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But we have shown in Theorem 2.4 that Vr is ACD and so 
Vr # P - *(r)P # /(r)G; 

k(r) - | r ( r 2 - 6r + 11), /(/•) - j (r - l)(2r2 - 4r + 3). 
Thus A;' « A:(r) - /? and V = /(r) - b~(V). Then in particular A:' < A;(45/> + 
36) and /' < l{A5p + 36) and so the theorem follows. 

Although these estimates give us a tractable bound on resolving numbers of 
complex surfaces we are still a long way from showing that all such surfaces 
are ACD. All progress in resolving Conjecture I' has been made by consider-
ing families of surfaces which could be explicitly constructed. To quote 
Moishezon [Msh], 'the "theoretical" Theorem 2.20 gives much weaker results 
than our "empirical knowledge". The interesting question is, how far can we 
move with such 'empirical achievements' in more general classes of simply-
connected algebraic surfaces.' 

CHAPTER 3. 4-MANIFOLDS AND THE CALCULUS OF LINKS 

3.1 Framed links and the Kirby calculus. Having considered the question of 
decomposing algebraic surfaces via a combination of techniques from alge-
braic geometry and topology we discuss a more strictly topological method to 
obtain information about 4-manifolds. We recall that every PL-manifold 
admits a handlebody decomposition [RS, Chapter 6]. Thus to show that two 
manifolds are isomorphic we might try to show that they admit isomorphic 
decompositions. Kirby [Kirb 1] has developed a 'calculus' to manipulate 
handle decompositions of 4-manifolds which can be used to prove that two 
such manifolds are isomorphic. (See also [FR] and [Sa].) 

We recall that if M4 is a connected 4-manifold then we can always 
decompose M4 as 

n 

M 4 = f l ° u U Ht
l U U H/ U U Hf U U #* 

where if dM4 = 0 we can assume n = 1 and if dM4 ^ 0 we may assume 
n = 0. 

Each/?-handle H? = Dp X D*~p has an attaching map ft on Sp~l X D4~p 

to M4 u {all handles preceding Hf), with ƒ an embedding, and the isomor-
phism class of our handlebody decomposition is determined by the isotopy 
classes of the ƒ [RS, p. 71]. What are the various attaching maps we must 
worry about in the case of 4-manifolds? 

The attaching maps for 1-handles are maps ƒ: S° X D3 -*dW (W will 
symbolize H° U {other handles}). Essentially then we are just singling out 
neighborhoods of pairs of points as places where we will attach a 1-handle. 
All such ƒ are clearly isotopic since W is connected and dim W > 1. 

We can thus write the attaching map of 1-handles down in the form 

o o 
A B 
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in S3 = dH° and our 2-handle will be an identification of the balls A and B 
in the above picture. [Note that D4 u U UiHil i s simply b[r

is=lSl X D3 with 
boundary #r

i=lSl X S2.] 
Now let us consider 2-handles. Then our attaching maps/: Sl X D2-*dW 

are precisely framings on embedded Sl9s in dW. Now up to isotopy such 
framings are classified by ^(SO2) c* Z so an attaching map of a 2-handle can 
be regarded as an embedded Sl (i.e. a knot) with an integer attached to it 
representing the framing. 

More generally, since by Principle 1 of Chapter 1 we can simultaneously 
attach all the handles to dH° = S3 we make the following definition. 

DEFINITION 3.1 (TENTATIVE). Let M be an oriented 3-manifold. L is a 
framed link in M if and only if L is a finite disjoint collection of smoothly 
embedded circles, yl9..., yr, (knotted or unknotted), with an integer nt 
associated with each y,.. (Geometrically nt means that the attaching map ƒ: 
Sl X D2 -» S3 with^S1 X 0) = y, associated to (yl? nt) is precisely one such 
that, for any x G D2 — {0}, f(Sl X {x}) has linking number nt with y,.. This 
means that the disc D2 is twisted «-times in a right-handed direction as we 
traverse y,..) (We call/(S1 X {x}) & «,-parallel curve for y,.) 

If M is the boundary of an oriented 4-manifold V and M has the induced 
orientation we shall let VL denote the manifold obtained by adding handles 
to V along M via the recipe given by the framed link L. We shall denote dVL 
by XzX^O- Note that the construction of VL depends only on the orientation 
of V and not on orientations of components of L. 

EXAMPLE 1. 

Some examples if M = S3 

Link/, 

Lens space L(n, 1) 

(2) p [ [ ) )q L(pq-l,p) = L(pq-l9q) 

. . \s \ / \ Dodecahedral space P- S3/G 
^ ' ^ ' ' G - binary dodecahedral group 

(4) / \^l \y h Dodecahedral space 
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EXAMPLE 2. 

(5) 

(6) 

Some examples of BL (B « B4 with dB4 = S3) 

o ±i 

S2 xD2 

±CP2-B4 

(7) T2 xD'< 

(8) oQQi P#Q-B - »4 

(9) °00° S 2 * S 2 - B « 

Now suppose L, L' are framed links in S3. The framed link L + L' will 
denote the disjoint union of the two links in S3. Then using the above 
examples we see that if L' is the link in 5, 6, 8 or 9 above then 

*L+U - *L * S2 X D2 i fL'= O 

BL+v = BL# ±CP2 i f ! / - ±i Q 

BL+L- = BL#P#Q ifL' = {QD° 

BL+v ~BL# S2XS2 if L' = QÎ) 
O O 

(10) 

(") 

(12) 

(13) 

where ^ denotes the boundary connected sum and # is the connected sum in 
the interior of the manifold with boundary. Notice that Xz/OCzX )̂) is 
XL{M) # S2 X S', in case (10) and XiMW) = XLW) in cases (11), (12), 
(13). 
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There are two basic 'moves' introduced by Kirby in manipulating such 
framed link pictures. We assume henceforth that our 4-manifold B is simply 
B\ 

MOVE 1. L -> L + O - This move keeps XLC^O fixed but changes BL to 
BL # ±CP2 or in reverse changes £L # ± C P 2 t o £ L . 

MOVE 2. Given two circles yt and yj in L we "add" y, to yy- as follows. Using 
the framing nt of y,-, let y, be an ^-parallel curve of yr Now change L by 
replacing ^ with yj = yt #b yj9 where 6 is a band connecting y,. and yj and 
missing the rest of L. 

This move corresponds in BL to adding (subtracting) the yth handle to 
(from) the ith handle. The new framing nj equals y,- + y,- ± 2atj where a0 is 
the linking number of y, and yy (after they have been assigned orientations). 
(The linking number /&(£, TJ) of disjoint knots £ and t] in S3 can be defined as 
the image of the homology class [£] in H^S3 - TJ) « Z, where S3, £, TJ have 
been given fixed orientations.) The sign in the equations depends on whether 
or not the band b preserves orientation. Notice that Move 2 changes neither 
BL nor XL(M)- It simply provides a new handle decomposition for them. 

EXAMPLE 3. 

0 
This shows that 

O O -r#Q-*- QO 
- i l o i 

GO O - O O D - Q D O 
0 0 1 0 1 - 1 1 0 1 

This shows that 

GOO =52 xs2 #cp2-** 
0 0 1 

= QO O = P#Q#CP2-B* =2P#Q~B* 
I 0 1 

Thus one can replace Move 2 by the following generalized Move 2' which 
it implies. 

MOVE 2'. Let L be a link containing the portion (L) pictured below. Then 
go from L to L' or back where L' is the link identical to L except that the 
portion (L) of L has been changed to (Z/). 
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7l /In 11 

±id 

'In 

3*- one full 
(left, right) 
hand twist 

(L) (L') 
The linking matrix \L- for L' is then given by 

Ikfoyj) if/*/ 
( U = ( U + [ ( U , ] 2 i f '^0 

= ±1 if/ =7 = 0, 
where XL is the linking matrix for L. 

In case n =» 1 or « = 2 the equivalences are pictured below. 
n- 1 

and 

+ 1 

R + 1 

+ 1 

1 -strand 
i » 

+ 1C _J> 
+ 1 

2-strands 
Move 2' proves very convenient when actually computing link equiva-

lences. 
Framed links as we have defined them only represent manifolds having a 

handle decomposition containing a 0-handle and some 2-handles. We thus 
define a generalized framed link by first adding in pairs of 3-balls represent-
ing the 1-handles. Note that if 1-handles are allowed we must broaden our 
definition of an embedded circle to include the following type of example 

In this picture the curve y with framing nt really represents a circle 
embedded in the manifold 9 (Q Q) = 9(D4 + 1-handle) = Sx X S2 and 
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homologous to S 1 X 0 ! (We shall discuss a method of representing such an 
example by pairs of circles in S3 later in this chapter 

•& k ^ J would become 

We thus redefine framed links to include pairs of embedded 3-balls 
representing 1-handles. To represent 3-handles we would have to draw in 
2-spheres in our pictures. However as a consequence of a result of 
Montesinos and Laudenbach-Poeneru [Mont 3], [LP] this is not necessary! 

In fact we have the following theorem. 

THEOREM 3.2 [Mont 3]. Let M be a closed orientable (PL) 4-manifold with 
handle presentation M = H° \j\Hx u \iH2 \J yH3 u H4. Then M is com-
pletely determined by H° U \Hl \J pH2. 

Thus the way the 3- and 4-handles are pasted in cannot affect the topology 
of M. We must therefore only keep track of the number, y, of 3-handles we 
must add to a given link picture without worrying at all about their locations. 
Thus our present definition of a framed link allows us to take care of all 
possible handlebody decomposition of compact manifolds without boundary. 

Given two framed links Lx and L2 we shall say Lx —d L2 (i.e., Lx is 
boundary equivalent to L2) if and only if we can go from L, to L2 by a 
sequence of moves of types 1 and 2. We then have: 

THEOREM 3.3 (KIRBY) [Kirb 1] (SEE ALSO [Org]). Lx~d L2 if and only if 
X L , ( ^ 3 ) & diffeomorphic to XL($3) (preserving orientations). 

If we are interested in the 4-manifolds BL instead of their boundaries we 
must replace Move 1 by a move preserving BL (instead of just its boundary). 

The only geometric operation we have not covered is handle cancellation 
and introduction. 

Thus Move Y will be the introduction of a cancelling pair of 1- and 
2-handles or 2- and 3-handles. 

Now if O O is a 1-handle then Q Q) will be a cancelling pair consisting 
of a 1-handle and a 2-handle. [Note again that the horizontal line in Q) 0) 
really represents a circle in d(B4 u©) since the two 3-balls are identified via 
the 1-handle attaching them.] ^ 

An alternate way of introducing such a cancelling pair is to note that if Q 
represents a 2-handle attached to some simply-connected manifold V giving 
V' — V t\ S2 X D2 then surgering the 2-sphere S2 above corresponds to 
attaching a 1-handle to F giving x(V') = V tj Sl X D3. 

We can then thus represent a 1-handle as a surgered 2-handle which we 
write 

<§p) 

Ç) (an unknot with a dot on it). 
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Notice that 
n O p ^ is thus equivalent to ® n (Q) 

n C02)m would represent n{ (P while 

(i.e. going through Q) is the same as going 'over' the 1-handle). To introduce a 
cancelling 2-3 pair we put down Q and keep track of the complementary 
3-handle without drawing it in. ° 

Move 1' is then: 
Introduce ^ ~ ] P ) or Q + (3-handle) 

o 

We say Lx ~ L2 if we can go between them by moves of type 1' and type 2. 
As an analogue of Theorem 3.3 we then have Theorem 3.3' (Sa) [Kirb 1, Sa] 

Lx ~ L2 if and only if BL is diffeomorphic to BLi. (See Sa [Sa] for a complete 
proof.) 

Notice that if Vx and V2 are simply-connected 4-manifolds we can always 
write down link-pictures for V[ = Vx - {4-ball} and V2 = V2 - {4-ball}. 
Clearly Vx « V2 if and only if V[ = V'2 and thus if V[ = BLx and V2 = BLi 
then we can show that Vx is diffeomorphic to V2 by showing that Lx ~ L2. 

We apply these techniques in a few cases. (More applications will be found 
in later chapters.) 

3.2 Handlebody decompositions of 4-manifolds. The simplest application of 
the link calculus arises in Example 3(2) above where 

y\ ?2 7 3 7i 7f
2 73 

CD O - 00 O 
0 0 1 1 0 1 

shows that S2 X S2 # P = IP # Q. 
We note that in the above example the matrix (ay) where atj = lk(yi9 yy) 

and au = nt is, in fact, the intersection matrix for the resulting 4-manifold. 
In fact this is a direct consequence of the definition of a handlebody 

decomposition. In general if L is a framed link with components y, with 
framing ni9 then setting atj = lk(yi9 yj), aH = nt gives us a matrix AL represent-
ing the intersection form on BL. We note that Hx(dBL) = 0 if and only if AL is 
unimodular. Thus to recognize a homology 3-sphere as the boundary corre-
sponding to a link diagram we can simply construct the linking matrix AL 
described above and compute its matrix. In particular if K is any knot then 
(K, ± 1) will be a homology sphere. 

In Chapter 4 we shall discuss some of the 4-dimensional problems 
associated with homology 3-spheres and the 4-manifolds they bound. As 
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preparation for some of the techniques used we present the following example 
of Kirby [Kirb 1]. 

Suppose H is a homology 3-sphere which bounds an oriented 4-manifold M 
of type II, with b2(M) = (a(M)) = 16. If we could also show that H bounds 
another contractible 4-manifold X then V = M u X would be the long 
sought after closed spin manifold with b2(M) = (o(M)) =16. For example, 
let 
2(a, b, c) - {(x,y, z) G C3\xa + yb + zc - 0} n {|x|2 + | j | 2 + \z\2 = e}. 

Then 2(2, 7, 13) is a homology sphere which bounds an M as above. In fact, 
using some techniques from the theory of resolutions of singularities we can 
see that 2(2, 7, 13) is precisely XiX^3) where L is the link 

-2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -4 

\ 
7l5 

- 2 

?1 ?2 

' 16 

We claim that 2(2, 7, 13) is also the boundary of Xi(S3). 

Z/ = - ^ 

y 
§ (This is the (2, 7) torus knot.) 

To show that XL(^3) ~ XL(S3) we can use moves 1 and 2 to obtain 
1~1~2 

L' -f f ) — ^ ( ( ^ C ^ y * * • (rest °f picture is the same). 
?1?2 

- 1 
We can use the ( ^ above to split off successive components and arrive at 

y\ 
+3 -1 -2 -2 

We iterate, obtaining first 
-1 - 2 -4 
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and then by adding additional Ç~j we get 
- 1 

0 - 1 1 - 3 1 2 
13 13 

1 3 2 1 3 1 - 1 1 
13/ /\~yÇ7<ÇyÇ~~\2 13/ 

Now removing +1 circles successively we obtain as desired. 

The problem then remains to show that 2(2, 7, 13) bounds a contractible 
manifold. One might try to solve this by constructing contractible 4-manifolds 
and examining their boundaries. 

The first example of a compact contractible 4-manifold which is not D4 
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was constructed by Mazur [Mz], In our notation Mazur's manifold Wis 

This is a 1-handle 

[We have attached a 2-handle to Sl X B3 along, a framed circle homologous 
to but not isotopic to Sl X * in Sl X S2.] 

In [AK 2] Kirby and Akbulut defined Mazur manifolds W~(l, k\ 
W+(l,k) as follows: 

W~Q, k) ^ ^ W+{1, k) 

All of the manifolds can be seen to be contractible by simply noticing that 
W~(h k) X R « W+(h k) X R » jR5. [In fact, Mazur [Mz] showed that 
whenever one attaches a 2-handle to Sl X B3 by a curve C in d(Sl X B3) = 
Sl X S2 such that C generates H{(Sl X S2) one obtains a manifold Wc with 
Wc X I « R5. To arrange things so that irx(dWc) ¥= 0 one must choose C so 
it is not of the same knot type as the standard Sl X 1 «-» Sl X S2.] 

Then using the calculus of links one calculates dW~(l9 k) and 3 W+(/, k). 
The following results are obtained: 
PROPOSITION 3.4. 
(1) dW±(ly k) - 3fr±( / + 1, * - 1), 
(2) dW-(l, k) « dW+(-l + 2, -A; + 1), 
(3) (a) 3W+(0, 0) « 2(2, 5, 7), 

(b)3JF+(-l , 0 )^2(3 ,4 ,5 ) , 
(c)3fF+(l, 0 ) ^ 2 ( 2 , 3, 13). 

To further demonstrate the techniques of the link calculus we include the 
proof of (3)(a) (taken from [AK 2]). 

We have - 3 

2(2, 5, 7) = 

by definition. 

cb-2 
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Now 

Blow up c{-k 
,+ 1 i 

1 Blow down 

Handle addition 
corresponding to 

( et \ 

e3+ex) 

Blow down 

= d 

(where we have changed the 2-handle 
0 ° t o the 1-handle Q in the 

interior of the manifold) 

9H>-(09 3) « 3Wr-(l, 2) « 3HT(2,1). From (1) of Proposition 3.4 
dW+(0, 0) from (2) of Proposition 3.4. 
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In [Ram], Ramanujam has constructed a nonsingular complex affine alge-
braic surface V2 which is rational and contractible (3 F is a homology but not 
a homotopy 3-sphere) such that V2 is not analytically equivalent to C2! Kirby 
[Kirb 5] has found a framed link L representing V and shown V to be 
essentially a 'Mazur' manifold. V X R2 is homeomorphic to R6 but it is not 
known whether K x C i s analytically isomorphic to C3. The construction of 
V is as follows. 

Let Cj be a cubic curve in CP2 with a cusp. Let C2 be a nondegenerate 
conic meeting Cx at two distinct points P, Q of orders 5 and 1, respectively, 
such that P, Q are neither the cusp nor inflection point of C2. (For example 
take C,: JC3 - y2 = 0 and C2: x2 - ~ xy + \ y2 + \ x - f y - ^ which 
intersect with multiplicity 5 at (1, 1) and multiplicity 1 at some other point 
Q.) Blow CP2 up at Q to get the variety F and let C{, C2 be the proper 
transforms of Cx, C2. Then V is defined as F - C{ — C2. For a proof that V 
has the requisite properties see [Ram] or [Kirb 5]. 

Harer, Casson and Kaplan ([HC], [Kap]) have used these methods to 
construct numerous other examples of homology spheres 2(a, b, c) which 
bound contractible or acyclic manifolds. As yet however no example has been 
found of such a homology sphere which bounds both an acyclic manifold on 
the one hand and a manifold with definite form of type II on the other. 

33 Special handlebody decompositions. Another possible approach to find-
ing a spin manifold M with b2(M) = \o(M)\ = 16 is by directly constructing 
a handle decomposition of a spin manifold W with b2 = 22 and |a| = 16 and 
attempting to manipulate such a decomposition to split off oQOo pairs. 
This would then correspond to decomposing W as JV *= W' # S2 X S2 with 
otjV') . o(W) and b2{W') - 20. 

We first exhibit a (22, 16) manifold constructed by Kirby and Akbulut [AK 
4] which has a handle decomposition with no 1- or 3-handles. The resultant 
manifold is homotopy equivalent to V4 but it is not known whether it is 
diffeomorphic to it. 

Let 

M\ 

Then by the 'calculus' one shows that 3Mf = S3. 
Now let 

We note that M* = M2 U hn U h22 where hlv h22 are the 2-handles attached 
to the circles with framing 0 and -2 in the link diagram for M*. 
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By successive moves on M 4 one obtains the manifold JV4 pictured below, 
preserving 3M4 = 3iV 4. 

2 2 2 2 2 2 

: N% (definition) 

Let 

Then N2 = Af 4 u h2l u • • • U h2S where the handles h2i are the handles 
attached to the + 2 circles in the link diagram for N2. 

1 

Now let M4 = 

By successive moves on M 4 we get 

with 3M3
4 = 3JV3

4. 
We again note that N* « Af 4 u h3l u • • • U hM where the h3i are the 

handles attached to the circles with framings 0 and 2 in the link diagram for 

Lastly by successive calculus moves on M% we construct 
2 2 2 2 2 2 2 

= N% (definition) 

with 3(A/4) = 3(JV4) 
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We now let 

M4 = Ni U9*4.9*4 ( U h3i\ UiNf-tMi ( Li M Ua^-ajn} ( Ü hiX 

Then 3M4 « 9Aff » S3. Let W - M4 u 8M4 £4. 
Then FT is a simply-connected compact 4-manif old with intersection matrix 

determined by the linking matrix of our link diagram above. In particular we 
can compute AL to be AL « Es © Es © 3 U. 

Thus W is a spin manifold with 62(**0 = 22, a(W) = 16. However, 
although this procedure gives us an explicit picture of W, all attempts to split 
off a sublink o GO ° representing a factor U in the decomposition of AL 
have been unsuccessful. 

Does there exist a decomposition with no 1- and 3-handles for F4? In 
[HKK] Harer, Kas and Kirby answer this question in the affirmative by 
explicitly constructing such a decomposition. Their link picture is exhibited in 
Figure 3.2. 

A link picture of F4. 

FIGURE 3.2 
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Now let M4 be a simply-connected 4-manifold. M4 will be said to admit a 
special handlebody decomposition if it admits a handle decomposition with 
one 0-handle, b2(M4) 2-handles and one 4-handle. In this case M4 can be 
completely represented by a framed link L [with no 1-handles (or 3-handles) 
in it]. It is an open question whether every simply-connected (PL) 4-manifold 
admits a special handlebody decomposition. In the algebraic case Rudolph 
[Rd] showed that every nonsingular hypersurface Vn of CP3 admits a decom-
position with no 3-handles and [HKK] showed that V4 admits a special 
decomposition. (Vx> V2, V3 clearly admit such decompositions since they are 
rational.) In [Har], [At 3] it is shown that all Vn c CP3 admit such decom-
position and in [Man 3] it is shown that all complete intersections and 
simply-connected elliptic surfaces (with no more than one multiple fiber) 
have special decompositions. 

Casson [Cas 3] however has shown that there exists a compact simply-con-
nected PL 4-manifold with dM ¥= 0 requiring 1-handles in any handlebody 
decomposition. This result follows from the following observation. 

Suppose M is a simply-connected 4-manifold with dM =£ 0 having a handle 
decomposition M = D4 u U "«î^P. Then M — D4 gives a cobordism be-
tween S3 and dM having only 2-handles. However adding a 2-handle to dM 
has the effect of adding one new generator and one new relation to irx(dM). 
Thus the existence of a cobordism between dM and S3 having only 2-handles 
means that the group 7rx(dM) can be trivialized by adding the same number 
of generators and relations. Gerstenhaber and Rothaus [GR] have shown 
however that there exist finitely-presented groups {G} which cannot be 
trivialized in this fashion, and Casson has shown that there exists a contract-
ure 4-manifold M with ir^dM) E {G}. Thus M cannot have a decomposi-
tion with no 1-handles. (Note that in high dimensions such a counterexample 
is impossible as Wall [Wa 3] has shown that algebraic connectivity^ 
geometrical connectivity for manifold M with dim(3M) > 5.) 

We note that a special handlebody decomposition and the corresponding 
link picture is usually quite useful in proving that a given surface is almost 
completely decomposable. In Figure 3.3 the first step in a direct proof, using 
link calculus moves, that V4 is ACD is shown. 

Recently Akbulut [At 3] has developed new techniques for producing 
special decompositions of branched cyclic covers. Using these techniques he 
and Kirby [AK 3] show that direct proofs of almost complete decomposability 
can be demonstrated using the 'calculus'. For example they show 

THEOREM 3.5. Let V be a 2-fold cyclic covering of CP2 branched over a curve 
of degree 2n. Then V is ACD. 

Cyclic covers are, of course, not sufficient to generate all oriented 4-mani-
folds. In dimension 3 Hilden and Montesinos [Hd], [Mont 1], [Mont 4] have 
shown that every oriented 3-fold M3 is a 3-fold dihedral covering manifold of 
S3. In [Mont 2], Montesinos has shown that every orientable 4-manifold V 
having a handle decomposition with no 3- or 4-handles arises as a 3-fold 
dihedral cover of S 4. Berstein and Edmonds [BE] have shown that T4 = Sl 

X Sl X S1 X S1 cannot be represented as a 3-fold covering of S4. (More 
precisely they have shown that if an orientable «-manifold M is a /?-fold 
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FIGURE 3.3 A link diagram for F4 # CP2. 

ooooo 
-1 -1 -1 -1 -1 

ooooo 
-1 -1 -1 -1 -1 

ooooo 
-1 -1 -1 -1 -1 

ooooo 
-1 -1 -1 -1 +1 o o o +1 +1 +1 FIGURE 33a The result of type 2 moves on Figure 3.3 
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covering of S4 then p > cup length (M), where the cup length of a manifold 
M is the maximum integer r such that there exist yv . . . , yr E H*(M, Z) 
with Yj U • • • U yr ¥* 0. By a theorem of Alexander [Ax 1] every orientable 
rt-manifold M is a/?-fold covering of S4 for some finite/?.) 

The construction of dihedral covering manifolds for a given 4-manifold is 
quite a bit more complicated than the construction of cyclic covers. In [CS 4] 
Cappell and Shaneson have indicated a novel approach to the construction of 
dihedral covers M of B4 such that dM is a dihedral covering manifold of S3 

branched over a knot and shown how the jn-invariant of dM can be calcu-
lated. (We discuss ^-invariants next.) Akbulut [At 3] has noted that their 
method can be adapted to give link diagrams of more general dihedral covers. 

In accordance with the results mentioned obtained above Montesinos and 
Edmonds have conjectured: 

CONJECTURE. Let M be a simply-connected 4-manifold. Then M admits a 
representation as a 3-fold branched cover of S3. 

CONJECTURE. Let M be an oriented n-manifold. Then M admits a repre-
sentation as an «-fold branched cover of Sn. 

Before closing this section we point out that it is not always possible to 
show that two link diagrams give equivalent manifolds without moves of type 
I. Thus simply showing that by adding and subtracting link components one 
cannot transform link Lx to link L2 does not suffice to conclude that 
BL 7*= BL or dBL ^ dBLi. In fact Akbulut has shown that if K, R are the 
framed links of Figure 3.4 then K is not equivalent to R (a direct computa-
ti' a shows that K has signature -2 and R has signature zero) but BK = BR 
[Atl]. 

R = 

FIGURE 3.4 

CHAPTER 4. THE ^-INVARIANTS, HOMOLOGY 
SPHERES AND FAKE 4-MANIFOLDS 

4.1 The /x-invariant. One of the only known numerical invariants interrelat-
ing 3- and 4-dimensional topology is the ^-invariant [Hirz 2], [EK] which we 
now discuss. 

Suppose Mn is a manifold with tangent bundle TM. A fixed trivialization 
f: TM -> M X Rn of TM will be called a framing on M and (M, <5) will be 
called a framed manifold. We recall that the stable tangent bundle TSM of M 
can be geometrically realized as TM © er for r sufficiently large (er = M X 
Rr) and thus a stable framing on M is a fixed trivialization of some TM © er. 
Lastly, an almost framing on TM is a framing on T(M - {pt}). We have: 
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THEOREM 4.1 (MILNOR [M 2]); ALSO [Kap]. Let (M3, $) be a closed oriented 
stably framed 3-manifold. Then there exists a compact stably framed 4-manifold 
(W\ g) with dW= M so that § and <& agree on M - {pt}. (W4 can, in fact, 
always be found with ^(HK4) = 0.) 

PROOF. We shall later outline Kaplan's proof of the above result. 
A result of Whitehead [M 3, §4] shows that stably framed implies almost 

framed and that for connected manifolds with boundary, framed = almost 
framed = stably framed. Thus W above will in fact be framed. We also recall 
that a framed (stably framed) manifold is sometimes called parallelizable 
(stably or S-parallelizable or 77-manifold) and an almost framed manifold is 
called almost parallelizable. 

We note that since W is framed the form Lw must be even. Thus if 
(W\ § ') is any other 4-manifold satisfying the conclusion of Theorem 4.1 we 
can form V = W u W' and using our stable framings show that V is also 
stably framed. Then using Novikov additivity [Hirz 2] we find o(W) — o(W') 
== o(V) and by Rohlin's theorem o(V) = 0 (mod 16). 

We are thus led to the following. 
DEFINITION 4.2. Let (M, $) be a stably framed 3-manifold and suppose 

(W, §) is a framed 4-manifold with dW = M and f = § on M - {pt}. 
Then set /x(M, $) = o(W) mod 16 (by our discussion above JU,(M, ^) is 

clearly well defined). 
We note that to define JU it is enough to specify some almost framing on 

M3. However by obstruction theory since 7r2(SO(3)) = 0 we find that the 
almost framings of M3 will be in 1-to-l correspondence with the elements of 
H\M, ^(SOP))) = H\M; Z2). Thus if M3 is a Z2-homology sphere it has a 
unique almost framing. Thus for Z2-homology spheres M one can speak of 
JU.(M) without referring to an almost framing of M. In this case it can further 
be shown that fi(M) is in fact an invariant of the A-cobordism class of Af. 

Now let 3(?(G) be the abelian group of A-cobodism classes of G-homology 
3-spheres. (The group structure is given by the connected sum operation. [S3] 
is the identity and [-M3] is the inverse of Af3, where -M is M with 
orientation reversed.) Then it is not difficult to show that JU: 3(?(Z/2Z) --> Z16 
is a homomorphism. It is clear that Im JU, is contained in a subgroup of Z16 
isomorphic to Z/8Z and by calculation of jut-invariants of lens spaces one can 
show that jut is in fact onto this subgroup. If M is a Z-homology sphere then 
for W defined as in the theorem we have o(W) = 0 (mod 8). Thus in fact JU,: 
3<?(Z)->Z8 is onto a subgroup Z2 « Z/2Z. (To see that JU,: 9<?(Z)^>Z2 is 
onto we simply note that if P is Poincaré's homology 3-sphere then if 

v v y 
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clearly a( W) « 8 and using Kirby moves one can show that 

1 
Thus [i(P) = 8 which generates the Z2 above. 
We consider some applications of the fi-invariant. We see immediately that 

by Alexander duality if M G 9C?(Z/2Z) is embedded in R4 then [i(M) « 0. 
Now since fi is a diffeomorphism invariant if we could find a homotopy 

Z-sphere M with /A(M) ^ 0 then M would be a counterexample to the 
Poincaré conjecture in dimension 3. In [CS 3], Cappell and Shaneson have 
developed a formula for computing the /i-invariant for any p4old dihedral 
cover M of S3

9 branched over a knot such that M is a Z/2Z homology-
sphere. Since by [Mont 1], [Mont 4], [Hd] every orientable 3-manifold can be 
represented as such a cover it might be possible to find a counterexample to 
the Poincaré conjecture by constructing the /?-fold dihedral covering mani-
folds Mp(K) associated with all the knots K in the Conway [Con] tables, 
computing their fundamental groups TTX(M) and ju-invariants if n^M) = 0. 
(This might profitably be done by computer.) 

A possible application in dimension 4 of the /jt-invariant is to the problem 
of finding simply-connected 4-manifolds which are spin and have definite 
forms. In particular it would be desirable to find out when elements M E 
9(?(Z) bound contractible or acyclic 4-manifolds. Work in this direction can 
be found in [HC], [Kap]. Gordon has devised a construction in [Gor 1] which 
associates a contractible 4-manifold with boundary a Z-homology sphere to 
any slice knot K c S3. (A knot K c S3 is a slice knot if there exists a (PL) 
2-disc D2 c B4 such that D4 intersects dB4 = S3 transversely in K.) It would 
be of interest to determine which of Gordon's homology spheres also bound 
simply-connected 4-manifolds M with definite even-forms, or even with 
even-forms for which b2(M) — |a(M)| is as small as possible. It is thus of 
interest to have a more constructive proof of Theorem 4.1 above. (Milnor's 
proof involves the Thorn construction [Thm] and does not give a wholly clear 
picture of the manifold W constructed.) In [Kap] Kaplan proves Theorem 4.1 
by constructing an explicit handlebody decomposition for W. 

We again recall that if L is a bilinear form V X V-* Z on the module V 
then x E V is characteristic for L if and only if L(x,y) + L(y9 y) = 0 
(mod 2) for all y E V. Now if J is a framed link in S3 with associated 
4-manifold Bj (dBj = Mj) then to each sublink R of J there corresponds a 
homology class [R] in H2{Bj\ Z). [R] is representable as the union of the core 
of the handle over R and the cone on R in B4. By a result of Thorn [Thm], [R] 
is in fact also always representable by a smooth oriented 2-manifold. We shall 
call R a characteristic sublink if j\[R] is characteristic for the homology 
pairing on H2(BJ9 My, Z) dual to LBj (ƒ*: H2(Bj)-± H2(BJ9 Mj))9 or equiv-
alently if any smooth oriented manifold F representing [R] is characteristic in 

P=dW = d 
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the sense of Chapter 1. (Alternatively we define the Unking matrix X for the 
link J by 

ilk^Kj) if/*./, 
y [ framing ÀJ if i = 7, 

where üf„ . . . , Kn are the components of / and lk(Ki9 Kj) is the algebraic 
linking number of the knots Ki9 Kr Note that X will always be a representative 
matrix for the cup-product form LBj. We have that R is a characteristic 
sublink if and only if it is characteristic for the bilinear pairing induced by X 
on 0ZJT,.) 

We note that if a 4-manifold W has characteristic submanifold F then a 
procedure whereby W could be modified so as to 'kill' F would produce a 
new 4-manifold W' which would necessarily have w2{W') = 0 and thus be 
spin or cquivalently (in this dimension) almost parallelizable. This idea is the 
core of Kaplan's construction. That is, given (M3, 5) one can always find a 
framed link representation [Lick] for it and thus one knows M3 = 3(2*/) for 
some framed link / . One then identifies a characteristic sublink R of J and 
shows how one can kill R using Kirby moves. This produces Br with 
d(Br) = M and w2(Br) = 0 as desired. 

More concretely if M = d(Bj) then corresponding to each 2-handlc of Bj 
there is a dual circle (the 6-circle in the terminology of Chapter 1) in M, the 
attaching circle of the dual handle. The dual circles generate HX{M\ Zj) and 
so the almost framing for M is determined by the framing induced on the 
tubular neighborhoods of the dual circles. Now the framed link J also induces 
a framing on the neighborhoods of the dual circles and the difference 

T 
between the two framings gives a map HX(M; Zj)-» Z2, i.e. an element of 
Hl(M; Z2). Then finding a characteristic sublink can be reduced to finding a 
sublink R of J such that T(Kt) = 1 G Z2 for all the components Kt of R. 

In Figures 4.1-4.3 [Kap] we give examples of characteristic sublinks of 
given links. Killing these characteristic sublinks by Kirby moves then gives 
the desired manifold Br. We note that the parallelizable manifold Br in 
Figure 4.3 produced by killing the characteristic sublink has b2(Br) — 22, 
o(Bj) =16. Furthermore d(Br) = S3 so W = Br u D4 gives another exam-
ple of an almost framed 4-manifold with b2 = 22 and a = 16 having a handle 
decomposition with no 1- or 3-handles. W is homotopy equivalent to -V4 but 
it is not known if it is dif feomorphic to it. 

(It is actually not strictly necessary to follow this procedure if one is only 
interested in computing the ju,-invariant of (M3, $). The following formula of 
Cappell and Shaneson [CS 2]: 

/x(M3, <3) = a(LBj) + R o R + 8 Arf(/ ) (mod 16), 

where M3 = dBJy R is the characteristic sublink of / and R ° R is the 
self-linking of R given by LBj(R, R) gives fi directly.) 

Our description above of the relationship between characteristic sublinks 
and almost framings shows that each almost framing of M = 3(5,) de-
termines a unique characteristic sublink of / . Consider for example, the 
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3-torus T3 with framed link picture representation L as in Figure 4.4 (i.e., 
dBL = T3). T3 has eight distinct almost framings and the corresponding 
characteristic sublinks arc simply the eight distinct Z2-linear combinations of 
the components of L. It can be shown [Kap] that any proper characteristic 
sublink L, of L induces an almost framing % with ix(T3, %) = 0. However if 
L is itself characteristic then the almost framing % induced by L satisfies 
[i(T3

9 %) = 8. The above behavior of T3 is, in fact, typical of a large class of 
3-manifolds, and Kaplan has shown 

THEOREM 4.3 [Kap]. Suppose M is a closed, connected oriented 3-manifold 
which bounds a framed manifold of index a. Suppose further that there exist 
elements Xt G H\M\ Z2), i = 1, 2, 3, with ^ U ^ U ^ ^ 0. Then M also 
bounds a framed manifold of index a 4- 8. 

o(Bj) = 6 

Ob2(Bj) = 10 

ÏSSSD 
• -vr 1+2+2+2+2 +2 

+ 1 "I Characteristic 
sublink 

CDOOSOD 
'+2 +2+2+2 + 2+2 

Characteristic 
sublink 

killed 
o(Br) = 8 
b2(Bj) = 8 

dB, = W „ = P 

FIGURE 4.1 

+ 1 
i i i i i i i 1 1 i i i i i i i 1 

^01LQiL(U+ 2 

yt - l -2 -2 -2 -2 -2 -2 

Characteristic ' 
sublink 

"'WSJ I'fc0 + 2 o<K ) = - 6 

f can be obtained by 'blowing down' the characteristic sublink indicated 
in the picture. The manifold Br obtained has o(Br) = - 8; b2(Br) = 14 and 
d(Bj,) = P. 

Gluing together the Br of Figures 1 and 2 gives a closed spin manifold K 
with o(K) = 16 and b2(K) = 22. 

FIGURE 4.2 
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Blowing down the characteristic sublink in this picture produces a manifold V 
with b2{V) = 22 o(V) = 16 with dV = S3 mdLv of type II 

FIGURE 4.3 

A framed link L with d(BL) = T3 

FIGURE 4.4 

(Another way to establish the existence of an (almost) framing % on T3 

with ju(r3, %) = 8 (see also [CS 2]) is to consider the rational elliptic surface 
W0 we discussed in Chapter 2. W0-* S2 is an elliptic fiber space with 
W0 = P # 9Q. We can assume without loss of generality that the fiber of W0 
over 0 G S2 is nonsingular, and we let T0 = m~l(D0) where D0 is a disc about 
0 G 5 2 containing no critical values. Then T0 » T2 X D0 and setting 
wo x wo "" ^o w e h a v e by Novikov additivity that a ( J^ ) = o(W0) = -8 . 
ï^J is in fact easily seen to be parallelizable (we have killed the second 
Steifel-Whitney class of W0 by removing T0) and thus its framings restricts to 
a framing 9 on dW$ = d(T2 X D0) = T3. Then clearly j^(r3, Ï ) = 8 mod 16 
and §" thus must coincide with % as above. If we let ƒ be the stable framing 
on Sl indicated in Figure 4.5 then one can check that S r

0 = / X / X / a s a 
framing on T3 = Sl X Sl X S1.) 
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o 
The stable framing ƒ on Sl exhibited here is the unique framing 

not extendable to a (stable) framing of D2 

FIGURE 4.5 
4.2 Fake 4-manifolds. An extremely beautiful use of the existence of this 

'exotic' framing on T3 has been made by Cappell and Shaneson in their 
construction of a compact 4-manifold Q4> simple homotopy equivalent to 
R P 4 but not diffeomorphic to it. 

We shall indicate the geometric construction of Q4 but suppress most of 
the algebra involved in proving it is not diffeomorphic to RP 4 . More 
precisely we have 

THEOREM 4.4 (CAPPELL AND SHANESON) [CS 2]. Let (X, dX) be a compact 
smooth connected 4-manifold with (possibly empty) boundary. Suppose TT\(X) 
has an orientation reversing element of order 2. Then there is a manifold 
(Q4> 30 ) and a simple homotopy equivalence f : ( g , dQ) -» (X, dX) withf\dQ: 
dQ->dX a diffeomorphism such that ƒ is not homotopic to a diffeomorphism or 
PL homeomorphism. 

COROLLARY 4.5. Let X = RP4. Then there exists a 4-manifold Q, simple 
homotopy equivalent but not PL homeomorphic or even PL s-cobordant to X. 
Furthermore for any k > 0, Q # k(S2 X S2) is not PL s-cobordant to 
X # k(S2 X S2). However if V is any manifold with dim V > 1 ((dim V > 2) 
ifdVi£0) then Q X V is topologically homeomorphic to X X V. 

PROOF. The construction of Q4 proceeds as follows. 
Let C c X be an embedded circle in X representing an order 2 orientation 

reversing element of IT^X). 
Let Tc be a tubular neighborhood of C. Then T == Tc is the unique 

nontrivial nonorientable orthogonal Z>3-bundle over Sl. Set X0=X— Tc 
and 3^0 = if. H is thus a nontrivial 52-bundle over S1. 

To construct Q we construct a new manifold M0 with 3M0 = H and define 
Q = X0 u H M0. (More accurately we construct an infinite family of mani-
folds M0(A) and set Q(A) - X0 \jH M0(A).) 

Ideally we would construct Q by taking M0 to be an 'exotic' D3-bundle 
over Sl which agrees with the standard nonorientable Z)3-bundle near the 
boundary. (Note that in dimension n9 n > 5, exotic D3-bundles over Tn~3 do 
exist! See [HS 1], [HS 2], [Sh 2].) Unfortunately we do not know if such a 
bundle exists. Instead we will take M0 to be a punctured T3-bundle over Sx 

which is Z-homology equivalent to Tc. 
Thus let T3 = Sl X S1 X Sl be the 3-torus and suppose A G GL(3, Z) 

with dctA = - 1 and det(7 - A2) = ± 1. A induces a diffeomorphism $A: 
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T3 -> T3 with (£4)*: TTXT3 -> <nxT3 equal to A. Clearly we can isotope <f>A to a 
diffeomorphism <|>: T3 -+ T3 with a fixed point * G T3. 

[For example letting Sl = R/Z, define </> by </>(0i, 02, 03) = (02, 03, -0X + 
#2). Then <K0, 0, 0) - (0, 0, 0) and 

f 0 1 0] 
*» - 0 0 1 

[-1 1 0J 
satisfies the hypothesis.] 

Now let e3 c T3 be a smooth closed 3-cell about * and set TQ = T3 - e3. 
Then since det^4 = -1 by a further isotopy fixing * we may assume </>0: 
TQ -» TQ , <j>0 = </>| TQ , is a diffeomorphism with <£0|3e3 an orientation reversing 
orthogonal map. We now let M0 = M0(A) be the mapping torus of <j>0. That is 
A/0= r o

3 X / / ( I , 0 ) ^ W I ) , l ) , 
Note that 3M0 is, in fact, the nonorientable S2-bundle over Sl and so 

3M0 = H. Thus the construction of Q is complete. 
To construct ƒ: (X, 3^) -» (g, 3(2) we must construct a map h: Af0 -» Tc 

such that A|3M0 -» 3TC is the identity with ƒ = id^o u h the requisite simple 
homotopy equivalence. Now a straightforward calculation using det(7 — A2) 
= ± 1 shows that M0 is a Z-homology 1-sphere and Tc is homotopy 
equivalent to Sx. Thus the obstructions to extending the identity 3M0-> dTc 
to a map h: M0-> Tc all vanish and /* exists. 

What must still be shown is 
(1) ƒ is a simple homotopy equivalence; 
(2) ƒ is not homotopic to a PL-homeomorphism. 
The proof of (1) is a rather straightforward homotopy theoretic calculation. 

The proof of (2) uses the difference between the exotic framing on T3 and the 
other framings to show that the 'PL normal invariant' of ƒ is nonzero and thus 
ƒ cannot be homotopic to the identity. We shall define 'normal invariants' 
and comment further on this proof in Chapter 6. 

To prove the first part of the corollary (the last part will also be discussed 
in Chapter 6) it must only be shown that any homotopy equivalence of RP 4 

with itself is homotopic to the identity. But calculating [RP4, RP4] one finds 
any map inducing the identity on ^(RP4) is homotopic to the identity map. 
Thus the only homotopy equivalence in [RP4, RP4] is the class of the identity 
map, and so the map ƒ constructed above cannot be a self-homotopy 
equivalence. Q must in fact not be PL-homeomorphic to RP4. It is still 
possible that Q is homeomorphic to RP4 since the possibility that ƒ is 
homotopic to a topological homeomorphism has not been ruled out. ( ƒ has 
zero topological normal invariants.) We note that different choices of A give 
possibly different ö's. Thus there could conceivably be many distinct diffeo-
morphism classes of fake RP4,s. 

Now suppose Q(A) is a fake RP4. Let 2^ be its universal covering space. 
Then 2^ is a homotopy 4-sphere and one can ask whether it is homeomor-
phic to S4. We note immediately that the existence of fake RP4's implies 

THEOREM 4.6 [CS 2]. There is a smooth free involution on a homotopy 
A-sphere 2 4 which has no equivariant PL- homeomorphism with a linear action 
on S4. 
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In [AK 1] Kirby and Akbulut claimed to have shown that for at least 
certain matrices A, such that Q{A) is a fake RP4, 2^ is PL homeomorphic to 
S4. In particular, there would then have existed an 'exotic' involution on S4 

itself, rather than just on a homotopy 4-sphere 24. The proof in [AK] is 
however wrong. (See [Rb].) 

The key idea of that proof was an explicit construction of a handlebody 
picture for 2^ and the use of Kirby moves to show that 2^ is just S4. We 
recall that Q(A) was constructed by writing X = RP4 as the union of two 
pieces, X0 = the normal Z>2-bundle of RP2 in RP4 which we shall also 
denote by RP2 X D2 and Tc the nontrivial D3-bundle over Sl written as 
SlX D3. 

Then Sl X D3 was replaced by Mn = mapping torus of $A\TQ. Thus the 
construction of 2^ is just 2^ = RP 2 X B2 u M0, where the ~ 's indicate 
2-fold cover. But RP 2 X B2 is just S2 X B2 and M0 is the mapping torus of 

Let 

A = 
0 1 0 
0 0 1 

-1 1 0 
be the matrix of our previous example. Then a framed link picture of the 
mapping torus of <t>A is exhibited in Figure 4.6A. (A general procedure for 
constructing handlebody pictures of mapping tori of diffeomorphisms of 
3-manifolds can be found in [Mont 2].) Finally, the S2 X B2 must be added. 

This can be done in two distinct ways. (See the discussion in §7.4 and the 
references there.) Unfortunately as J. H. Rubenstein noted [Rb] the way 
S2 X B2 was added to the link picture in 4.6A (see 4.6B) does not correspond 
to the universal covering space of Q(A). Thus the link moves of [AK 2] do not 
prove that 2^ is homeomorphic to S4. By choosing the correct gluing map for 
S2 X B2 one can in fact use link calculus techniques to construct a framed 
link picture of 2^ [AK 5]. However, despite a good deal of recent activity, it is 
as yet still unknown whether 2^ is or is not homeomorphic to S4 and thus 
whether S4 admits an 'exotic' involution. 

The manifold 2 pictured in Figure 4.6B, though not 2^, is nevertheless a 
homotopy 4 sphere and it is still instructive to recall how Akbulut and Kirby 
showed it to be homeomorphic S4. One begins by sliding handles until all the 
1-handles in this figure are cancelled by complementary 2-handlcs. This is 
indicated in Figure 4.7 for the one handle corresponding to the 0 X B3 u <x> 
X B3 and in Figure 4.8 we show what is left after all the 1-handles are 
cancelled. However examining Figure 8 carefully we see that it is just the 
3-component unlink and thus is complementary to the three 3-handles com-
ing from the mapping torus of <J>J|TQ. Thus what is represented by Figure 8 is 
precisely S4l 

We note that the homotopy 4-sphercs 2^ provide, at present, the most 
plausible candidates for counterexamples of the 4-dimensional Poincarc con-
jecture. We leave as a not unrewarding challenge to the reader to determine 
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which, if any, of the 2 / s are homeomorphic to S4 or to show that some 2^ 
is, in fact, not homeomorphic to S4. 

o o « > o o 

There is an additional ball centered at °° and connected to the other 
1-handles in the picture by the link components with arrows pointing towards °°. 

FIGURE 4.6A 

FIGURE 4.6B 
oo«« 

FIGURE 4.7 
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FIGURE 4.8 

43 Triangulating high-dimensional manifolds. The relationship between 3-
and 4-manifolds captured by the jx-invariant leads to interesting consequences 
for higher-dimensional manifold theory as well. Returning to the map /x: 
tK?(Z) -> Z2 let 83(?(Z) be the subgroup of elements of 3K?(Z) which bound 
acyclic (PL) 4-manifolds. Since ti(3S(?(Z)) = 0 letting 0? = 9(?(Z)/33(?(Z) 
we see that ti induces a homomorphism jû: 03

/f-»Z2 which remains onto. 
What is the structure of 0" and the nature of /x? Essentially nothing other 
than the surjectivity of /x is known. In particular it is not even known whether 
0" is finitely generated! Among the more well-known conjectures regarding 
0? are 

CONJECTURE I. There exists an element of order 2 in 0$. 
CONJECTURE IL Ker JL = 0. 
The extreme importance of 0$ and the significance of Conjecture I 

becomes apparent as a result of the following. 
THEOREM 4.7 (GALEWSKI-STERN, SEE ALSO MATUMOTO, [GS 1], [GS 2],. 

[Mat]). Suppose H is a Z-homology 3-sphere with ii(H) =̂= 0 such that H # H 
bounds an acyclic (PL) 4-manifold. Then every topological m-manijold M 
(m > 5 if dM = 0 and m > 6 otherwise) can be triangulated as a simplicial 
complexl 

(Note that by the work of Kirby-Siebenmann there exist m-manifolds 
which cannot admit the structure of a PL-manifold. We already mentioned 
that Mj4 X Sn for n > 1 will be a topological manifold admitting no PL-
structure [Mi as in Chapter 1]. These manifolds cannot be triangulated 
combinatorially. [We say a triangulation is combinatorial if it is PL-homoge-
neous. That is if M is a manifold with triangulation K (so |J^| = M) then for 
K to be a combinatorial triangulation we must have that for every x,y E M 
there exists a piecewise-linear homeomorphism h (PL relative to K of course) 
such that h(x) = y.] However, they still might have noncombinatorial tri-
angulations. (See [Sb 2].) [That not all triangulations are combinatorial was 
demonstrated by R. D. Edwards [Ed 1], [Ed 2] who showed that Sn (n > 5) 
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always has noncombinatorial triangulation. (Proof: We have 2n~3P is topo-
logically homeomorphic to Sn and clearly the triangulation of Sn defined by 
2"""3P is not combinatorial)].) 

We note that the problem of the structure of 0" is unique to the relation-
ship between 3- and 4-manifolds in the following sense. 

Let %4k~\Z) be the group of (DIFF) A-cobordism classes of (DIFF) 
Z-homology spheres which bound almost parallelizable smooth 4fc-manifolds 
and let d% be the subgroup bounding smooth contractible 4A>manifolds. Let 
0fk_x be ^k~l(Z)/d%4k~l. Then there exists an isomorphism A: 04k„x -»Z, 
(where t = Ik, Ik as in Theorem 1.15) and X[M] = o(WM) mod t, WM an 
almost parallelizable 4A>manifold with dWM « M. (See [M 2].) 

CHAPTER 5. SURGERY THEORY AND ITS APPLICATIONS 
5.1 Surgery theory in higher-dimensions. Throughout many of the preceding 

sections of this paper we have alluded to surgery and its implications. In 
particular there are the fundamental results of [Br 1], [N] on the classification 
of manifolds of a given homotopy type which we mentioned in Chapter 1 and 
the surgery-type calculations used to show that the homotopy RP4 con-
structed in [CS 2] is indeed fake. Unfortunately the full power of higher-di-
mensional surgery theory is not available in low-dimensional topology. In the 
following chapters we will illustrate what goes wrong in dimension 4 (and 5) 
and present some examples of what can be salvaged. In order to do this we 
use this chapter to review some of the basic ideas, methods and constructions 
of high-dimensional surgery theory. 

We begin by reviewing the essential ideas of surgery theory. Thus let us 
consider the following questions. (We assume that we are working in some 
fixed category cither DIFF or PL or TOP.) 

(1) Suppose A" is a CW-complex, Mm a manifold and <f>: Mm ~> X a map. 
When can we modify M to get a new manifold M' and map </>': M' -» X with 
<f>' a (simple) homotopy equivalence? 

(2) Suppose My M' are manifolds and/: M-» M' is a (simple) homotopy 
equivalence. When is ƒ homotopic to an isomorphism? 

The basic geometrical construction used in solving these problems is the 
same, that of surgering M. We recall its definition: [M 3], [KM 2]. 

Suppose/: Sr X D w ~ r - * Vm is an orientation preserving embedding into 
the oriented manifold Vm. (We will in the sequel work in the smooth 
category. Analogous results occur in the PL locally flat and TOP locally flat 
categories.) Form the disjoint sum Vm - f{Sr X 0) II Dr+l X D ^ " 1 and let 
V' be the quotient manifold obtained by identifying /(w, rv) with (rw, v) for 
u G Sr,v G Sm~r~l and 0 < r < 1. We say V' is obtained by surgery on an 
r-sphere in V and write V' = x(Y> f) t o indicate the dependence on ƒ in this 
process. An alternative way, already mentioned in Chapter 1, to visualize V' 
is as follows. Let W = V X / and attach an (r + l)-handle Hr+l to the 
cobordism W by means of the attaching map ƒ: Sr X Dm~r -> V™ X {1}. 
This gives a new cobordism W' *= V X I u Hr+l with ends VàndV=dW 
— V. It is readily seen that V is diffcomorphic to V' defined above and thus 
V' is of course cobordant to V. It is thus clear that talking about a surgery on 


