OTHER BOOKS
BY PROFESSOR LANDAU:

Differential and Integral Caleulus

Handbuch der Lehre von der Ver-

teilung der Primzahlen, 2 Vols.

Einfithrung in die Elementare und
Analytische Theorie der Alge-
braischen Zahlen und der Ideale

Darstellung und Begriindung
Einiger Neuerer Ergebnisse der
Funktionentheorie

Vorlesungen iiber Zahlentheorie,
3 Vols.

Elementare Zahlentheorie
(Vol. 1, Part 1 of Zahlentheorie)

"OUNDATIONS OF ANALYSIS

THE ARITHMETIC OF
WHOLE, RATIONAL, IRRATIONAL
AND COMPLEX NUMBERS

A Supplement to Text-Books on the
Differential and Integral Calculus

BY

EDMUND LANDAU

TRANSLATED BY

F. STEINHARDT

COLUMDIIA UNIVERSITY

PusLisyEp AND DISTRIBUTED 1IN THE PusLIC INTEREST BY
AUTHORITY OF THE ATTORNEY GENERAL UNDER LicEnse No. A-1453

CHELSEA PUBLISHING COMPANY
1951



THIS WORK 1S A TRANSLATION INTO ENGLISH OF
GRUNDLAGEN DER ANALYSIS BY EDMUND LANDAU

COPYRIGHT BY AKADEMISCHE VERLAGSGESELLSCHAFT M.B.H., LEIPZIG 1930
COPYRIGHT VESTED IN THE ATTORNEY GENERAL PURSUANT TO LAW

COPYRIGHT 1951 BY CHELSEA PUBLISHING COMPANY
PRINTED IN THE UNITED STATES OF AMERICA

PREFACE FOR THE STUDENT

1. Please don’t read the preface for the teacher.

9. I will ask of you only the ability to read English and to
think logically—no high school mathematics, and certainly no
" higher mathematics.

To prevent arguments: a number, no number, two cases, all
.- 6bjects of a given totality, and so on, are completely unambigueus
“phrases. Theorem 1, Theorem 2, . . ., Theorem 301, or 1), 2), ete.
" for distinguishing the various cases, are labels which distinguish
the theorems and the cases; similarly for axioms, definitions,
: chapters and sections. These are more convenient to refer to than
if ‘'we were to speak, say, of Theorem Light-blue, Theorem Dark-
:.blue, and so on. As a matter of fact, the introduction of the
so-called positive integers up to “301” would not offer any difficulty
whatsoever. The first difficulty—overcome in Chapter I—lies in
the totality of the positive integers

1,...

with the mysterious series of dots after the comma (called natural
numbers in Chapter I), in the definition of the arithmetical opera-
tions with these numbers, and in the proofs of the associated
theorems.

I develop analogous material, first for the natural numbers in
Chap. I; then for the positive fractions and positive rational num-
bers, in Chap. II; next for the positive (rational and irrational)
numbers, in Chap. IIT; next for the real numbers (positive, nega-
tive, and zero), in Chap. IV; ard finally for the complex numbers,
in Chap. V. Thus I speak only of such numbers as you have already
met with in high school.

Apropos: .
3. Please forget everything you have learned in school; for
you haven’t learned it.
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Please keep in mind at all times the corresponding portions of
your school curriculum; for you haven't actually forgotten them.
4. The multiplication table will not occur in this book, not even
the theorem
2¢2=4,
but I would recommend, as an exercise for Chap. I, § 4, that you
define
2=1+4+1,
4=((1+1)+1)+1),
and then prove the theorem.

5. Forgive me for “theeing” and “thotiing" you.* One reason
for my doing so is that this book is written partly in usum del-
phinarum,t since, as is well known (cf. E. Landau, Vorlesungen
itber Zahlentheorie, Vol. 1, p. V), my daughters have been studying
(chemistry) for several semesters, think they have learned diﬁel;'-
ential and integral caleculus in school, and yet even today don’t
know why

Y=y
is true.

Berlin, December 28, 1929

EpMuND LANDAU

* In the German edition Professor Landau uses the familiar “du” (thou)
throughout this preface. [Trans.]

+ For Delphine use. The Delphin Classics were prepared by French scholars
for the use of the Dauphin of France, son of King Louis XIV. [Trans.]

PREFACE FOR THE TEACHER

This little book is a concession to those of my colleagues (un-
fortunately in the majority) who do not share my point of view
on the following question.

While a rigorous and complete exposition of elementary mathe-
maties can not, of course, be expected in the high schools, the
mathematical courses in colleges and universities should acquaint
the student not only with the subject matter and results of mathe-
matics, but also with its methods of proof. Even one who studies
mathematics mainly for its applications to physics and to other
sciences, and who must therefore often discover auxiliary mathe-
matical theorems for himself, can not continue to take steps
securely along the path he has chosen unless he has learned how
to walk—that is, unless he is able to distinguish between true and
false, between supposmon and proof (or, as some say so nicely,
between non-rigorous and rigorous proof).

1 therefore think it right—as do some of my teachers and. col-
leagues, some authors whose writings I have found of help, and
most of my students—that even in his first semester the student
should learn what the basic facts are, accepted as axioms, from
‘which mathematical analysis is developed, and how one can pro-
ceed with this development. As is well known, these axioms can
be selected in various ways; so that I do not declare it to be in-
‘correct, but only to be almost diametrically opposite to my point .
of view, if one postulates as axioms for real numbers many of the
usual rules of arithmetic and the main theorem of this book
(Theorem 205, Dedekind’s Theorem). I do not, to be sure, prove
the consistency of the five Peano axioms (because that can not be
done) but each of them is obviously independent of the preceding
_ones. On the other hand, were we to adopt a large number of axioms,
. as mentioned above, the question would immediately occur to the
student whether some of them could not be proved (a shrewd one
ould add: or disproved) by means of the rest of them. Since it has
een known for many decades that all these additional axioms can

vii
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be proved, the student should really be allowed to acquaint himself
with the proofs at the beginning of his course of study—especially
since they are all quite easy.

I will refrain from speaking at length about the fact that often
even Dedekind’s fundamental theorem (or the equivalent theorem
in the development of the real numbers by means of fundamental
sequences) is not included in the basic material; so that such
matters as the mean-value theorem of the differential calculus,
the corollary of the mean-value theorem to the effect that a func-
tion having a zero derivative in some interval is constant in that
interval, or, say, the theorem that a monotonically decreasing

" bounded sequence of numbers converges to a limit, are given

without any proof or, worse yet, with a supposed proof which in
reality is no proof at all. Not only does the number of proponents
of this extreme variant of the opposite point of view seem to me
to be decreasing monotonically, but the limit to which, in con-
formity with the above-mentioned theorem, this number converges,
may even be zero. )

Only rarely, however, is the foundation of the natural numbers
taken as the starting point. I confess that while I myself have
never failed to cover the (Dedekind) theory of real numbers, in
my earlier courses I assumed the properties of the integers and
of the rational numbers. But the last three times I preferred to
begin with the integers. For the next Spring term (as once before)
I have divided my course into two simultaneous courses one of
which has the title “Grundlagen der Analysis” (Foundations of
Analysis). This is a concession to those hearers who want, after
all, to do differentiation right away, or who do not want to learn
the whole explanation of the number concept in the first semester
(or perhaps not at all). In the Foundations of Analysis course
I begin with the Peano axioms for the natural numbers and get
through the theory of the real and of the complex numbers. The
complex numbers, incidentally, are not needed by the student in
his first semester, but their introduction, being quite simple, can
be made without difficulty.

Now in the entire literature there is no textbook which has the
sole and modest aim of laying the foundation, in the above sense,
for operations with numbers. The larger books which attempt that
task in their introductory chapters leave (consciously or not) quite
a bit for the reader to complete.

!
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The present book should give to any of my colleagues of the
other pedagogical faction (who therefore does not go through the
foundations) at least the opportunity, provided he considers this
book suitable, of referring his students to a source where the
material he leaves out—and that material only—is treated in full.
After the first four or five rather abstract pages the reading is
quite easy if—as is actually the case—one is acquainted with the
results from high school.

It is not. without hesitation that I publish this little book, because

"_in so doing I publish in a field where (aside from an oral communi-

cation of Mr. Kalmar) I have nothing new to say; but nobody
else has undertaken this labor which in part is rather tedious.

But the immediate cause for venturing into print was furnished
by a concrete incident.
 The opposition party likes to believe that the student would
eventually learn these things anyway during the course of his study
from some lecture or from the literature. And of these honored
friends and enemies, none would have doubted that everything
needed could be found in, say, my lectures. I, too, believed that.
And then the following gruesome adventure happened to me. My
then assistant and dear colleague Privatdozent Dr. Grandjot (now
Professor at the University of Santiago) was lecturing on the
foundations of analysis and using my notebook as a basis for the
lectures. He retuirned my manuscript to me with the remark that
‘he had found it necessary to add further axioms to Peano’s in the -
course of the development, because the standard procedure, which
1 had followed, had proved to be incomplete at a certain. point.
Before going into details I want to mention at once that

1. Grandjot’s objection was justified.

9. Axioms which, because they depend on later concepts, can-
hot be listed at the very beginning, are very regrettable.
" 8. Grandjot’s axioms can all be proved (as we could have
learned from Dedekind), so that everything remains based on

“Peano’s axidms (cf. the entire following book).

There were three places where the objection came in:
1. At the definition of 2 + ¥ for the natural numbers.
II. At the definition of z - ¥ for the natgral numbers.
m :

‘ ~ IIT. Atthedefinitionof 3} =,andof Hla:,,, after one already

n=1 . n=
‘Was ¢ + v and « - ¥, for some domain of numbers.
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Since the situations in all three cases are analogous, I will speak
here only about the case of x + ¥ for natural numbers x, y. When
1 prove some theorem on natural numbers, say in a lecture on
number theory, by first establishing it as true for 1 and then
deducing its validity for  + 1 from its validity for =, then occa-
sionally some student will raise the objection that I have not first
proved the assertion for x. The objection is not justified but it is
excusable ; the student just had never heard of the axiom of induc-

tion. Grandjot’s objection sounds similar, with the difference that =

it was justified; so I had to excuse it also. On the basis of his five
axioms, Peano defines x + y for fixed z and all y as follows:
z+l=a
z+ Y =(x+y),

and he and his successors then think that™@ - v is defined gener-
ally; for, the set of ¥’s for which it is defined contains 1, and con-
tains ¢ if it contains ¥.

But x + v has not been defined.

All would be well if—and this is not done in Peano’s method
because order is introduced only after addition—one had the con-

R

cept “numbers = 3" and ceuld speak of the set of y’s for which .

there is an f(z), defined for #z =< ¥, with the properties
f (1) =1,

f(#)=(f(z))’ for z < 9.
‘Dedekind’s reasoning does follow these lines. With the kind help
of my colleague von Neumann in Princeton I had worked out such
a procedure, based on a previous introduction of ordering, for this
book. This would have been somewhat inconvenient for the reader.
At the last minute, however, I was informed of a much simpler
proof by Dr. Kalméar in Szeged. The matter now looks so simple

and the proof so similar to the other proofs in the first chapter, .

that not even the expert might have noticed this point had I not
given above a detailed confession of crime and punishment For

X y the same simple type of proof applies; however, E N x,and
H w, are possible only with the Dedekind procedure But from
Chap I, § 3 on, one has the set of the x = y anyway.

To make it as easy as possible for the reader I have repeated in
several chapters, or sometimes in all, certain (not very lengthy)
phrases. For the expert it would of course be sufficient to say once

PREFACE FOR THE TEACHER xi

and for all, for instance in the proof of Theorems 16 and 17: This
reasoning holds for every class of numbers for which the symbols
< and = are defined and have certain properties mentioned earlier. '
Such repeated deductive reasonings occurred in connection with
theorems which had to be given in all the chapters concerned
because the theorems are used later on. But it suffices to introduce

Z a,, and H a, since they will then apply to the preceding

types of numbers I therefore defer their introduction to the chapter
on complex numbers, and do the same for the theorems on sub-
traction and division; the former hold for the natural numbers,
‘say, only if the minuend is larger than the subtrahend, the latter
for the natural numbers, say, only if the division leaves no
remainder.

My book is written, as befits such easy material, in merciless

~ telegram style (““Axiom,” “Definition,” “Theorem,” “Proof,”

occagionally “Preliminary Remark,” rarely words which do not

belong to one of these five categories).

I hope that I have written this book, after a preparation stretch-
ing over decades, in such a way that a normal student can read
it in two days. And then (since he already knows the formal rules
from school) he may forget its contents, with the exception of
the axiom of induction and of Dedekind’s fundamental theorem.
- Should, however, any of my colleagues who holds the other point
of view find the matter so easy-that he presents it in his lectures
for beginners (in the following or in any other way), I would have
achieved a success which I do not even dare hope will be realized
on any large scale.

Berlin, December 28, 1929

EpMuUNDp LANDAU
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CHAPTER 1
NATURAL NUMBERS

§1
Axioms

We assume the following to be given:
A set (i.e. totality) of objects called natural numbers, possessing
the properties—called axioms—to be listed below.
Before formulating the axioms we make some remarks about
the symbols = and =& which will be used.
Unless otherwise specified, small italic letters will stand for
natural numbers throughout this book.
If « is given and y is given, then
either x and y are the same number ; this may be written
€T ===
= to be read “equals”);
or x and y are not the same number; this may be written
Ty
(= to be read “is not equal to”).
Accordingly, the following are true on purely logical grounds:

1) T=0
for every .
2) If
=y
then
Y==
3) If
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Thus a statement such as
a=—=—b=c=d,
which on the face of it means merely that
a=D>b, b=c, ¢c=d,
contains the additional information that, say,
a=c, a=d; b=4d. '

(Similarly in the later chapters.)
Now, we assume that the set of all natural numbers has the

following properties:

Axiom 1: 1 48 a natural number.

That is, our set is not empty; it contains an object called 1
(read “one”).

Axiom 2: For each x there exists exactly one natural number,
called the successor of x, which will be denoted by z'.

In the case of complicated natural numbers z, we will enclose
in parentheses the number whose successor is to be written down,
since otherwise ambiguities might arise. We will do the same,
throughout this book, in the case of # + ¥, 2v, * — ¥, — %, 2, etc.

Thus, if :

=1
then
=1
Axiom 3: We always have
' == 1.

That is, there exists no number whose successor is 1.
Axiom 4: If

then
r=1.

That is, for any given number there exists either no number or
exactly one number whose successor is the given number.

Axiom 5 (Axiom of Induction): Let there be given o set M
of natural numbers, with the following properties:

1) 1 belongs to M.

IT) If = belongs to M then so does z'.

Then M contains all the natural numbers.

Th. 1-3] § 2. ADDITION . 3

§2

Addition
Theorem 1: If
Ty
then
z' =y
Proof: Otherwise, we would have
xl p— y’
and hence, by Axiom 4,
r=1%.
Theorem 2: 2 += 2.

Proof: Let M be the set of all « for which this holds true.
'I) By Axiom 1 and Axiom 8,
141;
therefore 1 belongs to M. )
II) If z belongs to M, then
x/ =i= x!
and hence by Theorem 1,
(2) =2,
so that =’ belongs to M.
By Axiom 5, M therefore contains all the natural numbpers, i.e.
we have for each z that
’ o' == 2.
Theorem 3: If
z= 1,
then there exists one (hence, by Axiom 4, exactly one) w such that
r=1u.

Proof: Let M be the set consisting of the number 1 and of all
those x for which there exists such a %. (For any such x, we have
of necessity that

z1
by Axiom 8.)
I) 1 belongs to M.
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I1I) If = belongs to M, then, with % denoting the number =z,

we have
o =,
so that 2’ belongs to M.

By Axiom 5, 9 therefore contains all the natural numbers;
thus for each )

' x==1
there exists a u such that
=1,

Theorem 4, and at the same time Definition 1; To every pair
of numbers x, ¥, we may assign in exactly one way o natural num-
Der, called x + y (+ to be read “plus”), such that

1) e+ 1=z for every w,

2) 2+ v = (2 +y) for every = and every ¥.

x -+ y 18 called the sum of x and vy, or the number obtained by
addition of y to .

Proof: A) First we will show that for each fixed @ there is
at most one possibility of defining © + ¥ for all ¥ in such a way that

t+l=2a -
and
x+y=(+y) for every v.
Let @, and b, be defined for all ¥ and be such that

’

a, = 7, b, = o,

a, = (a,), b, = (b) for every y.

Let M be the set of all ¥ for which
! a, = b,.
I) a, = &' = b,;
hence 1 belongs to 9.
II) If y belongs to M, then

a, = b,

(@) = (),
a, = (a,) = (b)) = by,

so that 9’ belongs to M.
Hence M is the set of all natural numbers; i.e. for every v we
have ’

hence by Axiom 2,

therefore

a, = by.

Hence 1 belongs to M.

Def. 1] 371 : § 2. "ADDITION 5

B) Now we will show that for each z it is actually possible to
define « + y for all -in such a way that
z+1=2a"
and
x+y=(z+y) for every v. )
Let M be the set of all x for which this is possible (in exactly
one way, by A)).
I) For
T = 1»,
the number
: z+y=1y
is as required, since
A z+1=1=21,
z+y =)= (@+y)

II) Let 2 belong to M, so that there exists an x + y for all ¥.

Then the number ' )
¢ 2 +y=(z+y)
is the required number for ', since
24+1 = (z+1) = @)
and
@'ty = @+y) = (@+y)) = @'+y).

Hence 2’ belongs to M. '

Therefore M contains all .

Theorem 5 (Associative Law of Addition) :

(e+y)+2z=2+(y+2).

Proof: Fix x and vy, and denote by M the set of all z for which
the assertion of the theorem holds.

D (e+y)+l=(+y)=2+yY=a+ (y+1);
thus 1 belongs to M.

II) Let z belong to M. Then

(@+y)+e = z+(y+2),

hence
@+y)+2 = (F+y)+2) = @+ +2) = 2+ +8) = s+ +2),
so that 2’ belongs to M.

Therefore the assertion holds for all z.
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Theorem 6 (Commutative Law of Addition) :
rt+y=y+ =

Proof: Fix vy, and let M be the set of all « for which the
assertion holds.

I) We have
Y +1= ylx
and furthermore, by the construction in the proof of Theorem 4,
1+y=1v,
so that
1+y=y+1

‘and 1 belongs to M.

1I) If 2 belongs to M, then
x+y=y+uw,
therefore .
' (z+y) =(@y+eo)=y+z.
By the construction in the proof of Theorem 4, we have
¥ +y=(z+y),
hence
¥ +y=y+a,
so that a’ belongs to M.
The assertion therefore holds for all .

Theorem 7: vy +y.
Proof: TFix x, and let M be the set of all y for which the asser-
tion holds.
I 1=,
12+ 1;
1 belongs to M.
II) If y belongs to 9, then ' .
y+z+y,
hence
Y= (z +v),
Y4ty

'so that 9" belongs to M.

Therefore the assertion holds for all .
Theorem 8: If
Y=z
then
T+ y=2x+ =z

b

§ 2. ApDITION 7

Proof: Consider a fixed v and a fixed z such that

Yz
and let M be the set of all z for- which
c+y=kr+z

1) Yy 7,
1+y=1+z;

hence 1 belongs to M.
II) If x belongs to M, then
x+tysdx+z
hence
(x +y) == (z +2),
oty +z
so that 2 belongs to M.
Therefore the assertion holds always. .
Theorem 9: For given x and vy, exactly one of the following
must be the case:
1) - z =Y.
2) There exists a u (exactly one, by Theorem 8) such that
r=y + u.
8) There exists a v (exactly one, by Theorem 8) such that
y=zx + v
Proof: A) By Theorem 7, cases 1) and 2) are incompatible.
Similarly, 1) and 8) are incompatible. The incompatibility of 2)
and 3) also follows from Theorem 7; for otherwise, we would have
r=yt+u=(+v)tu=c+@+u)y=w+u)+z
Therefore we can have at most one of the cases 1), 2) and 3).
B) Let x be fixed, and let M be the set of all ¥ for which one
(hence by A), exactly one) of the cases 1), 2) and 8) obtains.
I) For y =1, we have by Theorem 3 that either
) r=1=y (case 1))
or
r=w=1+u=y+u (case 2)).
Hence 1 belongs to M.
II) Let v belong to M. Then

either (case 1) for y)
T=1,
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. hence :
y=y+l=2a-+1 (case 8) for ¥');

or (case 2) for y)

e E=ytu §3
hence if

‘l u=1, Ordering
s ~then : Definition 2: If

it r=y+1=vy (case 1) for ¥'); T=—y-+u
’ but if then

g u==1, z > vy.

(> to be read “is greater than.”)

, then, by Theorem 3,
: g Definition 3: If

| u=—w =1+ w,
i z=y+Q+w)=w+1)t+tw=y+w y—=zx+0v
G (case 2) for ¥');

or (case 8) for y)

then
z <Y
(< to be read ‘““is less than.”)
Theorem 10: For any given z, v, we have exactly one of the
cases

y=a + v,
hence
y=(@+v) =2z+v
'[" . ) (case 3) for 'y’). =y, T>Y <Y
Proof: Theorem 9, Definition 2 and Definition 3.

In any case, ¥’ belongs to Mt
Theorem 11: If

Therefore we always have one of the cases 1), 2) and 3).

’ T >y
W then
et Y <.
Proof: KEach of these means that
i r=y+u
it for some suitable wu.
Theorem 12: If
r<y
then
Y > .
Proof: FKEach of these means that
. . Yy=a + v
for some suitable ».
Definition 4: r=y
means
T>SY or T=1u.

(= to be read “is greater than or equal to.”)
Definition 5: r=y
means




' ) 10 I. NATURAL NUMBERS [Th. 13-201
T <Yy or x= y.
(= to be read “is less than or equal to.”)
Theorem 13: If

r=Y
then
Y=2.
Proof: Theorem 11.
Theorem 14: If
' T=y
then
Y=

1 " Proof: Theorem 12.
' Theorem 15 (Transitivity of Ordering): If

<y, ¥Y<%
then

T < 2

i Preliminary Remark: Thus if

f T>Y Y>>
” : then

) sinee :

B <y, Y<a,
2 < T

but in what follows I will not even bother to write down such
statements, which are obtained trivially by simply reading' the
formulas backwards.

Proof: With suitable », w, we have

y=a+v, z=y+w,
hence
z=(z+v)t+w=a+ v+ w),
T < 2.
Theorem 16: If
t=Zy, y<z or <Y VY=g
then

< 2.

otherwise, Theorem 15 does it.

Theorem 17: If
TEY, V=R

Prool: Obvicus if an eguality sign holds n Phe Wypothesiss

'§9. ORDERING : 11
then

T=z.

Proof: Obvious if two equality signs hold in the hypothesis;
otherwise, Theorem 16 does it.

A notation such as

a<b=c<d

is justified on the basis of Theorems 15 and 17. While its immedi-
ate meaning is

a<b b=e¢ c<d,

it also implies, according to these theorems, that, say

a<e a<d b<d

(Similarly in the later chapters.)

Theorem 18: z+y>ea

Proof: r+y=z+y.

Theorem 19: If

T>Y, or x=1Yy, or & <Y,

then

rtez>yteorrctz=yt+tz orztz<yte,
respectively.

Proof: 1) If

then r=v
z = y+u, :
Tte=@+tw+tzs = (uty)+e =u+y+e) = Y+2)+y
x+e2=>y-+z
2) If
z =y
then clearly
' 248 = y+z
3) If
r<<y
. then
i Yy >,

Y4+ s>+ 2,
\ TAe<<y+tz
m 20: If
L eSydz or atr=ytz oratz<y+z
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then T>Y, or x=1, or & <Y, respectively.

Proof: Follows from Theorem 19, since the three cases are, in~

both instances, mutually exclusive and exhaust all possibilities.
Theorem 21: If

z>y, 2>

then
z+z>y+u

Proof: By Theorem 19, we have

zt+tz>y+=z

and

‘ ytz=z+y>uty=y+u,

hence

r+z>y+u
Theorem 22: If
T=Y, ZS>UOT ET>Y, = U,
then
zt+z>y+u
Proof: Follows from Theorem 19 if an equality sign holds in
the hypothesis, otherwise from Theorem 21.
Theorem 23: If
T=Y, 2= U,
then
c+z=y+u

Proof: Obvious if two equality signs hold in the hypothesis;

otherwise Theorem 22 does it.

Theorem 24: =1,

Proof: REither

or
a=uw'=u+1>1
Theorem 25: If

y>w
then
yz=zao+ 1
Prooit Yy==a %,
w=\,

hence

§ 3. ORDERING ’ 13

y=z+ 1.
Theorem 26: If
y<wz-+1
then
Y=z

Proof: Otherwise we would have

y>
and therefore, by Theorem 25,

y=x+ 1.
Theorem 27: In every non-empty set of natural numbers
there is o least one (i.e. one which is less than any other number
of the set).
Proof: Let % be the given set, and let M be the set of all
which are =< every number of 2.
By Theorem 24, the set M contains the number 1. Not every
z belongs to M; in fact, for each y of N the number ¥ + 1 does
not belong to M, since

y+1>9.

Therefore there is an m in M such that m + 1 does not belong
to M; for otherwise, every natural number would have to belong
to M, by Axiom 5.

Of this m I now assert that it is < every n of R, and that it belongs
to N. The former we already know. The latter is established by an
indirect argument, as follows: If m did not belong to %, then for
each n of N we would have

m < n,

~ hence, by Theorem 25,

) m+1=n;

thus m + 1 would belong to M, contradicting the statement above
by which m was introduced.
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§4
Multiplication

Theorem 28 and at the same time Definition 6: To every pair
of numbers w, ¥, we may assign in exactly one way o natural num-
ber, called @+ y (- to be read “times” ; however, the dot is usually
omitted), such that "

1) z-1=2 for every =,
2) x.y ==x-y+x for every x and every v.

% « y 1s called the product of ® and vy, or the number obtained.

from multiplication of z by ¥.

Proof (mutatis mutandis, word for word the same as that of
Theorem 4) : A) We will first show that for each fixed there
is at most one possibility of defining zy for all ¥ in such a way that

z-1l=v
and
zy = ay + « for every v.
Let a, and b, be defined for all ¥ and be such that
V e, =, b =&,
ay = a,+7, by = b,+ = for every .

Let M be the set of all ¥ for which
' @, = by
I) 4 =2="0;

hence 1 belongs to M.
II) If y belongs to M, then

a, = b

Y ¥

hence
ay = a,+& = by+m = by,
so that 9’ belongs to M&.
Hence M is the set of all natural numbers; i.e. for every ¥ we
have
a,=Db,

B) Now we will show that for each g, it is actually possible to
define 2y for all ¥ in such a way that

Def.6] §4. MULTII;LiCATION 15
rel==2
and
2y =ay + = for every v.

Let M be the set of all x for which this is possible (in exactly
one way, by A)).

I) For

. = 1:
the .number
Ty =1y
is as required, since
rel=1=uz,
‘ 2y =y =y +1=1y+=x

Hence 1 belongs to M.

II) Let x belong to M, so that there exists an xy for all y. Then
the number ’

dy=wy+y
is the required number for z’, since
-l =2141=2+1 =2 '

and

2y = ay'+¢ = (wy+a)+y = w+@+y) = w+@+y)

= a4+ (@ +y) = sy +y+a) = @+y)+s = Jy+a.
Hence 2’ belongs to M.

Therefore M contains all x.

Theorem 29 (Commutative Law of Multiplication) :

TY = Y.

Proof: Fix y, andlet 9 be the set of all  for which the asser-
tion holds.

I) We have
Y . 1= Y,
and furthermore, by the construction in the proof of Theorem 28,
_ ) . l-y=y,
hence .
ley=y-1,

so that 1 belongs to Mt
II) If x belongs to M, then

. TY = Yx,
hence
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sy +y=yx +y=yx'.
By the construction in the proof of Theorem 28, we have
/ w'y =y + v,
hence
: 2y =y,
so that a’ belongs to M.
The assertion therefore holds for all .
Theorem 30 (Distributive Law) :
z(y + 2) =uzy + x2.
Preliminary Remark: The formula
(y+2)e=9yx + 22
which resnlts from Theorem 30 and Theorem 29, and similar
analogues later on, need not be specifically formulated as theorems,
nor even be set down.
Proof: Fix x and v, and let 3 be the set of all z for which the
assertion holds true.
I) 2(y+1)=ay =ayt+arz=ayt+az-1;
1 belongs to M. ‘
II) If z belongs to M, then
z(y + &) = 2y + e,
hence
sly+#) = s(y+2)) = aly+A)+a = (@y+es)+o
= gy+(vz +a) = xy+ 2,
so that 2’ belongs to M. -

Therefore, the assertion always holds.
Theorem 31 (Associative Law of Multiplication) :

(xy)z = (y2).
Proof: Fix x and v, and let M be the set of all z for which the
assertion holds true.
1) (vy) s 1=woy=2a(y - 1);
hence 1 belongs to M. '
1I) Let z belong to M. Then
' (zy)z = (y2),
and therefore, using Theorem 30,
(zy)2 = (xy)z + 2y = (y2) + 2y =z (yz + y) == (v2'),

§ 4. MULTIPLICATION Coag

so that 2’ belongs to M.
Therefore M contains all natural numbers.

Theorem 32: If

>y or x=y, or x <Y,

then )
xZ > Yz, Or X2 =Yz, 01 X% < Y2, respectively.
Proof: 1) If
z>Y
then
T=9y +u,
22 =(y + u)z=1yz + uz > yz.
2) If
w=1
then clearly
. T2 = Y=Z.
3) If
x <y
then
y>uw,
hence by 1),
Yz > a7,
- x2 < Yz.

Theorem 33: If

then

Proof:

X2 > Yz, Or TX=1Yz2, O7 X2 < Yz,

T>Y, 0r x=1y, or <Y, respectively.

Follows from Theorem 82, since the three cases are, in

both instances, mutually exclusive and exhaust all possibilities.
Theorem 34: If

then

Proof:
and

hence

T>Y, 2>U,

) 2 > Yu.
By Theorem 32, we have

rZ > Y2
Yz =2y > Uy — Yyu,

22 > Yu.
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Theorem 35: If
TZY, 2S>UOT TD>Y, B2 U

then
Tz > YU.

Proof: Follows from Theorem 32 if an equality sign holds in
the hypothesis; otherwise from Theorem 34.

Theorem 36: If
=Y, 2= U,

then
Tz = Yu.
Proof: Obvious if two equality signs hold in the hypothesis;
otherwise Theorem 35 does it.

3
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CHAPTER IX

FRACTIONS
§1

Definition and Equivalence
e .oz . .
Definition 7: By a fraction ;‘ (read “=, over 2,") is meant the
2

pair of natural numbers z,, x, (in this order).
Definition 8: .
5 %
xB yZ
(~ to be read “equivalent”) if

Xy Yo = Y1 %y

Theorem 37: % ﬂ,

$2 xﬂ
Proof: : T, &, = %,2,.
Theorem 38: If

LA

x! y!

then

5

?/i x2
Proof: T, Yy = Y, %,

hence
I- Y%y = 2,Y,-
Theorem 39: If
LN 7 A
Ty yl, Y, ~ 4
then

#,

2,

z

Ty

Proof: Y, = Y%, Y% = &Y,



