s € T'p to a, is (—1)ls81-1(—1)a(s),

(vii) apr = (1)Fa171 S0 0 ()Y and am = (—1)leET1 Y L (—1)%),
Proof. We calculate the difference

maz(sa) —maz(s) = c(D)+2|sa| —2—a(s)+b(s)—2s|+2
= 2b(s) + 2|sal — 2|5
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Now the key point is that if two states s and s’ differ in the label of only one
crossing, then either |s’| = |s| + 1 or |s| = |s| — 1, depending on whenever the
two strings that appear after s-smoothing the crossing belong or not to the same
component of sD. It follows that for an arbitrary state s we have that there
are non-negative integers p and n such that o(s) = p+n and |s| = |s4] +p —n.
Then b(s) + |sa| —|s| = p+n+|sa} —|sa| —p+n = 2n is an even number great
or equal than zero. The completation of the proof is left to the reader. O

Remark In order to find sD, one can start with s4 D, choose an order in the
set of the b(s) crossings labelled with a B-chord in the state s and perform
the opposite smoothing in these crossings following this order. In this way,
one associates +1 (resp. —1) to each one of the b(s) crossings if after the
sp-smoothing of this crossing we get one more (resp. fewer) component. By
definition p (resp. n) is the number of associated +1 (resp. —1). This non-
negative integer does not depend on the chosen order of the b(s) crossings,
although the association of +1 and —1 to each one of the b(s) crossings does.

Now we recall the connection between apr and graph theory given in [4]. In
order to obtain the Lando’s graph of D (see [1]) start with s4D and delete the
A-chords joining two different components. In this way we obtain a bipartite
circle graph (BCG). Now define the Lando’s graph of D as the graph that
appears taking a vertex for every A-chord of the BCG, and joining two vertices
with an edge if and only if the endpoints of the corresponding A-chords in the
BCG alternate in the same component of the BCG. An example of s4D, the
corresponding BCG and the Lando’s graph is shown in Figure 3. A subset

g

Figure 3: s4 D, the BCG and the Lando’s graph Gp.

C of vertices of a graph G is said to be independent if there is no edge in G
joining two vertices of C. We define f(G) = 3 5(—1)!°! where C runs over the
independent sets of vertices of &, the empty set included.



FErtreme Coefficients of Jones Polynomials and Graph Theory 281
Then

apy = (—1)lsalmt Z(_l)b(S)

se€l 4

= (—1)lsal1 Z(_l)lcl
c

= (~1FA1f(GD).

The first equality is given by Proposition 1 and the third equality is just the
definition of f(Gp). In order to check the second equality, we think of a state
s as the set of b(s) A-chords of s4D which correspond to the b(s) B-chords of
s. Then we have that s € I'4 if and only if the two following conditions occur:

(1) The endpoints of every A-chord lies in the same component.

(2) The endpoints of two A-chords lying in the same component do not
alternate.

The example in Figure 4 is exhibited in [4], where the corresponding Lando’s
graph Gp has f(Gp) = 3. The question formulated in [4] is if any integer n

Figure 4: A Lando’s graph Gp with f(Gp) = 3 and the corresponding BCG
and link diagram.

can be realized as f(Gp) for a graph Gp arising from a diagram D. Since these
graphs arise from BCG, we will call them “graphs convertible in BCG”.

Some graph theory

Since the graphs G p must be always convertible in BCG, the examples shown
in Figure 5 are not allowed. On the other hand the graphs in consideration are
not necessarily planar graphs. Figure 6 exhibits such an example.

D@ e

Figure 5: Examples of graphs non-convertible in BCG.
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Figure 6: Non-planar Lando’s graph.

Calculation of f(G) can be simplified using some readily established prop-
erties, as explained in [4]. Here it is a very brief description of these properties:

e Law of recursion. If G is a graph and v is a vertex of GG, we will denote by G—v
the graph obtained from G by deleting the vertex v and its incident edges. Let
{v1,...,v} be the set of the neighbour vertices of v in G (by definition these
are the vertices of G joined to v by an edge). We will denote by G — Nv
the graph (...((G — v) —v1)...) — vg. Then the law of recursion says that
f(G) = (G —v) - /(G - Nv).

e Law of multiplication. If a graph G is the disjoint union of two graphs GG and

Ga, then f(G) = f(G1)f(G2).

o Law of duplication. Suppose that v and w are two non-neighbour vertices
of a graph G, and the set of neighbour vertices of v is included in the set of
neighbour vertices of w. Then-we say that G is a duplication of G — w and we
have f(G) = f(G — w).

We consider examples that will be used later. Let L,, be the graph with n
vertices shown in Figure 7. Clearly f(L2) = —1. By using duplication in the
third vertex and then multiplication we get the formula f(L,) = —f(Ln—3).
Let C,, be the polygon with n vertices, n > 3. By recursion we obtain f(C,) =

[ & > e ——

Figure 7: Graph L,.

f(Ln—1) — f(Ln—3). In particular, for the hexagon H = Cg we have f(H) = 2.
We now explain how to find different families {G, }»cz of graphs with f(G,) =7
for any integer r. From now on, we will write G¥ to mean the pair (G, v), where
G is a graph and v is a particular vertex of G.

Definition Let G be a planar graph convertible in BCG and let v be a vertex
of G. We say that GV if a brick of type (n,k) if f(G) =n and f(G —v) =k.

Our main example will be the hexagon H with any arbitrary vertex chosen,
which is a brick of type (2,1). Tt is a graph convertible in BCG, as we show in
Figure 8. Now we describe the basic construction that will be used for giving
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O Y

Figure 8: The hexagon H is convertible in BCG.

our examples: Let G; and Gy be two graphs and v, and vy two vertices of G
and Gy respectively. Then G7* * G5? will denote the new graph obtained from
the disjoint union of G; and G2 by joining vq and v, with an extra edge (see
Figure 9). Note that G7* * G52 is convertible in BCG if both G; and G are.

Gy
U3

Figure 9: Graph G7' * G32.

Lemma 1 Let G be a graph and v a vertez of G. If GY is a brick of type (n, k),
then (G',v") is a brick of type (n+k, k), where G’ = G¥x H* and v’ is a vertez
of H adjacent to w (see Figure 10).

G

Figure 10: Graph (G’,v’) arising from (G,v).

Proof. We have to show that f(G') =n+k and f(G' —v') = k.

We have f(G' — ') = (f(L2))?f(G — v) = (—1)%k = k where we have used
duplication, first in the vertex v; and then in the vertex v, multiplication and
the fact that f(Lg) = —1 (see Figure 11).
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0

Figure 11: G' —v'.

On the other hand

F(GY = f(G =) - f(G'=Nv) (recursion)

= k- f(L3)f(G) (mudtiplication)
= k—(-1)n (f(Ls) =-1)
= n+k.
Finally, G’ is convertible in BCG since G and H are. O

Lemma 2 Let G be a graph. Then f(G™) = —f(G) where G~ = G" x LY, v
being any vertex of G and w being an extreme vertex of Ls. Moreover, G~ is
convertible in BCG if G is (see Figure 12).

G
e @

Figure 12: Graph G~.

Proof. We have
f(GT) = f(GT ~w) (duplication)
= f(L2)f(G) (multiplication)

-f(G) (f(L2) = -1).

Finally, G~ is convertible in BCG since G and L3 are. O

Theorem 3 For any integer n there is @ planar graph G,_1 convertible in
bipartite circle graph such that f(Gp-1) = n.
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Proof. Consider the brick H of type (2,1) and apply r times Lemma 1 to get
a planar graph G, convertible in BCG such that f(Gr41) = r+ 2 (see Figure
13).

On the other hand Ly, Ly and L, are planar graphs convertible in BCG with
f(Ls) =1, f(L1) =0 and f(Ly) = —1 respectively.

Finally, for all integer 7 > 1 we have that G, ; is a planar graph convertible
in BCG with f(G, ;) = —(r + 2) according to Lemma 2 (see Figure 14). 0O

: : : : r hex_ago-rTs

Figure 13: The graph G,.

: : : : r_he;go?s - - -

Figure 14: The graph G .

We will now construct a prime diagram of a knot with arbitrary extreme
states coeflicients, starting with the graphs G,. This process is illustrated in
figures 15, 16, 17 and 18. We first reconstruct the associated bipartite circle
graph (Figure 15). Changing every A-chord | to a crossing )| we see that this
BCG is s4 D). where the (3—components) diagram D/, is shown in Figure 16.
Figure 17 shows sp D], proving that D, is quite far from being a minus-adequate
diagram (the coefficient a,, of (D) is not +1 in general since there are other
states in I'p apart from sp). Because of this we modify D/ to produce the
diagram D,. in Figure 18.

Theorem 4 (D,) = A™ +---+ (r + 1)AM where m = —24r —4 and M = 12r.
In particular span({D,)) = 4(97" + 1). Moreover, D, is a prime diagram of a
knot with 12r crossings.

Proof. First we fix our attention in D, after s4-smoothing. Note that |s4D,| =
1 hence M = ¢(D) = 12r. On the other hand the Lando’s graph of D, is seen
to be a duplication of G, hence aps = (—1)*41-1£(G,) =+ + 1.
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Figure 15: The BCG obtained from G,.

G

Figure 16: The diagram D..

Now apply the sg-smoothing to D. We have |sgD,.| = 6r+3 (6r components
are given by the small circles § and the other three components are those
appearing in Figure 17), hence m = —12r — 2(6r + 3) + 2 = —24r — 4. On the
other hand the Lando’s graph (respect to the sg-smoothing) is the empty set,
hence a, = (=1)*B8I71f(@) = 1. s

We now join in a very particular way D, and D, (the mirror image of D;)
in order to control simultaneously both extreme states coefficient (we avoid the
obvious solution given by the appropriate connected sum in order to get a prime
diagram):

Theorem 5 Let D,s be the diagram shown in Figure 19. Then (D,s) = (s +
DA™+ - -+ (r+ 1)AM where m = —24r — 125 — 6 and M = 12r 4 245+ 6. In
particular, span({D,s)) = 36(r + s) + 12. Moreover, D¢ is a prime diagram of
@ knot with 12(r + s) + 2 crossings.

Proof. Note first that ¢(Dy;) = ¢(D,) + ¢(Ds) +2 =12r + 125 + 2.

Now, the very special way in which we join D, and the mirror image D, of
Dy gives the equalities |s4| = |sa(D;)| = |sp(D;s)| = 65 + 3 and the fact that
the Lando’s graph is still a duplication of G,.. It follows that A/ = 12r + 245+ 6
and apr = (—D)FAI71H(G) =7 + 1

Analogously, |sg| = |sp(D;)| = 6r + 3 and the Lando’s graph is still a duplica-
tion of G, hence m = —24r — 12s — 6 and a,, = (—1)*21"1f(G,)=s+1. 0O
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Figure 17: sgD/: D/ is not minus-adequate.

9
v

Figure 18: The diagram D,..

A small refinement of the last result allows us to modify the signs of the
extreme states coeflicients:

Theorem 6 Let o be an odd integer great than 1. Let D2, be the diagram
D,s with a modification in the way in which D, and D, are joined on the
left, as shown in Figure 20. Then (D) = —(s + 1)A™ + --- + (r + NAM
where m = —24r — 12s —a — 8 and M = 12r + 24s + 3a + 4. In particular
span({D)) = 36(r + s) +4a+12. Moreover, D2, is a prime diagram of a knot
with 12(r + s) + 2 4+ « crossings.

Proof. We have that ¢(D2,) = ¢(Dys) +a, |sa] = [sa(Drs)|+a—1=6bs+a+2
and |sg| = |sp(Dys)| + 1 = 6r + 4. In addition the s4 and sg Lando’s graphs
are still the duplications of G, and G, respectively. 0

3 More graph theory

Let us consider the specific example provided by Theorem 4 for the extreme state
coefficient apr = 41. The knot diagram Dy has 12 x 40 = 480 crossings! If we
take the non minus-adequate link diagram with three components D}, we still
have 640 = 240 crossings! In this section we develop other graph constructions,
providing easier examples for many possible extreme states coefficients. Here
“easier” means always that the diagram has fewer crossings. In many cases,
easier means as well that the corresponding span is lower.



288 P. M. G. Manchdn

2
R

Figure 19: The diagram D,.,.

A

B

@
@

1=

Figure 20: A small modification of D, produces Dg,.

Building with bricks

Let {G7*,...,G}*} be a set of graphs with a chosen vertex v; € G; for every
1 £ i < k. We denote by S = S(G7*,...,G}*) the graph shown in Figure
2la, and we call it “simple building” constructed with the bricks G7*,...,G}*.
Precisely, S can be defined in steps using the operation * introduced in the
second section. Let w be the only vertex of Ly. Then

S = (.. ((L¥ % GVYY 5« GPYY 5 . )®) % GU¥

Other related construction can be obtained introducing k extra vertices
wy, ..., W, one In every edge joining v; and w in the graph S. The new graph
is denoted by C' = C(GY',...,G}*) and it is shown in Figure 21b. We will call
it “complicated building” constructed with the bricks G7*,...,G}*. Its precise
definition using the operation #* is left to the reader. In both constructions the
vertex w is called the central vertex. In the second construction, the vertices w;
are called the intermediate vertices.

Lemma 7 Let G}* be a brick of type (n;,m;) for every i € {1,...,k}. Let
S=S8(GT*,...,G}*) and C = C(GYY,...,G}*). Then:

(1) S% is a brick of type (]_[f:1 n,-—Hle mi, Hle n;), where w is the central
vertex of S.

(2) S¥i is a brick of type (]—[f:1 n; — H?zl My, m; H?#:l n; — Hle M)
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Figure 21a: Simple building. Figure 21b: Complicated building.

(3) CY is a brick of type (Hle(nz —m;) — Hle n;, Hle(ni —m;)), where
w is the central vertex of C.

(4) C¥ is a brick of type (Hi.“:l(m- —m;) — Hle N, =M H_?#i:l ni).
(5) C% is a brick of type (]—[le(nz —my;) — Hle N4, N H?yéi:l(ni —m;) —
Hle n;), where w; is any intermediate vertez of C.

Proof. We prove (1) and leave the other proofs to the reader:

k
f(S—w) = H F(GT) (multiplication)
=1

k
- I
i=1
and

f(s) = f(S—w)— f(S—Nw) (recursion)

k k
= an - H F(Gi —vy) (multiplication)
i=1 i=1

k k
- T~ I
=1

i=1

|

Let us come back to the example with aps = 41. Note that 41 = 5 x5 x
2 -3 x3x1. Hence S = S(G7',G3*, H") has f(S) = 41 if GT* and G3?
are two copies of a brick of type (5,3). Two different bricks of type (5, 3) are
shown in Figure 22. It follows from (1) in above lemma that the planar graph
S convertible in BCG shown in Figure 23 has f(S) = 41. The corresponding
diagram with aps = 41 in its Kauffman bracket has 43 crossings.

Finally in this section we present a sequence {Fy }ren of planar graphs, all
of them convertible in BCG, such that the corresponding sequence of integers
{f(F.)}ren is the Fibbonachi sequence 2,3,5,8,13,21,.... The graph F, is
shown in Figure 24. If we compare the link diagram arising from F.; and £,
we note that while aps increases by f(F._1), the number of crossings of the
diagram increases only by 7.
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O—O0-<0 OO0

Figure 22: Two different bricks of type (5, 3).

Figure 23: A graph G with f(G) = 41.

4 Non-states extreme coefficients of Jones poly-
nomials.

In this final section we will exhibit examples of prime diagrams of knots for which
the extreme states coeflicients a,, and a s are zero and the next coeflicients @, +4
and apsr—q take arbitrary values. The idea is just to look at the more general
bipartite circle graph defined by sD, rather than the Lando’s graph Gp, and
use a very simple trick for counting as_4 in special cases.

We start with the natural enlargement of proposition given in the second
section. Recall that (D) denotes the Kauffman bracket of an unoriented diagram
D with normalization one.

Proposition 2 (i) A state s contribute to apr_4 if and only if either s € Ty =
{s/|s| = |sa| +b(s)} or s € TY = {s/|s| = |sa| + b(s) — 2}. The contribution
of s € T'g to apr_yq is (=1)54l=1(=1)25)(|s 4| + b(s) — 1). The contribution of
s1€TY to ap—q ds (~1)lsal=1(—1)b(s1),

(%)

arr-a =11 (54l = ) 3 (<D + 37 (105 + 3T (1)

s€T A s€la s €Ty

(ii3) If aps = O then the whole contribution of I' 4 to apr—4 is given by

(=1)*47 3 7 (=1)"b(s).

s€T 4
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O G ; hg;;gonsO

Figure 24: The graph F;..

Proof. A state s contributes to aps—4 if and only if maz(s) > M — 4, hence if
s contributes to aps—4 but is not in I' 4, we have that maxz(s) = M — 4 by (i)
in Proposition 1. Now the statements follow from the fact that {s;/maz(s;) =
M —4} = {s1/[s1] = |sa| +b(s1) —2}. 0

Consider now the generalized bipartite circle graph s4D obtained from an
unoriented diagram D by sa-smoothing. Suppose that locally this has the very
special aspect shown in Figure 25, and suppose that only the A-chords x1, ...,z
(k > 1) have their endpoints in the same component. The Lando’s graph is then
given by k parallel A-chords, hence by duplication we have that aps = 0 in (D).
From now on, we will identify a state s with the set of the b(s) A-chords in s4D

——

Qn
- T~
4 X - - -~ X ¥
~ 1 k -

Figure 25: A very special s D.

that correspond to the b(s) crossings of D in which the label associated by s is
a B-chord. Let X = {x1,...,2x}, A={a1,...,an} and A" = {a},...,al,} (see
Figure 25).

The states in I' 4 are the subsets of X', hence by (ii:) in Proposition 2 we have
that the contribution of I'4 t0 aps—4 is given up to sign by > (—1)2)p(s) =
Yro ( ]; ) (—1)73, which is 0 when k > 1.

We now analyze the contribution to aps_4 of the states in F}Q which contain
at least one A-chord of A|JA’. Note first that these states are necessarily
contained in X |JAJ A

Suppose first that in s; there are no A-chords of both sets .4 and A’. Then
the union of s; \ X and any subset of X is a state which les in I'Y;, and all of
their contributions to aas_4 cancel.

By the contrary, suppose that s; has at least one A-chord of A and one of
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A’. Then s1[)X is the empty set, and the contribution of all these states is
(=1)is4l=1 in total.

As a consequence we have found a geometrical reason for some of the re-
sults algebraically obtained in [3] about the Kauffman bracket of pretzel link
diagrams. Let P be the pretzel link diagram P(a,by,...,bs) where a > 2, and
b < —2for any ¢ = 1,...,s with s at least 2 . Let p be the cardinal of the
set {i/b; = —2} and assume that p > 1. Then P is a minus-adequate diagram,
ap =0 and apr—_4 = p up to sign.

Now, in order to get a prime diagram of a knot with extreme states coeffi-
cients equal to zero and arbitrary values for a,,14 and as_4, we manipulate two
pretzel link diagrams P(2,-2,...,—2) and P(2,...,2,—2,2). We join these two

\—,_/ T’l—J
diagrams in the way shown in Flgure 26, using two extra columns with o and
[ crossings respectively, both a and 3 great or equal than two. We will denote
by D(r,s; o, 3) the obtained diagram. Note that D(r, s; c, 8) is the pretzel link

Figure 26: The link diagram D(r, s; «, ().

diagram P(2,-2,..., -2, —,2,...,2,—2, 3) with two extra trivial knots placed
N N —

§—2 r—2
in a very special way, as shown in Figure 27.

Figure 27: Other view of D(r, s; a, ().
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Theorem 8 Let D=D(r,s;a, 3) be the link diagram shown in Figure 27. Then

D) = (—1)rtsthlpg=ir—ds—a=36+2 4 4 (_])rtetaslggdrtdstlatf-2

In particular span((D)) = 8(r + s) + 4(a + B) — 4. The highest degree of
this polynomial is M — 4, and the lowest degree is m + 4. Moreover, D has

—{—_1)> —(—1}B
r+s42- =G0 1=C

components.
Proof. Note first that ¢(D) =2+2s+2+2r+a+ 0.

Figure 28 shows D(r, s; o, 3) after s4-smoothing. We have |sa| =7+ s+«
(hence M = 4r +4s+ 3a+ 3+ 2), and since the Lando’s graph is given by two
parallel A-chords, we have ap; = 0. The above discussion applied to Figure 28
gives ap_4 = (=1)84l=1s = (=1)r+s+te=1s  Analogously, after sg-smoothing

oy

Figure 28: D(r,s;a, 3) after s4-smoothing,

(see Figure 29) we count |sg| =r + s+ (3 (hence m = —4r —4s — a — 33 — 2),
and since the Lando’s graph is given by two parallel B-chords, we have a,, = 0.

Flnally, from the above discussion applied to Figure 29 we deduce that am+4 =
|sB| l’I‘ _ ( 1 r+5+8— 1

AW

Figure 29: D(r,s;a, 3) after sgp-smoothing.

Finally, we modify the link diagram D(r,s;a, ) in order to get a prime
diagram K (r, s; «, ) of a knot . This is shown in Figure 30.

Theorem 9 Let K =K(r, s;a, 3) be the link diagram shown in Figure 30. Then
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00 BT

4

Figure 30: The knot diagram K(r,s; o, 3).

(K) — (“1)T+ﬁTA_5T_75_a—35—1 et (_1)s+a—lsA7r+53+3a+;6—l.

In particular span({K)) = 12(r + s) + 4(a + B) + 8. The highest degree of this
polynomial is M — 4, and the lowest degree is m + 4. Moreover, K ts a prime
diagram of a knot.

Proof. We first consider the modification D’ = D'(r, s; e, B) of D = D(r, s5; 0, 8)
shown in Figure 31. Looking at the differences between D and D’ after s, and

00 sl

e/ /

Figure 31: The link diagram D’ = D'(r, s; o, 5).

sp-smoothings, we can prove that (D’) = (—1)"+F-1pA=5r—Ts—a=36+2 ... 4
(—1)sta-1lgATr+5s+30+8-2 where the highest and lowest degrees are M —4 and
m + 4 respectively.

But D' is not a knot diagram when the parity of « and 3 is the same. For this
reason we introduce a small change in D’ in order to get the prime diagram K of
a knot. This change is shown in Figure 32. Note then that ¢(K) = ¢(D')+1 and
|sa} does not change, hence M(K) = M(D')+1 = 7Tr+5s+3a+ 8 +3. Respect
to the coefficients we have apr = 0 and ap;_y = (=1)1841-1s = (—1)s+a-lg

But after s p—smoothing we have |sg| = |sp(D’)|+1, hence m(K) = m(L")—
3= -br—"7s—«a—308—5. Respect to the coeflicients we have a,, = 0 and
Amaya = (=187 1p = (—1)r+8p, O

As we said in the introduction, we do not know if there is a nice interpretation
of aps—4 in terms of graph theory, parallel to that one in which azs is given in
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SV STV

AT Y

Figure 32: A small change in D’ produces K.

terms of the graph Gp as described in the second section. Apart from the
examples, this last section can be seen as a partial interpretation of aps_4 in
terms of graph theory. More important, it remains to be answered the following
question: how arbitrary can be the extreme coefficients of the Jones polynomial
when the value for the spread is previously fixed?
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