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INTRODUCT ION

This research was motivated by a number of specific probiems and
by some fascinating phenomena., One problem was a feeling of dissatis-
faction with the Pham calculation for the intersection matrix of a
Brieskorn variety; the method was simple enough, but uniliuminating.
Then there were a number of periodicity phenomena discovered by Allan
Durfee., These were periodicities, in k, in the lists of Brieskorn
varieties of the form Z(k,al,az,...,am). One wished for contexts in
which to better undersfand them. The intersection form and its pat~
terns are closely related to any periodicity in the corresponding
varieties and, hence, these two problems are intertwined.

One of the most interesting examples of periodicity occurs for
the varieties I(k,2,2,,..,2) and these have natural orthogonal group
actions, They are O(n)-manifolds in the sense of J&nich and have
orbit space p? with the fixed point set corresponding to a (2,k) torus

link in 5> = 3D, On noting this, one might think that the periodic-

ity would find its explanation in some results about actions of the
orthogonal group. In fact, there was a theorem due to Hirzebruch which
related the signature of a knot in $> with the corresponding O(n)-
manifold, This led to the naTQraI question: How can one classify
O0(n)-mani folds whose fixed points correspond fo links in 53? It then
turned out that Hirzebruch's theorem did generalize to the link case.
Using Hirzebruch's techniques in combination with Durfee's results

about BPn (BPn is the set of diffeomorphism classes of (n=2)=-connected



(Zn-1)~manifolds bounding (n-1) connected parallelizable manifolds),
one obtains a classification of these link-manifolds in terms of invari-
ants of links. Letting an denote the set of link manifolds of dimension

4k

Thus, in the signature case every manifold in BP4k comes from a link,

2n-1, we find that B, «<BP, for n > 2 and that BP,, = B,. for k > (R
2n 2n 4k

One does gain some insight upon viewing the periodicity from this
standpoint, since it then corresponds to periodic behavior in the in=-
variants of (2,k) torus links. It is possible to see how this arises
from the geometry of the link itself.,

Other aspects of three dimensional geometry are reflected iﬁ the
structure of the link manifolds. For example, a !ink manifold depends
upon a iink in S3 with a specified orientation, that is, an orientation
for each of its components., Changing the orientations of one or more
components may change the |ink manifold radically. There is an example
of a two-component |ink such that one orientation gives Sn-' x 5" as
the corresponding link manifold, while reversing the orientation of a

sihg!e component yields I # (Sn"I x s"

), where I is an exotic sbhere.
Equivariant classification of link manifolds is directly connected with
the symmetries of Iinké. There are many inieresfing relationships be-
tween the three dimensional topology of links and the structure of link
manifolds,

Another way of studying the periodicity is to regard Z(k,al,...,an)
as a K=fold branched cover of a sphere, with branch set Z(al,...,an).
The structure of branched covers should illuminate the periodicity. In
part, this was Durfee's approach.

Let Kzn-|<: Szn+rrbeﬁ;m§ubmanifold of S

2 2n+
of F*'e 54" ', then, classically, one constructs a cyclic branched

2n+|0 If K is the boundary



cover by splitting S along F, taking k copies of the split manifold,
and cyclically pasting them together to form the cover Mk' Now the
covers which arise from algebraic hypersurfaces are themselves bounda-
ries in a natural way. One's feeling was that this property was inde-
pendent of the algebraic nature of these coverings. In fact, this is

the case and one can construct Nk such that aNk = M The intersection

k*
form for Nk is computable. It depends entirely on the Seifert pairing
B: Hn(F) x Hn(F) > Z(8(x,y) = 2(iyx,y) where £ denotes linking numbers
in S and iyx is x pushed into the complement of F). When the Nk are
parallelizable, there is a periodicity theorem in the genérai context

of branched covers,

This observation about the structure of Nk led back to the original
problem about the intersection matrix for a variety, A Brieskorn vari=-
ety can be considered as an iterated sequence of branched covers, Each
cover is embedded in a sphere so that the next cover can be formed, |If
the intersection form corresponding to a given cover depends on embed-
ding inférmafion about the branch set, why not proceed inductively?

This can be done and we can determine the intersection form for

XT' toeee + x:n + f(z)., The result tallies with the approach via link
manifolds when z = (ZI’ZZ)' and suggests a generalization of the results
about O(n)-actions to O(n)-manifolds with higher dimensional orbit
spaces.,

Beyond periodicity, | think that one theme stands out from all of
this. Whether considering actions of G = Zk or G = 0{(n) we found that
the structure of the G-manifolds depended strongly on embedding invari-

conjecture that everything we have said is contained in an elegant gen-

eral theory of G-manifolds.



CHAPTER O

LINKING NUMBERS AND QUADRATIC FORMS

This chapter compiles some background information which will be

used throughout the rest of the paper,

I. Linking Numbers and !Intersection Numbers

2n+l

Suppose that a,b&< S are disjoint unknotted embedded n-spheres.

Assume orientations are chosen for a, b, and 52n+l. We define the

linking number of a and b to be 2£(a,b) = <ca,cb> where ca and cb are
2n+2 2n+2

the radial cones in D with apex the origin o € D

notes intersection number in DZn+2- Note that this is equivalent to

<,>de-

defining %(a,b) = <A b> where A is an (n+l) chain on S, 3A = a, and

< , > denotes intersection number in 82n+’. Note also that £{a,b) =
D" 0b, 0.
2. Linking Invariant
. . . . . 2n+| . .
Given an odd dimensional oriented manifold K there is a pair-

ing A: an(K) x an(K) + Q/Z where THn(K) = the forsion subgroup of
Hn(K). A is defined classically [see 35] as follows: Let u,v ¢ THn(K).

Say that x,y e Cn(K) represent u and v respectively. Then for some

re& ru=0, hence, rx = 3Z, Z ¢ Cn+l(K)' Then Alu,v) = %-<Z,Y> in

Q/&. Here < , > denotes intersection number in K, e

Notation. < , > always denotes intersection numbers somewhere.



Where should always be clear from context.
1) Suppose K2n+| = 3M2n+2 where M is an n-connected manifold,
oriented. K is its oriented boundary and K is (n~l)-connected. Then

the exact squence for the pair (M, 3M) becomes
g 3
0~ Hn+l(K) -+ Hn+l(M)""*’Hn+l(M’BM)'__"Hn(K) + 0.

Poincare duality implies that the intersection pairing
Hopp (M) x Hn+l(M.3M);iﬁ;ZZis non-singular. Define an intersection
pairing

f: Hn+|(M) x Hn+l(M) > Z

by flx,y) = <x,gly)>., Since we may identify Hn+ (M,3M) = Hn+|(M) =

i
Hom(Hn+l(M),Z), g may be interpreted as the map

Af: H L (M) > Hom(Hn+'(M),Z), Afly)(x) = fix,y),

Lemma 0.1, Let u,v e tH (K), x,y € Crat (M3M) such that 3x = u,

3y = v. For some r,s ¢ Z, rx = g(X), sy = g(M, X,Y e H (M), Then

n+li
Mu,v) = 2L £XD) in o/z
rs
Proof. Regard all chains as chains in Cx(M) D Cy(3M), Then
rx = X =23Z+W, Z ¢ Cn+2(M), W e Cn+l(?M). Hence, rax = 3W, Thus,

Alu,v)

i3

T': <W,dy>,

Alu,v)

"
t 3= = -

<W,dy> intersection in K
<W,y> intersection in M
<rx - X,y>

S = 2= <X,y> in 0/Z

<Y;;>

! 1
- ="

= <X, sy> , S

i 'r'.'g

-1 -
= F—S— <¥,g(Y)>

=l sx,m.
rs



Hence, Au,v) = % £(X,7) in 0/Z.

Since it will be convenient to consisfen?fy ignore this minus sian,
we give the following abstract definition: Given a free module V over Z
and a bilinear form f: V x V > &, form the sequence
V--é—f; Hom(V,Z)—-E»G > U. Define A: 16 x 1G + Q/Z as foilows: Given

§I’52 e TG represented by 9,9y € Hom(V,Z), then rg, = Aftth),

|
g, = Afthy), hy,hy e v, A(§I,§2) = F:;; fCh, ,h,) in Q/Z.

172

The main point is that the intersection form on M determines the
linking form on its boundafy.

2) Here is an algebrafc reformulation of the above definition. Ag-
sume V is free and finitely generated over Z. Llet
Vieifyeve O[f(x,y) e Z ¥ x £ V}. Assume that the bilinear form f
is non-degenerate, i.e., that Af: V - Hom(V,2 is injective. Let
H: v oo Hom(V,Z) be the extension of Af, Hly)(x) = f(x,y). Then

Lemma 0.2, The following diagram commutes; H is an isomorphism

and extends to an isomorphism V+/V —:a-G.

v A omtv, —— g g

A
- |
Ve v s Vv

Proof. Easy,

Define: b: (V'/v) x (V'/v) » /2, b(%,5) = nf(x,y) where x and
y e V" represent X,7 € V'/V and 1: 0 » Q/Z. Note that V'/v = g is a

finite group.

Claim. b is identical with the linking formA: 6 x 6 > 0/Z  This

fol lows immediately.

Thus, given f: V x Vv *-ZZnon-degeneraTe, there is a canonically

defined pairing b: (vi/v) x vy - Q/Z and in the topological case



this is just the linking invariant,

I'f f is degenerate, then f =~ ' @0, v = v ®‘N, fIN =
f: V' x V' > Z non-degenerate. V'+/V' = 1G, Define
b(f) = b(f'): 16 x 16 » Q/Z.

3) 1f f is an even form, then one can define a quadratic férmA

q: 16 + Q/Z, q(x) = n(?- fix,x)),

b is the bilinear form associated with g,

4) Durfee [ 6] proves the following

Theorem 0,3, Let fl and f2 be even non-degenerate bilinear forms
with q(f') = q(fz) (and assume o(fl) 2 c(fz), o = signature),

f'eue...eu=fzeue...eueve...ev
e
O 'B'(O(f ) "o(fz)
where U= [ 0] V = Hirzebruch matrix with signature 8,

Theorem 0.3', On a group with no summands of order 2 or 4, the

equivalence class of a quadratic form is determined by the equivalence

class of its associated bilinear form.,

3. Quadratic Forms Over 52

A Zz-quadrafic form ¢ on a Zz-vecfor space V is a map y: V » 22 such
that 2(x,y) = p(x+y) = y(x) - Y(y) is bilinear. 2 is the associated 22-
bilinear form of y. Let rad v W (the radical of y) be the subspace where
¥ is singular (¢ non-singular means £ non-singular), Thus, rad y =
{x € V]¢ linear}. ¥ is non-singular oh W/rad y. If Y|rad ¢ = 0, then we
may define the Arf invariant c(y) € Zz. Here is the well known classifi-

cation theorem [see 3],

Proposition, Let wl: wl > 22, wz w > Z2 be Zz-quadraflc forms.
Then | = 4, Tff ' '

i) dim W, = dim W

| 2



ii) dim rad wl = dim rad wz
iii) wilrad v, £0, i = 1,2, or
wilrad ¥; 20 and cly)) = cly,),
Define Zz-quadrafic forms ¢O’¢I on 22 ] 22 with associated Zz—bilinear

form [? é] by

$5(1,0) =0 $,(1,0) = |
95¢0,1) =0 $,€0,1) =1
tach has radial {0}, c(¢0) =0, c(¢l) = |. Two singular forms are de-

fined on Z, with associated bilinear form [0].
no(l) =0 n|(|) = |
Any Zz-quadrafic form is equivalent to a sum of the above.
The following relations may be verified: 0 @ ¢, = ¢, @ %),
4@ n, = ¢, @O, nO@nl =n @n,.

A skew form with associated Ez-quadrafic form is a pair (f,y) con-

sisting of a skew form f on a Z-module V and a Zz-quadra*ic form on V/2V
with associated Z,=bilinear form £ such that [f(x,y)] = LUx], Ly (1=
class mod 2), Durfee observes the following lemma.

Efﬂﬂi’ Let (fl,w,) and (fz,wz) be skew'forms with associated 22-

quadratic form. Suppose the torsion subgroups of cok f‘ and cok 5
(cok f = cokernel (Af)) are of odd order., Then (fl’wl) = (fz,wz) L

f' = f2 and w' = wz.

4. Diffeomorphism Classification

For n2 | tet BP2n denote the set of. diffeomorphism classes of

oriented (n-2)-connected (2n-1) manifolds that bound paralielizablgr

7 ménifolds. (Note that, by surgery, we may assume that K & BP, bounds

2n

on (n-l)-connected parallelizable manifold.)



n forn#1, 3,7,

For M a smooth oriented Zn-manifold with boundary such that Hn(M)
is free there is the intersection form f: Hn(M) % Hn(M) ~ & 1t is
symmetric for n even and skew for n odd,

Given M parallelizable, (n-1)-connected, with (n=2)~connected
boundary K and n ggg, define a Zz-quadrafic form ¢: Hn(M)/ZHn(M) -> 22.
For x € Hn(M) represented by an embedded sphere, y([x]) = characteristic
element of the norﬁal bundle o x. This lies in 22 forn# i, 3, 7 and
is zero otherwise, The pair (f,y) is a skew form with associated ZZ‘
quadratic form,

Theorem 0.4, (Wall, Smale) For n 2 3, diffeomorphism classes of
oriented parallelizable (n~i)-connected, 2n-manifolds M with (n-2)-
connected boundary.are in one-to-one correspondence with

1) A free Z-module V of finite rank. (Hn(M))

2) For n even, the equivalence class of an even symmetric bilinear

form on V (intersection form).

3) For n odd, the equivalence class of a skew form on V, and, for

n#1, 3, 7, an associated Zz-quadrafic form on V/2V. (as above).

Examples. 1) s" x s" minus small 2n-disk, The boundary is 52n~lo
Intersection form U = [? 5] for n even, S(1) = [_? é] for n odd and as-
sociated Zz-form ¢O.

2) p" x s", Bouﬁdary s" ! x s". Intersection form <0>, For odd
n, the associated Zz-form is ngye

3) Tangent disk bundle to s". 1tn even, then intersection form is

<2>. If n odd, the intersection form is <0> and associated Zz-form is

4) P, neven, n2 4, This is a 2n-manifold with boundary the

(Milnor) generator Ig of bP P has intersection form V

2n*



o -

n !

‘ 3) Q, nodd, n2 3, This is a 2n-manifold with boundary the Ker-

— N —
—_ N —
—_N) —-—

Q- N -
ON —

L})O Q -

vaire sphere E', generator of bP2n = 0 or 22. Q has intersection form
S(I1) and associated Zz-form ¢|.
I'f K is the boundary of an (n-l)-connected 2n-manifold with inter-

section form f and n is even, define the quadratic form of K,

q: THn-I(K) + Q/Z by q = q{f), the consﬁ*ucfion described in section B.
Durfee proves two theorems, classifying elements of BPZn’ by
appealing to his results on quadratic forms and appiying the previous
theorem,
Theorem 0,5, KI’KZ € BPZn’ neven, n# 2, 4, 8, Suppose
i) Hn_'(K') = Hn_I(KZ)
ii) q = a, where q; = quadratic form for Ki'
Further suppose that Ki is boundéry of a parallelizable manifold with
intersection form fi' Then o(fll - o(fz)_is divisibie by 8 and
Ky XKy # g (olF)) = ot
1 f Hn_I(Ki) has no summands of order 2 or 4, then we may replace
(ii) by (ii)? b, = b, where bi is the linking form of K. .
Theorem 0.6, Ky»K, e BP, » nodd 2 3, boundaries of (n-1)=~

connected 2n-manifolds M' and M2 with Zz-quadrafic forms wl and wz.

Suppose Hn_I(KI) = Hn_|(K2).

1 n=30r 17, then KI i K2. Supposé that the torsion subg;;;bsr

of Hn—I(Ki) have odd order.



i) If wil(rad wi) 0 for i = 1,2, then

a7
KI iy K2 # (c(wl) + c(wz))zl.

i) If q)i|(r‘ad q,i) Z0 for i = 1,2, then K, X K, XK, # .

We shall apply these results to branched covers and to certain

manifolds admitting O(n)-actions,



CHAPTER |

CYCL1C BRANCHED COVERS

Let K" e 2™ pe an oriented submanifold of the 2n+l-sphere,
; 2n 2n+} . R
Suppose K is the boundary of F* <« § , another oriented submanifold,
One usually describes the k-fold cyclic branched cover of 52n+l with

branch locus K by splitting S along F and then cyclically pasting k
copies of the split manifold together. We extend this description by
constructing a manifold whose boundary is this branched cover and com-
pute the middle dimensional intersection form of the manifold in terms
of embedding information about F. Then we consider the case where the
complement of K fibers over the circle. Under these assumptions we
discuss periodicity of homology and differential structure for the
branched covers.

The final section discusses branched covers which arise from al-
gebraic hypersurfaces and uses these techniques to examine the orbit

space of an O(n)-action on a neighborhood boundary.

l. Construction gilBranched Covers

ATl manifolds will be smooth. Given KZn-lc:_SZn+I’ an oriented

submanifold, we say that K is simple if K = Ban, F e 52n+l’ an
oriented submanifold which is (n-1)-connected. Thus, F has the homo-
topy type of a wedge of n-spheres. We will further assume that each

element of nn(F) may be represented by an embedded sphere,

Note that by pushing F up and down via a normal vector field, it

12
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2n+l

[»]
follows that there is an embedding g: F x [=1,1]+ S such that if

Fy = g(E x 1), then aF, = Kand F_ = F. By this construction we may

assume there are diffeomorphisms ay: Fo - Ff for t € [~1,1] such that

o =14F. Letting ¥ = Closure(q(F x [=1,17), ¥ =l—-r—-JF there is
o . 9 210 Fel~1,1] t*

an involution T: F » ¥ given by T(x) =¢£*°a -'(x) for x € F,., Whence

1 t

n, N
F=FPUF,EAF =k - "Em',—l'l]’:f’ F o= ‘;E[_—"-(ﬂar. Thus,

T =F .

Lot D = p2M+2 2 k=1

and D,xD,x™D,...,x D be k copies. (Regard x as

a generator for Z/kZ so that x'xJ = x'+J, " = I.) Let

k-{ . .
N, = Hx'D/Ex"F\-'+<F-T-» XIHE_:I.

Then Nk is a 2n+2 manifold with boundary. Let

Mk denote aNk.

Clearly, Mk fits the usual description of the k-fold cyclic cover of

S2n+l branching along K. In fact, there is a natural action of Zk on

N, induced via x'D *‘x'+'D. Clearly, Nk/zk = o/[V¥<.I;>V_J = D and

M/Z, = S similarly, Note that Fc N, is the fixed point set of the

Zk-acfion and that oF

i

Kc,Mk = aNk is the fixed point set of the Zk-

action on M

k
A a——
l / j: F+ D is obtained by pushing the interior of
J
N, /7, &= b F into the interior of D by a normai vector
k' "k T ‘

field. Thus, N, = k=fold cyclic cover of D branching aiong j(F),

M = N, = k-fold cyclic cover of 3D = S, branching along K = 3F =

3PN,

Lemma |.i. K simple =%>!4E(K) =0 for i #0, n-I, n, Ksimple

and simply connected =% K is (n-2)-connected. In either case, there
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is an exact sequence 0 ~ Hn(K) > Hn(F) > Hn(F,K) > Hn_|(K) + 0,

Proof. Immediate from the homology sequence of the pair (F,K) and
the Whitehead theorem,

Let ¢cF > D be the join, in D, of F&< S = 3D with the center of D.
Similarly, x'cF% x'D and, in N, XIoF ( xJcF = F for i # J.

N DN = cFuUxcFu .., ka"cF

=Y

Proposition 1.2, Nk' has the same homotopy type as Nk and the in-

clusion Nk' »> N, is a homotopy equivalence,
Proof., Let Nk" be the fwedge" of k copies of D along F., Thus,

Nk";glvk‘ and Nk" may be viewed as included in N, in such a way that

Nk'<: Nk"<: Nk induces the usual inclusion Nk'cz Nk' To do this simply

choose D" & D a slightly smaller disk such that D" A 3D = F. Then

Nk" = L}xiD"<:l)xiD = Nk° It is easily checked that Nk" Is a deforma~

tion retract of N Since N, ' and Nk" have the same homotopy type, this

k*® k
proves the proposition,

Since K is simple, we know that Hn(K) has a basis represented by
embedded spheres., Let these be {al,az,...,ar}. Let ca; < cF denote

the radial cone over a; in D with apex at the center of D. Similarly,

we have (x'caj)<: x'D. These cones fit together to form many (n+l)=

spheres embedded in Nk‘ Let Zaj = cajtJ xcaj and, as an element of
- i i _ i+l =
Cn+l(Nk)' Xaj = caj - xcaj. Similarly, x Zaj = X caj\J X caj =
i i+l
xca, - x ca,,
J J

Lemma |,3, Hn+|(Nk) is free of rank (k-l1)r, A basis is given by

@- {x'ZaJ.IO £0 % k=2, j=1,2,...,r}h.



) ' - - .
Proof. Hn+I(Nk) Hn+I(Nk ) and a simple Mayer-Vietoris sequence

applied to the latter yields the lemma,
Next, we wish to determine the intersection pairing
<, > Hn+l(Nk) x Hn+l(Nk) + Z. This requires a discussion of the embed-

ding of F in S,

2, The Seifert Pairing

Given K" ' s2™! Simple, K = aF, we will define the Seifert

pairing e: Hn(F) x Hn(F) + Zby 6(a,b) = 2(i,a,b) where iy = push into
S-F in the direction of the positive normal to F. (Similarly, i* =

push in direction of the negative normal,) &( , )‘denofes linking num-

ber for n-cycles in 52n+|.

To make this more precise note that we have diffeomorphisms

ay: Fo=F > F, for =1 S 13 +l, Let iy = Then

HE -
t t %20 VT A2

i*¥ie = ixi* =1, Hence, L(iya,b) = L(i*(isa),i*b) = 2(a,i*b). Thus,

we could also define 6(a,b) = &(a,i*b),

Lemma 1.4, Let < , >: Hn(F) x Hn(F) + Z denote the intersection

pairing. Then <a,b> = 6(a,b) + (-1)"6(b,a).

. . R ) .
Proof, First note that if B = Ye[=1/2.172] uf(b), then B is an

2n+i

{n+1) chain on S and, up to sign <a,b> = %<a,B> where the second

intersection refers to intersection numbers in 32n+l. Choosing the

orientation for B so that <a,b> = <a,B> means that we regard

B=1bx[~1/2,1/2]. Then 3B = (-1)"(b x 1/2 = b x (=1/2)), Thus,

n+l

3B = (=17 "(i¥*b = ixb), But by our definition of linking numbers,

<a,B> = (~|)n+|l(a,§B). Hence,



<a’b>

30

1]

<a,B> = L(a,i*b - i.b)

2(a,i*0) - (D" icib,a)

it

it

6(a,b) + (~1"6(b,a).

Intersection Pairing for ﬁk

To determine intersections of cycles on Nk we define deformations

so that intersection numbers may be interpreted as certain linking num-

bers inA82n+|. Given Ia as in 2., define d(Xa) = ci*a - xciya. Note
that since Ti* = i, where T is the involution on F used in constructing

N » 9d(Za) = 0 and, in fact, ci*a Ucisa is an {n+])~sphere in N

Proposition 1,5,

L] -'
<xJXai,xJ Eai,>

Proof,

k.
Similarly, d(xJXai) = de(Zai). Clearly, d(xJZai)
is homologous to xJZai. Since cones are taken

radially, xJZa and d(xJIb) can intersect only at

the apex of cones and, hence, in at most two poirnts,

n+ |

= e(ai,ai,) + (~1) e(ai,,ai) j=1
(-l)"-e(ai,,ai) jo= jrl
(ul)'e(ai,ai,) JHbo=
0 otherwise,
- -' - -'
<xJZai,xJ Zai,> = <xJZai,xJ d(Zai,)>
3 '+ -' . 4'+ .
= <chai - xJ 'cai,xJ cu*ai, - xJ |cu*ai,>
= ij,<cai,ci*ai,> - 6jj’+l<cai'Ci*ai'>
- HE N
6j+l j,<cai,cn ay? + 6j+l J.,+|<c:ai,c1*a',>
= <cai,ci*ai,> + <ca;,ciya; > J=]

- <cai,ci*ai,>

-
H
G
-
+

- <cai,ci*ai,> j¥l = j°!



17

= (e, i%a ) (-l)n+'l(ai,,i*ai) jo= g
(-l)nl(ai,,i*ai) jo= gl
bt ﬁ(ai,i*ai,) J.+I = j'e

Corollary 1.6, With respect to the basis@g, < , > has matrix

N=T v+ ™y -V
(~1)"y? vt DMy Ly
(-1 e,
| v+ (=nMye
- —

({k-1) = (k=1) blocks, each block r x r) where V = Seifert matrix, -

V.. = 6(a,,a.)., Since 0 - H
N LN
N may be regarded as a relation matrix for Hn(Mk).

n+|

Example, |f K is a knot or link in 53, then N = V + V' is a relation

matrix for the first homology of the double branched cover,

4, The Homology gi_Mk, An Inferior View

The preceding shows how to get at Mk by way of a manifold which it
bounds. In case K is a homology sphere (for example, K a simple knot), it

is convenient to work directly with Mk' This was Seifert's original ap-

proach,

Let M = s°™! _ it (®). Then M is a manifold with boundary:
M= F P S5 = m U with = o, F=F < isa deformation
refracf° Now M, = ?;éxiM where XiF+<%I§-Xi+IF‘. Denote xiF+ z xi+'F_

v xFand 3x'M = X'FUX'H-F.’ The idea is to first

i

by x' %% Then M

examine the homology of M and then the pasting which creates Mk'

A, Homology of M

First look at the Mayer-Vietoris sequence for aM =‘§:1)27F)5571£q:; K.
Y q ’

Lemma 1.7, 0 > H_¢F) eax4n<iﬂﬁ > H_(3M) > 0,

N ,
M) > H N H N M) > H () > 0,
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I(K) -

Hoo] @) © H__ (<% > Assuming K" s 5 homology sphere, the lemma

Proof, =+ Hn+'(3M) > Hn(K) > HnGFn D Hn(xﬂﬂ -+ Hn(aM) > Hn-

follows immediately for n > | and just as easily for n = 1,

Lemma 1.8. 0 > H (F) & Hn<F)—‘—[’—>Hn(M) @ H (F) > 0 is exact where
¥(a,b) = (iya + i*b,a + b) (regard i,: H (F) > Hn(52n+| -y

Proof. H_, (™ > 1 (Fosf) > 1 an @H F) > (2™,

Ends of this sequence vanish and can use previous lemma on Hn(Vr(Jxﬁﬁ.

Lemma 1.9, Given an exact sequence of abelian groups

f

0+A—>B@®C~+0, fla) = (f (a),fz(a)). Then

|
~ ~
f ¢ Ker f2.J39 B, fy1 Ker f,—»C,

Proof, Obvious,

- --*
Corollary 1.10. 0> H (F) X0 4 H (M) > 0,

Proof. Let fl(a,b) = jg@ + i%b, fz(a,b) =a + b, Then Ker fy =
{(a,-a)}, f (a,-a) = ija - i*a. Apply the previous lemma. '
| * ply

- - - .* — -* - -
Hence, if {ai} is a basis for Hn(F), then i a; = (i '*)(ZkYkiak)’

PR o= (1% _ 3 : . =
whence i*a = (j iy)la, a € H (F) where T: Hy(F) > H_(F), Ta, 2 Y,

Notation. View {i*ai} as a basis for Hn(F_). To distinguish these

from elements of Hn(M) denote i*ai =a, € Hn(F_). Similariy, let

ixa; = xa; € H (F ). We may write I: H (F) > Hn(qﬁ and

xTs HnGF7 > Hn(X?O, xTa = I'xa and this means I'i*ai = ixla;, I‘i*ai z i*rai.
Using this notation, i*a = (i* - i,)["a becomes a = I'(a - xa) where this
is to be viewed as a relation holding in Hn(M) seen as a quotient of

Hn@") @Hn(m. Similarly, {x'a} form a basis for Hn(x% and x'a =

i+l

rix'a - X o).

Proposition I.l1l. The following sequence is exact.
) Pati* N R
0> H (F)—Z5H (A @H (A2 H (M) > 0 where g(z) =(Iz,(I - Mz,

Proof. Let A = Ker(iy + i*), Then g': A % Hn(F), g'ix,y) = x +vy



19

by previous lemma. Hence, g'g = |. We need merely prove that gg' = |,

(x,y) € AED> -iyx = i¥y

<& (i¥ - [,)x = i¥(x + y)

1§

<> x = T(x +vy)
<> (I - T)x =y
(I =T){x+y) =Ty +y =Ty =y
whence
Fix + vy} = x
Thus, g'glix,v) = (x,y).

Coroflary 1.12. The set of relations ¢ = T'(a ~ xa) is a complete

set of relations for Hn(M).

Proof. This is just a restatement of the proposition.

One can now continue in this fashion, using Mayer-Vietoris sequences

to show that the collection of relations x'a = I'(x'a - x'+'a) is a com-
plete set of relations for Hn(Mk). It then follows a la Seifert that
Fk - (T = I)k is a relation matrix for Hn(Mk). We will derive this in a

slightly different fashion by invoking the intersection form for Nk"

B. Relations Between I, the Seifert Pairing, and the Homology Qi.Mk

2n+i

Since M is homotopy equivalent to S - F, the pairing

Lz H(F) x H (M) > Zis non-singular (Alexander duality). Let {Qi} be
a dual basis for H_(M) such that z(ai,ﬁh) = 8;;. Express

i¥: H (F) > H (M) in these bases: i*(a.) = L. c. & .
n n J kK7jk 'k

Lemma .13, c.. = e(ai,aj). Hence, the matrix of i*, [i*] = v',

Ji
the transpose of the Seifert matrix.

. ala- = 7% = -
Proof- e(ai,aj) z(ai,u aj) zkcjkdik Cji’

Lemma 1.14," 6(a,b) = <a,I'b> where T: Hn(F) > Hn(F) as before,
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a,b e Hn(F) and < , > denotes the intersection pairing on F.

Proof, Note i¥* = (i* - j,)er,

]

8(a,b) = %(a,i*b) = 2(a,i*Tb) - 2(a,i,Ib)
= 2(a,i*rb) + (-1)"2(i,rb,a)

= 6(a,Tb) + (-"8(rb,a)

6(a,b) <a,rb>,

Corollary 1.15. Let A be the intersection matrix for F,

A.. = <a,,a;>, Then V = AT,
ij i’
Proof. V.. = 6(a.,a.) = <a.,la,>
— 1 U I J
RIEDALIPA (LN
R
= (AY)ij'

Note. [f K is a homology sphere, then 4 is invertible, hence,

Proposition 1.16. Fk - (r - I)k is a relation matrix for Hn(Mk).

= ——
Proof. Recall that N = | v + ()" lyr -V
DM v =™y

is the intersection matrix for Nk and, hence, a relation matrix for
H (N, = Hn(Mk). Since V = AT and V + (=)W' = 4, (=Dt = 4 -y =

AMI=T) and v+ (-D™t = AT 4 AT - ) = A2r - ). Hence,

oy

N =1 A2 - 1) A(-T)
Al - T) A(ZT - 1D .

.
.
.

atnd

Since A is invertible, this is equivalent, by row and column operations,

to YT -2r T
r -1 I -2r .
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It is then a simple exercise to see that this matrix is equivaient to

rk - (r - DK,

5. The Fibered Case and Periodicity

2n iy

suppose K"l 2™ i simple with PN < 2N

such that K = 3F,
F (n-1)-connected. Suppose further that the compiement of K fibers over
the circle with typical fiber F = Int(F), Thus, there is a smooth,
locally trivial fiber bundle ¢: S - K+ s', fiber F = ¢~'(1).

Any such bundie is obtained by a diffeomorphism h: F + F so that
S~ K®&F x I/{(x,0) ~ (hx,1)}. We may also regard h = h, where

by o - o~ (exp(21i1)) is an orientation preserving diffeomorphism

obtained by translating the fiber. We may assume that hTOhT' = h++¢'

and that hT transiates F in the direction of its positive normal for
i = i* =
O <t <1, Hence, we may regard i, hl/2 and i h—l/2‘

Lemma I.17, hi* = i,

v* - - .
Proof. hi h|°h_|/2 hl/2 ixe

As before, let {ai} be a basis for Hn(F) and let H = hy: Hn(F) > Hn(F).

H will also denote the matrix of hy with respect to this basis.
Lemma 1.18, 6(a,b) = (~=1)" (b, Ha).
Proof, 6(a,b) = 2(a,i*b)
= 2(Ha,Hi*b)
= L(Ha, iyb)
= (~=D™g (i b, Ha)
= (-1"o(b,Ha).

Corollary 1,19, Let V be the matrix ViJ = B(ai,aj). Then

vto= (=)™ vy

Proof. Let Haj = L H .a

Kk j%Ke Then
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8(a.,a.) = (=D"o(a Ha.)
i29] J*e

<<
H

n+l
(=1) Zke(aj,ak)H

0" o
J ]

ki

Hence, vio= DMy,

Corollary 1,20, A = V(I - H) where 4 is the intersection matrix

for F,

Proof., A=V + (="' = v <« VH = v(I - H).

Thus, if (I = H) is invertibie, then V = A(I - )~! and the Seifert

matrix may be found in terms of the monodromy matrix H and the intersec-

tion matrix of F, This is the case for K, a homology sphere, since the

Wang sequence implies that (I - H) is an isomorphism, In this case V is
certainly invertible., However, more is true:

Proposition 1,21, 1If K simple with S - K fibered over S', fiber F,

then V is an invertible matrix. Equivalently, the pairing
6: H (F) x H(F) > Z is non-singular.
N

Proof. S = F a—F x (0,)etnF x (&)

h+(x) <« (x,1)

Thus, we have a commutative diagram
Hn(F x (0,1)) ———5——4’Hn(5 - F)

H_(F)
n

Hence, ix: H (F)—>H (S ~ F).
| * n n

But the matrix of iy with respect to the basis {ai} for Hn(F) and a |ink=-
ing dual basis for H (S = F) is V'. Hence, V' is invertible and, there-

fore, V is invertible,.

Note. K simple, S - K fibered = The intersection matrix N of Nk
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has the form N = V(I + H) Vi(=-1)
V(=H) V(I + H) V(=D
V=H) V(I + H) -,

i

(Substitute for V' using previous lemma,) Hence,

N = T-V I+ H -1

and since V is invertible over Z, it follows that N is equivalent to
the matrix on the right via row and column operations,
lemma 1,22, N~ 1+ H+ H2 + 0. + Hk-'.

Proof. It suffices to show this for the matrix on the right in

" the above product, Let Q2 = | +y+ y2 + .. + yﬁ. Then
(1 - Qz) + Qz(l +y) =1 + Qky = Q£+L)- sz = | - Qz+l'
Hence, Ql | - Qz 0 ~ c (1 - Qg) + QZ(' +y) —sz
-l b+ y ey -1 I +vy -y
~l ° Qs b= Qs
-1 I + v -y
- “' —T
Thus, I+ vy -1 I+ y -y
=y | +y -1 ~ -1 14y -y
-y I +y - F+y
) .| n d

o o R
0 (|+y+y2) -(y+y2)
0 =1 I + Yy -y AP ¢ o
~ —_ [ —— — —
) . - -1 i +y -y
— <
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~ ~N Ly + .0 by

1
(|+y+y2+ e + yk"')

s

«tncy

Proposition 1,23, Assume K as above (simple, compiement fibered).

Let A and B be free abelian groups of rank = rank Hn(F)° Then there is

an exact sequence
TheHZ + ... + H<!
»B > Hn(Mk) + 0.

o ~> Hn+ (Mk) > A

|
A and B may be identified as appropriate submodules of Hn+l(Nk) and
Hn+I(Nk’aNk) respectively,

Proof. Apply the preceding remarks to the exact sequence for the
pair (Nk,aNk).

Corollary 1,24, Suppose K is simple, a homology sphere and that

S - K is fibered with H of finite order d so that Hd = I, Then

Hy (M) = Hem | 0.

Proof, K homology sphere = (I - H) invertible.

T+H+ ...+ ha-m=1-1 =0,
Hence, I+H+ ...+ na-! - 0.
Thus,
 EPTEPU T, Ll R T S TLa LR TLYS TR
=T+ H+ ...+ H
Hence, H*(Mk+d) = H*(Mk).

Remark, Suppose K satisfies all the hypotheses of the corollary

except that K is not necessarily a homology sphere, Then

I +H+ ...+ Hd-| may be non-zero. Suppose
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Hn(Md) = zl| @... @zzsaze 'E' @Z Then

(I +H+ ..+ H o diag(e,,...,2.) @ (0] where the zero block is
L ox 2,
o i} >
Claim. H_(M_) Zrz, @ zrl2 ®...0 Zrzs ® Z when r 2 |,
Proof. (I +H+ oo+ H 9y o rear v m+ ...+ 1Y,

This appearance of extra torsion spoils the periodicity.

Examples from Knot Theory

a) Let La b denote a torus link of type (a,b). If a and b are rela-
»

tively prime, then L_ is a knot and it is well known [see 42] that the

,D

complement of a torus link in S3 fibers over the circle with monodromy h

such that order(h) = least common multiple (a,b). Hence, if Mk = k~fold
. 3 . N

cyclic cover of S” branching along La,b’ then HI(Mk+d) = H|(Mk) where

d = lemla,b] = ab for (a,b) = I, For example, the trefoil krot has mono-

dromy of order 6,

Definition. A knot has topologically periodic monodromy i f hd = |

for some d, homologically periodic monodromy if Hd = | for some d.

Proposition 1,25, |If a fibered knot ch253 has topologically peri-

odic monodromy, then G = nl(S3 - K) has non-trivial center,
3

Proof. S = K= F x I/{(x,0) ~ (hx,1)}, G' = [G,6] = n (F,Q) for
some Q e F, Let t+ be the element of G corresponding to Q x [O,I].

Clearly, every element x € G is of the form x = Tny where y € G'. h in-

duces an automorphism a: G' + G', It is also clear that aly) = TyT-i.

Now hd = I = ol = =£;.+dyf-d =y ¥y eG', Hence, 19 ¢ Center(G).

It is non-zero since the subgroup

(Mg =K =1 (S xF) = 2@6'.

Corollary 1.26. The torus knots are the only fibered knots with

@y o -
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topologically periodic monodromy,

Proof. Zieschang and Burde, Math. Ann. 167 (1966), prove that the
torus knots are the only knots with non-trivial centers.

Problem. Is there a knot whose complement fibers, with homologically
periodic monodromy, which is not topologically periodic? One can con-
struct knots which are not torus knots such that H*(Mk) is periodic; the

examples we know do not have complements which fiber over SI.

b) Periodicity of the Linking Invariant. Let G = THn(Mk) = torsion

part of H (M ). Recall that there is a tinking pairing A: G x G + Q/Z
Lemma 1.27. Let € = H M - K. T xC- Q/Z. 'f K is a simple
homology sphere with fibered complement, then G = € and A = T under this
i somorphism,
Proof. We have ¢: S - K » s! with fiber F and monodromy h: F » F,

Note that Mk - K is the pull=back

Mk - K —=——>» 5 ~- K

l& l¢ Ak(x) = xk.

Sl A SI
Hence, Mk - K fibers over Sl with monodromy hk and fiber F, Applying the
Wang sequence [see 25] we find for n > | -

k
I-H
0 - Hn+l(Mk - K) » Hn(F)——————ﬂpHn(F).+ Hn(Mk - K) » 0,

However, we have already shown that I - Hk is a relation matrix for
Hn(Mk). In case n = 1, it is easy fto check directly that

Hy(M = K) = H (M) @Z. Thus, G = 8. Since we know that H (M) is gen-
erated by the classes in Hn(F), it follows fhgf generéf?rs and relafionsﬂ
are carried on M - K, By this we mean that given a ¢ Cn(F), the (n+l)-

k
. . | R . .
chain A corresponding to eL0, 17 h* (a) is supported in Mk Ke
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3A = a - Hka. Let {ai} be a basis for H (F), then we have A; such that

aAi =a, - Hkai. A is determined by intersection numbers between the
FAS

{Ai} and the {aj}. Hence, we may identify A and A,

Corollary 1.28, Suppose K has periodic monodromy, h of order d so

that hd = 1. Then H (M) = H (M ) and their linking invariants are
n k n k+d

also identical,

Proof. M = K is diffeomorphic to M - K since hk+d = hk.

— k k+d

Remarks., 1) A slightly more algebraic argument shows that the
corollary is in fact true for'homologically periodic monodromy.

2) Note that while Mk - K and Mk+d - K are diffeomorphic, Mk and
Mk+d may not even be homeomorphic. For example, the fundamental group
of Mk gets progressively more complicated as k increases when K is a
torus knot, In the high-dimensional simply-connected case, one can say
more ii'Nk is parallelizable,

Problem. Suppose that the complement of K is fibered with a
parallelizable fiber F, Is this enough to ensure that the manifolds
Ny will be parallelizable for all k?

We can answer yes for the special case where K is the neighborhood

boundary of a singularity of a complex hypersurface by reinterpreting

Nk as in Chapteri{ll. | am not sure of the answer to the general case.

c) Differentiable Periodicity for Mk Simply Connected, Here we

prove a generalization of a periodicity theorem due to Allan Durfee [6]

for the case of Brieskorn varieties.

2n=| 2ne+i

Theorem 1.29, Suppose K°' e S is a simple, differentiable

knot, whose complement fibers with periodic monodromy. Assume that, M,

k

simp ly-connected, Nk is parallelizable for each k, n 2 4 is even, d =
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period of the monodromy, Hn_l(Mk) has no summands of order 2 or 4,

;h o . .
Then Mk+d T L# Mk where I is the Milnor sphere, and Ty depends only

on k and the Seifert pairing for an, the fiber of the fibering
S~ K= SI.

Proof. This follows immediately from the Corollary 1.28 and the
classification Theorem 0.5,

Remark, 1) If F2n is parallelizable, then an argument due to Su

[see 37] shows that Nk is parallelizable for k odd., Conjecture: an

parallelizable =%>Ivk parallelizabie for all k.

2) One can apply the theorem to weighted homogeneous polynomials

2n+i
€

once one verifies that V(Xk + f(z NS is a k=fold cyclic branched
cover, See the next section for a discussion of this point,

3) We wish to note that our contribution to this problem is the
infrodgcfion of the geometric construction of the manifold Nka In any

case, the theorem will be in an unsatisfactory state until the parallel-

izability question is settied,

6. Algebraic Varieties as Branched Covers

Let f{(z) be a polynomial in n complex variables z = (zl,zz,...,zn).

Let W= {(x,2) e C x C"|0O = K

+ f(z)} for k 2 | an integer, and

W' = {(x,2) e CxC"[0 =x + f(z)}, m:s W W, omix,2z) = (xk,z). Thus,

% is a cyclic branched cover of W' branching along {(0,2)|0 = f(z2)}.

We wish to localize this situation in the neighborhood of a singularity
of .

First recall some facts about hypersurface singularities (see [257).

A point z € C" is said to be singular (a singularity of f) if all par-

tials af/azi, i=1,2,...,n vanish at z, The point z is said fo be an
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isolated singularity if it has a neighborhood in which all other points
are non-singular, Llet V = V(f) = {z € C"|f(z) = 0}, Milnor studied
the topology of V in the neighborhood of a point x e C". Let 5. = Sin'I

be a small sphere centered at x. Consider K = V’f\Se. Let

¢: S = K~ SI, $(z) = £(2)/|f(z)|. Then ¢ is the projection map of a
smooth fiber bundle,
Given f with isclated singularity at 0 = (0,...,0), we wish to

study F = xk + f(z) regarded as a polynomial in n+l compiex variables,

Given W as above, let K= W r\S§n+'. We wish to show that K is a
branched covering space of Sin-l with branch set K, This will be

divided into two parts. First we treat 6nly weighted homogeneous

polynomials, then general polynomials will be considered.

A. MWeighted Homogeneous Polynomials

The polynomial f(z) is said to be weighted homogeneous of type

(wl,...,wn) if it can be expressed as a linear combination of monomials
iI in

z . 2 or which i /w, + ... + i /w_=1, where w,,...,w_ are pos-
|oeee g f heh 1 /7w, F/vn = 1 [#ocesWy @re p

itive rational numbers. Thus, the Brieskorn polynomials

a a a
z'I + 222 + .. t znn are weighted homogeneous of type (al,...,an).
Given f weighted homogeneous of Tyﬁe (wl,...,wn), define

|/W' '/wn
oxz = (p Z|seee,p zn) for p real and positive., Clearly,

flpxz) = pt(z),

Proposition 1,30, Let f(z) = f(zl,...,zn) be weighted homogeneous

and suppose f has an isolated singularity at o ¢ C". Let Fix,z) =

2n=1 2n+|
€ €

<+ 2, K=vinn 2 K= vie A 2™ befine p: K - 2" via
P(x,2z) = pxz such that |p%z| = e. Then P is a k-fold branched covering

with branch set K,
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Proof. First note that given (x,z) € K, lx]z + [zl2 = &2 whence

|z] £ e, Since loxz] is strictly increasing as a function of p, there

is a unique p * | such that |pxz| = €, Hence, P is well-defined.

(Also, z # 0 since z = 0 =% f(z)

0 = x = 0,) Suppose P(x,z) =
P(x',z'), Then pxz = p'%z' for some p,p' 2 |, This implies that

z' = p"xz and may assume p" 2 | (otherwise choose z = p" %z'). Now

x'k = =f(z') = «f(p"%2z) = <p"f(2) and xk = -f(z)., Thus, x'k = p"xk.
= 1?4 1272 = o' %2 4 Jomz]? 2 |x]2 4 [2]? = 2. Hence,
p" = | and,. therefore, z' = z, X< = x'k. Thus, P(x,z) = P(x',z")
z' =z, xtK = xk.
Given z ¢ Si"‘l there is certainly a unique p, | 2 p > 0 such that

Ipf(Z)lz/k + lp*zlz = ez. Then P~ (2) = {(x,p*z)lxk + f(pxz) = 0}.
Hence, P”'(z) consists of k distinct points except when z € K and then

P~ (2) = ((0,2}.

- B. The General Case

For an arbitrary f(z) we need the analogue of pxz. This will be
supplied by constructing an appropriate vector field. First recall some
facts from Milnor's book [25].

l. Given an analytic function f(z) = f(zl,...,zn), define

vf = (aflazl,...,af/azn) where the bar denotes complex conjugation. Let
<, > denote the Hermitian inner product on C". Thus, given a path

z = alh), df(a(1))/dt = <da/dt, V6>, It K= V(IS ¢: S_ - K=+,
$(z) = f(z)/]f(z)|, then: The set of critical pointsof ¢,

Crit(¢) = {z e S_ ~ K|iV log f(2) = real multiple of z}.
2n

— 2. Now view c" =R“" so that the real—inner product is the same as =~~~

Re , >,

Lemma, Given any polynomial f which vanishes at the origin,
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3&0 > 0 such that ¥ z € C" « V(f) with |z| < e,» the vectors z and
V log f(z) are either linearly independent or V log f(z) = Az where A
is a non-zero complex number with Iargkl < w/4,

Given these facts, we can construct the needed vector field. The
lemma needed is an exercise in Milnor's book,

Lemma 1,31, Given f and ¢ < €ys 85 in previous lemma, then 323
smooth vector field v on Din = V(f) such that <v(2),V log f(z)> is real
positive for all z ¢ Ds - V and <v(z),z> has positive real part.

Proof. It will suffice to work locally in a neighborhood of
z € De - V since we can then construct the vector field by using a

partition of unity,

Case 1, z, and V log f(zo) linearly independent over C, We want

<v,V log f(zo)> > 0 and R<v,zo> > 0. The linear independence insures
that such v can be chosen.

Case 2, V log f(zo)lz Azo, Iargk[ < n/4, Then

4 . 2
ReAz_,z > = R(A) IzOI >0

B}

1

<}\zo’

Az > AX| z lz > 0.
o o
Hence, in this case we can choose v = Azo.

Consider solutions of dP/dt = v(P(1)) on D8 - V. The condition
<dP/dt,V log f(P(1))> real positive implies that arg f(P(+)) = constant
and that If(P(T))| is strictly increasing as a function of t,

S UPHI?) = 2Redp/at,P(1)> > 0 implies that [P()] is also strictly

increasing.

Thus, given any point z, e D€ - V we may travel along a trajectory

with initial condition P(0) = z,. The path will move away from the ori-

gin in the direction of increasing Ifl.

Let p(+) = If(P(T))I/If(zO)I. Thus, p is an increasing function of
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t with p(0) = I, Denote prz_ = P(t) for the unique t such that
p = |f(P(T))l/|f(zo)l. Since arg f(P(+)) = arg f(z), we have

flo¥z ) = pflz ).

Assume from now on that the vector field v was normalized so that
v is replaced by viz) = v(z)/<v(z),V log f(z)>. Thus, <V,V log f> = |.
Claim. f(P(1)) does not approach zero for any finite limit

t=>1, 1t <0.
o’ o

i

Proof. |35 tog f| = |<dP/dt,V log £

[<v,¥ log t>]
= 0.

Since the above derivative is bounded, the thing can't blow up.

Reformuiation, p%z # O for any p such that O < p and lig {pxz) = 0,

o>
' = 1 - =
Lemma ITBZ. 0 < p,p!, pxz, = p'xz, for 2,,2, € D€ v =z,
p"*zz for some p" > 0,
Proof. p¥Z = p'*z2 - Z, and z, lie on the same trajectory, by

local uniqueness of solutions to differential equations. Hence,
z, = p"*22 for some p" > 0O,

Proposition 1,33, Let f(z) be any polynomial with an isolated

singularity at the origin, |K= V<X + +@NASE™ Kk = ((0,2) € 1.
P: IK-‘K > Sgn'l - K, P(x,z) = pxz where p 2 | is the unique real such
that |pxz| = e, Then P is a k-fold cyclic cover.

Proof. The proof is the same as the proof for weighted homogen-
eous polynomials. However, we only define P on K ~ K since px%z is not

defined for z e V(+),

Corollary 1,34, The following diagram is commutative.



A € $(x,2) = x/ | x|
[ | /
A A (p) = «p
Sl K . Sl k
K,k _
Proof. A #(x,2) = =x"/|x"| = f(z)/]#(2)]

i

f(p*z)/lf(p*z)f

¢lpxz) = ¢P(x,z),

So.far we have not succeeded in showing that K is a branched
Icovering space of the sphere, In order to do this we will remove a tubu-~
- lar neighborhood of K and define the branched covering maps on the tubular
neighborhood and its complement so that They'pafch up.

First recall that there is a fibration ¢: E » !,

2

E={z e D"||f(z)| =6}, 0 <6 <<e. ¢lz) = f(z)/[$(2)|, In let

S2n--|
€
N(K) = {z ¢ Sin-'llf(z)l < 6}, Since N(K)-JL’ﬁzé, z > f(z), is regular,

m is a fibration with fiber K and, hence, N(K) ¥ B x Ke Thus, N(K) is a

2n={

tubular neighborhood of K, Define n: E + Se

- N(K), n(z) = pxz such

A -
that lp*zl = |, Then n: E _m_,sg” - N(K) and the following diagram

£ n : S2n-|
€
X‘A
o

Note that 2E = aN(K) = {z e $°"!|f(2) = 5e!® and, hence, 3E —tys

commutes:

- N{(K)

is the trivial bundie,

Now let Ek = k=fold cyclic cover of E formed as follows:

E. = 1(x,2) ¢ D'Z_n+2|xk = £(2),|f(2)| = 6} where r = (€2 + 62/k)|/2,

2 9: B > E, alx,z) = z, O

2n+|lxk

let W = {(x,2) € S = £(2),]|f(z2)] 2 6} and define
k r ’
I/k

N\
N Ep _2_,wk by ny (x,2) = (p'""x,px2) = px(x,2) such that |pxix,z)| = r,



34

2n=1

Lemma 1,35, Lletting Pk: wk > Se - N(K) by Pk(x,z) = pxz such
that ID*ZI = €, then the following diagram commutes:
wk——-:ZL__q. si”"' - N(K)
¢
Ek K > E
Proof, Easy.
Thus, Pk is a k=fold cyclic cover,
Lemma 1.36. Let N'(K) = {(x,2) ¢ $°™'|s* = £(2),]#(2)| < 6}, then
for e sufficiently small and 0 < § << g, N'(K) XK x Bg.
Proof, N'(K)'—Iiﬂbﬁg, (x,z) » f(z), For e and & very small,
V(xk - £(2)) and V(f) will both be transversal to S§n+l and V{f) will be
transverse to V(xk - f(z)) N Sin+'. Hence, ' is regular, therefore, a

fibration and, hence, the conclusion,

Thus, we may define Pk: N' (k) » N(K) corresponding to the map

K.x D2 + K x DZ. {y,x) - (y,xk) viewing D2 as complex disk, such that

on the boundaries this agrees with the original P

2n-{
€

Hence, Pk extends

k'
2n+1

to P WU NT(K) >SS since W U NGO = vk - £ A 2™, we

have proved the

Proposition 1,37, Pk: V(xk - f (2} N Sin+| + Sin-l is a k-fold
|

cyclic branched cover with branch set K = V{f) N Sin- .

7. Orbit Space for a Hypersurface with O(n)-Action

Let o = (a),65,..0,a) ¢ CK, z = (z),000,2) € C". Let f(a) be a

polynomial with an isolated singularity at the origin;

2 e 224 . 422 Let M= v g2tntk=l
|' 2 n €

chosen small enough so that the intersection is transverse. Letting

Fla,z) = f(a) + z with &

z =X+ iy, x,y € Rn, we see that
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n

M= {(a,x,y) € Ck x R x Rnlf(a) + [xlz - [y[z + 2i<x,y> = 0,

2 2 2 _ 2
|7+ [l 4yl = e

o .
Thus, M admits an O(n)-action via g*(a,x,y) = (a,g°%x,g°y) where
g*x denotes the usual action of O(n) on R". Note that o complietely deter-
mines an orbit, Hence, if n: M =+ Ck, m(a,z) = (a), then w(M) ¥ M/O(n).
To examine n(M) we first consider the case where f is weighted homo-
geneous.
Proposition 1.38. |If f is weighted homogeneous, n > I, then

(M) ~ 2k,

| Proof. From the definition of M, it follows that

£ ]? = (xI? = [y1H% + 4x,y>2 and [x]Z + |y]% = €2 = [of%.
Hence,
@2 = €2 - [a]D? + atex,y52 = [x|2]y]D).
Thus,
| [t [? € (2 = [a|D? or [#(a)] + |a|? € 2,

Define 8 = {a ¢ C¥|[fw)] + |a|? 5 2},
Lemma. w: M +5t?is surjective.

Proof. Given a e, choose x,y € R" such that [xI2 + |yl2 = c,

_ 2 2 . Y2 1/2 V2 /2
c =€ - [a]%; in fact, let |x| = — =275 |y| = — (e + f)
where f(a) = f, + if, and, hence, (f,z + fzz)l/2 S ¢ so that lfll s ¢,

For f, # 0, adjust 2<x,y> = 2|x||y|cose -f,; that is, set cos® =

'fz/(Cz - f'Z)I/Z. Note that fl2 + f22 < ¢? whence f22 s flz and
s l-f /(% - ¢ 2)'/2| S 1. With these choices (a,x,y) € M,
2 |
Thus, w) =0 = (o e cK||f@] + [o]2 2 2.
2k

Detine y: B'—»0 " by (a) = pxa such that |pxa|” = [f(a)| + |a]%.

Since f is weighted homogeneous, p*a is defined on all of Ck such that

2k

flp*a) = pfla), Clearly, y: 1?——3;>D€

and this completes the proof
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of the proposition,

Corollary 1.39. Given f as above but not necessarily weighted homo-

geneous,
M) X o= {a € Ck||f(a)l + lalz S sz}.
Proof. Except for the last paragraph the above was quite generai,
Remark. We now wish to analyze &’ more closely in the general case
by using the vector field constructed in the section on algebraic branched
covers.,
Proposition 1.40. Suppose f has an isolated singularity at the

origin of Ck, € chosen as above. Then lf/is homeomorphic to Dik.

Proof. Consider m: V(x* - fla)) N D§k+2 - Ck, m{x,a) = a. Then

Image(n) = {a|x2 = f(a), lxl2 + |a|2 s 52} = {af [fla)] + ia|2 s 52} =,

2k+2
€

We know that V(x2 - f(a))N\ D

K = V(x2 - f(a)) N 52k+.. (See [25].) This homeomorphism is accomp | i shed

[ A
2k+2
€

is homeomorphic to the cone C(K) where

by means of a vector field on D which points away from the origin and

is tangential to V(x2 - f(a)) - {0}, Letw = V(x2 - fla)) N Dik+2. Then
one can see that the O(l)-actions on K and W ((x,a) + (-x,0)) are com-

patible with this cone construction, Hence, W/0(1) = C(K/0(1))., Whence

V5C?= C(K/0(1)), However, the section on branched covers shows that

2k=1 2k

. Hence, &= c(s?k - D2k,

K/O(1) ~ sik"

Remark. Since ¥ contains a tiny ball about the origin and the map

from o to Dik'is a diffeomorphism everywhere except possibly at the ori-

gin, we see that we may assign a differentiable structure to & so that

2k~1

2% is the usual structure on Se and the orbit map m: M -+ & is ditfer-

entiable, Note that & could possibly be some non-standard smoothing for
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C. The Quadratic Form of a Link

Let L.C'_S3 be a link, F a Seifert surface for L, W = Hl(F). We
have discussed the Seifert pairing 6: W x W~ Z and the pairing
fr WxW>Z fix,y) = 8(x,y) + 8(y,x). Using the construction of
Chapter O there is an associated bilinear pairing b(f): G x G + Q/Z
where G = t(cok f), and a quadratic form q(f): G » Q/Z for which
b(f) is the associated bilinear form.

Note that since b(f) and q(f) may be interpreted as the linking
forms for the double branched cover for L, they are invariants of the
link type of L.

Definition. q(f) is the quadratic form of the link L, It will

be denoted by q(L), Note: This may be at variance with the usual
terminology which takes the integral quadratic form associated with f
as the quadratic form of L.

Examp le. Lef!<<:S3 be a knot, M2 and N2 as before. Thus, N2
has intersection form N = V + V', Since N = V = V! + 2y! = A+ 2v?
and det(4) = | for K a knot, it follows that r = det(N) # 0. Choosing
a basis {gi} for H,(N,,M,) and Poincare dual basis {A.} for H, (N,))
such that <Ai’aj> = éij' there is an exact sequence
HZ(NZ) -iie-Hé(Nz,Mz)-—E—>HI(M2) + 0. Hence, H,(M,) is a torsion group.
let a, = Pla).

Proposition 2,4, Let/ = (A(Ei,'éj)) where

A: HI(MZ) x HI(MZ) > Q/Z is the linking invariant, then/A = N-' over
0/Z.

Remark, This proposition is due to Seifert [32] by quite different

~arguments,

Proof. The linking invariant is calculated as follows: Given
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a,b ¢ H(M)) =5 ra = No, rb = NB, A(a,b) = — <a,b>, Using the above

|
T
= - ME 2y = b o -
bases, ra; = N(chjiAj) = (NC)Ai, C = (Cij)’ A(ai,aj) = F-<LAi,aJ>
!

- - 1 _ .
F-chki<Ak,aj>, A(ai,aj) = F'Cji' But NCAi = ra; whence NC = reI,
Hence, N - %-C. Since N' = N, then C' = C. Therefore, A = N over
Q/z.

D, The Zz—Quadrafic Form for a Link

Let L C153 be a link with Seifert surface F, W = HI(F)’

6: WxW~>12Z f: Wx W-> Zas before. Note that there is also the jn-
tersection pairing <, >: Wx W+ Z, This is a skew~form and <SX,y> =
8(x,y) - 6(y,x),

Let {a|,...,ar} be a basis for W, V = (Vij) the matrix of 6 with
respect fo this basis, v.ij = B(ai,aj). Let W = W@Z2 with Z,-basis
{5|,...,5 }. Define a quadratic form v: W~ Z, as follows:

e W, ¥(x) = § XV} %)

i,j=I |
Remark. This definition is due to Robertello [see 31] for knots.

r
X = x|5| + ...+ err
He proves that c(y) is an invariant of knot-cobordism.

Lemma 2.5, ¢(x + y) = ¢(x) + ¥ly) + <x,y> (mod 2).

Proof. Easy.

‘Thus, ¥ is a Zz-quadrafic form associated to the skew form < , >,

Definition. Let A be a module over Z, g: A x A->Z an even sym-

metric bilinear form. Define a Zz-quadrafic form on A/2A by

b: A/2A > Z,, $(a) = %-f(a,a) (where denotes mod 2 class). ¢ is

called the mod 2-reduction of g.

Remark. The above definition works Just as well for A an R(2)-

_ module (R(2) = 2-adic integers). Thus, beginning with a Z-module A, e

one may view g as a form on R(2) to simplify the mod-2 reduction.
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Lemma 2.6, ¢ is the mod-2 reduction of f.

Proof. Llet x = xa, + .., + x.a. €W, X = §|5, + ... +Xxa eW

so that

i}
™
X1
<t
Xt

Px)

VR = £0x,).

Note: Since cok(< , >) = HB(L) is torsion free, it follows from
Section 3 of Chapter 0 that to classify the pair (< , >,9), it is suf-
ficient to classify < , > and y separately.

Certainly < , > and ¢ depend on the choice of Seifert surface.
However, the same remarks about behavior under elemen+ary.Transformafions

of. the link projection apply here to show that < , > is determined up

|
0

with the mod-2 reduction of U = [

to direct sums with [_? 1 =5(1) and ¢ is determined up to direct sums

0

| . .
| 0]' cail this ¢, Since the Art

invariant c(¢o) = 0, we conclude:

Lemma 2.7, The Arf invariant c(y), when defined, is an jnvarianf
of link ¥ype.

Conjecture. c(y) should be an invariant of liﬁk cobordism for some
suitable notion of link cobordism.

Example, Let Lk be a (2,k) torus link,k = 1,2,3,... . Then, with
respect to the orientation and projection indicated in Figure 20, Lk has

Seifert matrix Vk = -1 ] . <:) (k=1) x (k=1),

o
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Hence, the matrix of the bilinear form f is Nk = Vk + Vk' and < , > has

matrix Ak = Vk - Vk'. One finds (Durfee observed this in the context

of Brieskorn varieties) that [see 6, pages 92~101]

1) Ak =SNG ... ®SU) ((k-1)/2 copies) k odd
8, =[0J®S(N@ ... ®SU) (k/2 - | copies) k even
2) kodd, k 2 %l mod 8 - N, = U® ... @ U over R(2)
Vo= ¢o@...®¢o
k odd, k = %3 mod 8 N =T@®US@ ... U over R(2)
w=¢l@¢o@“'@¢o
0 2
W=Ly o 7=07 2D
k even N, = Nk-l@[(k-l)k] over R(2),

Thus, disregarding the forms U, s, ¢o’ there is a periodicity

of 8 in k for these invariants.
This periodicity manifests itself as a periodicity in the list of
k 2

Brieskorn manifolds Kk = V(zo + z'

This example will be mentioned again in Section 3, Our point of view is

+ ees t znz)/\S2n+l for n even.

that the periodicity in the invariants of these Iinks "explains" the

periodicity in the list K, k = 1,2,... .

k'

Figure 20




57

2. The Symmetry Group of a Link

let Le S be a (differentiable) link with u components
KI’K2""’Ku‘ Write L = K, v szJ eee LJKu. Assume that each component
has been oriented, with +Ki standing for fhis orientation, «-Ki for the
opposite orientation. S3 will also be given an orientation.

If ¥ is an auto-diffeomorphism of the pair (83

,LY, then ¢ may per-
mute the components of L and change some orientations, Wishing to

catalogue such possibilities, we define the symmetry group of L, Z(L)

following Whitten [41]:

Let Su = the symmetric group on u letters, 22 = {£1},

Z;H = 22@22@ G Z2 utl times. Define a split extension
| +z;+' > T >SS » | viaW: S = Aut(z*y, W(p) = W_,

u u u 2 p
Wp(so,el,...,eu) = (eo,epl,...,ep ). Elements y & Pu are written

u
Yy = (eo,...,eu,p) for e, =%l, pe Su' We say that L admits y if

]

+K L I} ‘ + i Y= » LN ]
L lL/ J Ku is Taken‘To L E'Kp\J \jequ under an

| u
auto-diffeomorphism y: 83 > 53 such that w(+53) = EOSS, w(+Ki) = eiKp .
The symmetry group I(L) = {y e FMIL admits v}.

Example. A torus link is a link which can be inscribed on a torus,

~standardly embedded in 53. One sees that all the components of a torus

link have the same knot type. Any ?orué knot may be described as a
closed curve winding a times in the meridian direction and b times in
the longitude direction on a torus (here a and b are relatively prime),
Let La,b denote a torus link of type (a,b), where, given d = gcd(a,b),

a = da, b = dB. Thus, La b consists of d torus knots each of type (a,B).
14

__(See Figure 1,) o B I
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Figure i

Give each component of L an orientation as indicated in Figure .

a,b
Proposition 2,8, Let L = La b? d = gcd(a,b), a = da, b = dg,
»

a,B > |, Then Z(L) = Z_ x §

2 d*

Proof. Let the components of L be KI""’Kd' These are non-trivial
torus knots of Type (a,B), Leffiné 2 denote linking number in SB, one
can easily see that Q(Ki,Kj) = aB for i # j.

Note that a non-trivial torus knot is not amphicheiral [see 30].
This means that Ki can never be carried to Kj by any diffeomorphism which
reverses the orientation of 53. Hence, we may restrict attention to
those diffeomorphisms which preserve the orientation of 53. However,
such diffeomorphisms preserve I'inking numbers, Hence, given
g: (82,10 » (s5,0, Llg(K;),g(K ) = LK, KD, Suppose g(K) = £ K.,
g(KJ) = CZKJ" Then elezaB = l(gKi,gKJ) = R(Ki,Kj) = af, Whence
€€, = +l. Thus, € = €, The upshot is that, at best, a symmetry can
only reverse all of the link orientations. In fact, each torus link
has such a symmetry. It is obtained by turning the link around and then
rotating it about its central axis by 180 degrees,

On the other hand, for each permutation p € Sd there is a diffeo-
morphism g(p) such that g(p)(Ki) = Kp . This is constructed by noting

i
that the components of the Iink may be viewed as lying on concentric



59

tori,

Hence, (L) = 22 x Sd'

3. Equivariant Classification of O(n)-Manifolds

Recall the outline of Jdnich's classification theory for group
actions [see 14, 15, I6]. Roughly, one has a manifold X with 0(n) acting
on it such that all isotropy groups are conjugate to either O(n-1) or
0(n-2). Thus, in the case where the orbi+ space is DZ, the interior
points correspond to orbits of type 0(n)/0(n-2) and the boundary points
to orbits of type 0(n)/O(n=1). Inasmuch as X—T D% can be viewed as a
pasting together of the bundle of orbits over the interior of D2 and the
bundle of orbits over SI = aozl the "pasting data" is given by a certain
reduction éf structural group. This turns out to correspond to a map

2 !

6: 30" > S', Under appropriate conditions, O(n)-manifolds with two or-

bit types and orbit space D2 are classified up to equivariant diffeo-

morphism by ldegree (o).
If, along with orbits homeomorphic to 0(n}/0(n=-2), 0(n)/0(n=1) one
allows fixed points, then under appropriate conditions the classification
can be reduced to the case of two orbit types by removing a tubular
neighborhood of the fixed point set. For example, if the orbit space is
D4 with fixed points corresponding toa link L 53 = 8D4, then it turns
out that sufficient pasting data is given by a map o 53 - N(L) » Sl
where N(L) = N(Kl)hl cee L}N(Kr) for L = KiV ..o L)Kr, Ki = component
of L, N(Ki) = tubular neighborhood of Ki chosen so that N(Ki)r\ N(Kj) = ¢

for i # j. o is of degree *| when restricted to a meridian circle on the

'bouﬁﬁafyiofiN(Ki).

The technical conditions under which the above remarks hold are
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restrictions on the sltice representations, that is, the representations
of the isotropy group normal to an orbit. Letting o denote the stand-
ard representation of O(n) on'Rn; and ek the k-dimensional trivial
repreéenfaTion, one must require that the siice representations are as
follows:

D otm: € G)pn @0,

2) O(n=1): 53 GB P
4

|
3) O0(n=2): €

Manifolds séTisfying these conditions for either two or three orbit

types will be referred to as O(n)-manifolds,

Example. Let X = R" x R" - {0} and let O(n) act via ge(x,y) =
(gx,gy), x,y € R". One easily checks that this is an O(n)-manifold with
two orbit types,

Proposition 2.9, If a ¢ Ck, zZ e Cn, z = (zl,...,zn),

Fla,z) = f(a) + ZIZ + 222 + ... + zn2 where f(a) is a polynomial with an
isolated singularity at the origin, let M = V(F) N Si(n+k)—|. Then M is
2k

an O(n)-manifold with orbit space homeomorphic to D (diffeomorphic for
k #2).

Proof. We have already defined an action of O(n) on M with the
given orbit space. It remains to check the slice representations., Re-
call that M = {(a,x,y)|f(a) + |x]% = |y]2 + 2i<x,y> = 0, |a|? + || +
[y[z = 52, X,y € R™ and, for g € 0(n), ge(a,x,y) = (a,gx,gy). Thus,
the fixed point set is K = {(a,0,0)|f(a) = 0, lalz = €%}, The action
of O(n) on M is the restriction of a standard action on Ck x R" x R,

It follows that M is an O(n)-manifold by the same arguments as inr[l?,

page 33].,

Note that for k = 2 in the above M/0O(n) = D4 and the fixed point
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set corresponds 1o a link in 53.

Definition, A link-manifold is an O(n)-manifold M with orbit space

52 304.

D4 such that the fixed point set corresponds to a link in S

Janich proves a classification theorem [ 16] for |ink-manifolds:

Given L C'—S3 a differentiable link, let N(L) = k)N(Ki) be as above. Let

Sil be a meridian circle on the boundary of N(Ki)’

& =re: -1~ S'IdegUISi| = El, P o= eee,r]
where [ ] denotes homotopy classes of maps. Suppose g ¢ Diff(D4,L).
Then o ¢ A& g*o exﬁ- Hence, Diff(D4,L) acts on‘J. Also, Z, acts on
.ivia composition with S' - S| of degree -1,

Theorem 2,10, (Janich) Let Sn(D4,L) denote the set of equivariant

diffeomorphism classes of O(n)-link manifolds with fixed point set cor~
responding to the given link L c.SB. Then Sn(D4,L) is a bijective cor-
respondence withd/z, x Di££(0%, ).

It is intferesting to observe that this resuit has a reformulation

in terms of the symmetry group of the link L. This follows from a series

of observations,

1) By Cerf [5] any element of Diff(SB,L) extends to an element of
piff 0%, L),

2) Since elements ofJX,are determined by their restrictions to the
meridian circles Sil, they really correspond to the 2" possible orienta-
tions for these circles. Also, orienting a meridian circle is equivalent
to choosing an orientation for the corresponding link component., Since

any g ¢ Diff(SB,L) may, for our purpose, be assumed to carry a tubular

neighborhood of L to itself, an orientation for L will go to a new one

under g, and the orientations on meridian circles will be correspondingly

altered.
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3) Letting L = Kl\j KZLJ ooe L/Kr, choose orientations for each

component, Let®’(L) = {(el,sz,...,er)lei t1} denote the set of possi-

ble orientations for L ((i{,1,...,!) denoting the chosen orientation).
Z2 operates on & (L) via (el,...,er) > (-sl,...,—sr). Clearly, the action
of Diff(SB,L) on&(L) corresponds precisely to the action of Z(L) on

®(L) given by

Yele e ) = (€ € € £ yeossE

-1 - -1 | -, Eay, )
p (1) p (2) p (r)p

I(r)

) o h T

where y = (EO,E',...,Er,p) € Z(L). Hence,

Theorem 2,11, Sn(DA,L)-eﬁ>GV(L)/ZZ x L(L),

Corollary 2.12. There are at most 2™ elements in s (0, 0).

Corollary 2,13, Llet L = L, , be a torus link of type a,b with
’

d = gcd(a,b), a = da, b = d8, a,8 > 1. Then S (D%,L) <> dw/z, x s,

where S4 = symmetric group on d letters acting on &(L) by permutation.

Hence, Sn(D4,L) has %Q(d + 2) elements for d even and %-(d + 1) elements

for d odd.

. Proof. ):(La b) = Z2 x Sd by the section on the symmetry group of
— »

a link, The rest follows by a simple counting argument.

For example: L4,6’ d =2, %-(d + 2) = 2. Hence, there are 1wo
equivariant classes corresponding to this link.

Examples. a) L = two circles with linking number *i, There are
two possible orientations (see Fig., |) L, and Lz.

Claim, If MI’MZ € Sn(DA,L) correspond to L| and L2 respectively,

X
then M' M2' |
Proof. Let g: (SB,L) > (SS,L) be the composition g = 9,9, where

- g, reverses orientation of,SB, and 9, turns the-right-hand circle over,—

Then g(L ) = L (See Fig. 2.}

| 2°
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(D ?&)“OQ

Thus, there is only one element in Sn(D4,L). This may be described vari-
ously as the tangent sphere bundle to Sn+l, the Brieskorn variety
£(2,2,...,2), etc. The above provides an amusing way to prove that these
seemingly different examples are really the same.

b If L is a torus link of type (2,2k), k > |, then the two choices
of orientation yield different elements of Sn(D4,L). This follows from a
signature check of the Iinks in question, For example, let L be as pic-
furéd in Figure 3, Then, we wish to show that there is no symmetry taking
Ll to L,. Since LI and L2 have opposite self-linking numbers, such a
symmetry would have to be orientation reversing. Hence, the quesfion
boils down 1o the existence of an orientation preserving symmetry between
L' and L2'. However, c(LI) =3, o(LZ') = |, Hence, there is no such

symmetry.,
0T (T (=55

Figure 3



64

c) Let L be the Borommean rings (Fig. 4).

/N

Figure 4

These have a great deal of symmetry. It is an easy exercise fo check
that Sn(D4,L) has only one element,

See the next section for more details on the manifolds in these last
two examples,

d) Regard s2mtt o {(z,x,y) € c? x R" x Rnllzlz + [xl2 + |y|2 = 1},

Then O(n) acts in standard fashion via g*(z,x,y) = (z,gx,gy), making

32n+l an O(n)-manifold with fixed boinf set corresponding to an unknotted
circle in D4. Regard p* = {(z|,22)||2||2 + Izzl2 =1, 2,2, ¢ C}. Let-
ting a and b be infegers 2 1, define f: D* » D% by #(z,,2,) = p(z,%,2,")
where p is chosen so that |(pz,2,pz b)| = |(z,,2z,)]. Let X be the
! 2 12727 a,b
pul {-back
X — S2n+|
a,b
l L
f
ot 30 bt
Then the fixed point set of the induced action on X will correspond

a,b
in 04 to the inverse image of the fixed point circle under f, We can as-
|

sume that the circle is embedded in S° as S' = {(W2/2,-22/2) | |A] = 1,
- | V2 a b .
A € Ch. Then f '\ (S ?”?mfiz;ffe“"'*l,f,|“' =1, A" +u =0} This is

S »-

an (a,b) torus link, Hence, Xa € Sn(D4,La ). One can check from the
’

b ,b’'°

pasting data or directly, using branched coverings, that Xa b is
t4
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equivariantly diffeomorphic to the Brieskorn variety %(a,b,2,2,...,2).

4, Diffeomorphism Classification of Link Manifolds

Definition, an = the set of diffeomorphism classes of O(n-1) tink
manifolds, Given a link L C:S3, let BZn(L) = the set of diffeomorphism

classes of link manifolds corresponding to this given link, Thus,

B n(L) cB

2 2n*

Note that M ¢ B = dim M = 2n-1,

2n
Recall that BP2n denotes the set of diffeomorphism classes of (n-2)-

connected 2n-I manifolds that bound parallelizable manifolds, We will

observe that anc:.BP2n and use the known results about BP2n to classify

elements of B The technique is an equivariant surgery procedure used

2n*
by Hirzebruch and Erle [7] for the case of knot-manifolds. Since their
methods go over almost verbatim for the link case, we will explain the

geometry for n = 2 and indicate the relevant general results,

A. Three Dimensional Geometry

If n =2, then we are dealing with 0(1) = 22 actions on a 3-manifold
M with orbit space S3 and fixed point set corresponding to an oriented
link L CLSS. M is the double branched cover of 83 with branch set L. The
following sequence of remarks explains how to obtain M from 53 by a se-

quence of O(l)-equivariant surgeries,

3 3 3

1) Regard S~ = R3\J {=}, T: §7 > 87, Tix,y,z) = U/} x,y, 2| e (x,y,-2) .

Thus, T defines an O(l)-action on S3 with fixed points

Fix(T) = {(x,y,00|x> + y° = 1} = s',

"7 2)"One can choose a spanning surface for the link in the form of a
disk with (twisted) bands (see Fig. 1), Assume that the disk is

2

2 ,
D™ = {(x,y,0)|x2 +y~ 2 1}. Each surgery on S3 will correspond to one of
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the bands. Each band will be specified by a map

f2 [0,1 > {(x,y,2)|z 2 0} such that £(0),f(1) ¢ S'; ¢ = #{0,1] meets S
orthogonally and corresponds to the core of the hand. The twisting of
the band is described by a vector field v defined on £ and normal to it;
v will be tangent to 5! as it approaches f(0) and f(I). (Convention:

v is tangent to Sl in the clockwise direction at f(0).)

Figure |

3) A surgery is associated to each band as follows: £ UTe gives

an extension f: S' > 53. Letting w = v x f'/][v x '| be a unit vector

| 2

field perpendicular to ¢ and v, define f: S' x D » 53 by

fla,B) = f(a) + B v(a) + B wla)

| 2

where S x D = {(a,3)|a02 r o’ 2 2 < 1},

o= B, * B,” =
Here we have extended the fields v and w to & T2 via v(Tp) = Tv(p),

w(Tp) = Tw(p) and, by definition, £'(Tp) = Tf'(p) (f' = vector 9—#).

dt
Define T: Sl x D2 > Sl x 02 by

o Tl&;,dffﬁé;ﬁ?77= (ao,-al;B -B8,).

b 02 - 83 is O(l)-equivariant,

o? "I

Lemma 2.14, ¥f: S
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Proof, Note that if a,b ¢ 5° - {~}, then Ta x Tb = =T(a x b)

where "x" denotes the standard vector cross product., We want to show

that T = Tf,
f(T(a,B)) = f(Ta) + Bov(Ta) - Blw(Ta).
But
—w(Ta) = =(v(Ta) x $1(Ta))/| ~ |

= ~(Tv(a) x Tf'(a))/| ~ |

= Tw(al,
Hence, f(T(a,B)) = Tf(a) + BoTv(a) + B|Tw(a)

= Tf(a,B),

Thus, B T = T¢.

Lemma 2,15, Suppose L is the boundary of p? \)EB,\J ves LJBr where

Bi denotes the i-th band. Let M be obtained by doing a sequence of equi-

variant surgeries, as above, one surgery for each band, Then M/O(1) % 53

and the fixed point set of the action of O(I) on M projects to a subset
of 83 isotopic to L.

Proof. It suffices to check this for a single surgery. Suppose L
is the boundary of % U B. It is easy to see that

M/OCI) % (S° - |n+(3—cé||))k,@ (3-cel i)
3

’\Jso

To prove the second part, let

| 2 i

F, o= Fix(T: M+ M), F = Fix(T: 0% x s! » 0% x shy,

! 2

Then
FZAfWF(“o'O‘Bo{?)l|“o| Srl, B =]} = D' x s”:W

Note that each component of F2 deforms across embedded disks D2 x S° to

the boundary S' x Sl. Now
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F, = st - LECIGRIPEVIR: where  Fy = Fix(T: st x 02 > st x 09,

2
But f(Fz) deforms onto two paths on 3f(Sl x Dz) in the upper hemisphere

given by f(+) £ v(+), Hence,

F

' st - int £(F0) VLD £ v}

3(D%2 UB) (see Fig. 2).

I

This completes the proof of the lemma.

st - int $(Fy) Q(s'-lm FF) {£(H) 2v(h)

Figure 2
r
. _ 4 k_) 2 |
Note that we have also constructed a 4-manifold N = D L/{i=|(D x D )i}

such that 3N = M, Let Ajyeesra. € H2(N) denote the homology classes repre-
sented by these handles,

If 2, = core of the i-th band B,, let Ei =%, - Te, as a chain on 52,
Then Ei is the chain corresponding to the i-th handle on N, Thus, if
<, > HZ(N) x H2(N) -+ Z denotes the intersection pairing, then
<ai,aj> = Z(EE, EJ) where & denotes linking number in 53.

Letting F denote the spanning surface for L, there is also the Sei-

fert pairing 6: H'(F) x H (F) »Z, Here 8(a,B) = 2(a, i*B) = 2(ixa,B)

where iy = normal push in +z direction on 02 and in +w direction on the
bands;
i* = normal push in -z direction on D2 and in -w direction on the

bands,

Note that if a, = £, - d, where d, denotes any path from f.(0) fo

f,(1) in D2, then {aili = I,ee.,r} is a basis for H (F).
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Proposition 2.16, <ai,aj> = e(ui,aj) + e(aj,ai). Thus, if

(Vij) = (e(ai,aj)), then the intersection matrix for N is V + V',
Proof. Note that F' = T(F) is another orientable surface in 53.

The boundary of F' is a link which is a mirror image of the link L.
Regard T: H, (F) ~ H(F'). Define i* on F' by i*(Tp) = T(ixp). In

this sense Ti, = i*¥T. Using 6: H (F') x HI(F') +Z, we can speak of
6(Ta,TB) = 2(Ta,i*TB) = 2(Ta,TiyB) = %(a,iB) = 6(B,0). Let @ and B

be cores of handles with @ = £ - T2, B = &' = T2'; a = & - d, B = 2' - d',
We may assume that d and d' lie on the boundary SI of Dz. Then, since

points of Sl are fixed by T, a = o = Ta, B = B - T8,

2(a,B)

2(a=Ta,B8-TB) = 2(a=Ta, i*(R-TB))

2(a,i¥*B) + 2(Ta,i*TR)
‘= 2(a,i*TR) - 2(Ta,i*R).

Since o and B lie in the exterior of 52, Toa and TR lie within it,

1l

Thus, 2(a,i*TB) = 0 = 2(Ta,i*p).

1]

Hence, 2(a,B) = 2(a,i*B) + L(To,i*TR)

1

6(a,B) + 6(Ta,TB)

8(a,B) + 6(8,a).

This proves the proposition.

R|

b\
Bi

Thus, although this construction of M and N is seemingly quite
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different from that of Chapter |, the algebraic results about it are
the same. In fact, this is really another version of the construction
in the earlier chapter, Let M' denote the usua! construction of the
double branched cover, obtained by splitting 83 along the spanning
surface and pasfing;

Lemma 2.17. M is M' in disquise.

Proof. The surface F consists of D2 together with bands attached

to Sl and extending into the upper half-space exterior to 82. Let

fi: SI x D2 > S3 be the maps corresponding to the bands. Let

M=s - IntUt.(s' x 09}, Then M = T U W, where M_ = M N D>,
M, = M A Exterior(D>). It is easy to see that each of M_ and M; are

homeomorphic to 53 split along F, and that the process of doing the

2

surgeries, i.e.,, forming M V{U (D x Sl)i} corresponds to pasting M_

to ﬁ;. Hence, M is really the usual construction M!.
This completes the sketch of the three dimensional case. The

next section outlines the generalization of this construction which

produces O(n)-manifolds by equivariant surgery on 82n+l.

3 N S2n+l

B. View S via (xo,xl;yo,y') > (Xo’xl’O""’O;yo’yl’o"""O)'

2 |V|2 = |} with 0(})-action

2n+|

Here S° = {(x,y) ¢ R® x R2|[x|2 +

n+l x Rn+'llx|2

T-(xo,x‘;yo,yl) = (xo,-xl;yo,-y'). ) = {{x,y) ¢ R +

|y|2 = 1} with O(n)=-action
g.(xo’xl""’xn;yo’yl""’yn) = (xo'g(xl”"’xn);yo’g(yl""’yn))'
s = {(x_,0;y ,0) e 57},

o o

The path f: [0,1] » 5> such that £(0),#(1) € 5! may be regarded

2n+i

~as f: [0,!]:-»52n+l. Let x = f{0,1]J < S . Let G(A) = 0(n)ex,  Then

n-|

since O(n)ep ¥ S for p e A, p # £(0),f(1) and O(n)+£(0) = £(0),
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O(n)+f(1) = (1), one sees that G(A) X s, in this way one obtains

n 2n+1

an embedding ?: S =+ 5 . Similarly, by using the vector fields v

and w, one extends this to an O(n)-equivariant embedding

n n+i S2n+| 2n+i 2n+i

Fros" x p™t . 1EM is the manifold obtained from S

by doing a sequence of surgeries corresponding to the bands on a span-
3 2n+i 4 2n+i

ning surface for a link L € $”, then M /0(n) = D" and M is an
0(n) link manifold in 82n+2(L)'

As in the three dimensional case one also obtains a manifolid
NZNt2 such that aN°"*? - M2n+|. NZF2 is parallelizable for n 2 |,

(This follows from the same argument as in [7, page 211].) Hence,

2n+i
M € BP2n+2'

Letting Ai be the core of the i-th band, a;, as in Section A,

6 the Seifert pairing for F in 53, Erie [7, page 197] shows:

Proposition 2.18. #(6(A;),601 ) = Blay,a,) + (-l)n+l9(aj,ai)

2n+! 2n+i

has intersection form V + (-I)n+l

(2 = linking in S ). Hence, N v!
where V is the Seifert matrix for F in 53.

Remark. The proof of this proposition depends on some specific
case checking in three dimensions, Thus, it does not generalize di-
rectly for higher dimensional orbit spaces. It is very likely, however,
that most everything done for orbit space D4 will carry over for orbit

space 02k with fixed point set embedded in codimension 2 in aDZk. See

Chapter 11! for a special case of this conjecture,

C. Recall that manifolds in 82n+2 corresponding to a given link
L CZS3 are also determined by a map o: 83 - L= Sl (see Section 3),

Specifying such a map. is equivalent to specifying an orientation for -

each link component, Let M%n+' = manifold in 82n+2 constructed by
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pasting bundles with pasting data o, M§n+' = manifold in an+2 obtained

. . + . . s
by equivariant surgery on 82n ! using an orientable spanning surface

whose oriented boundary is the link L with orientation specified by o.

Proposition 2,19, Under the above hypotheses MI and M2 are O(n)-~

equivariantly diffeomorphic.

Proof. To check that M%n+l is equivariantly diffeomorphic to

M§n+l, it suffices to check this for MI3 and MZ3 under the corresponding
22 action, fhis is the case since pasting data for the 2=fold branched
cover is the same as pasting data for the higher dimensional manifold
and in both cases one has inclusions:

M13 - an+' 23 M§n+l

However, since we have identified the usual construction of the
double cover with that obtained by surgery, it will suffice to examine
the ordinary double cover,

Given 33 - L —E—>Sl, form the pull-back

M————— 5!

l l¢ dix) = x2

2L —9 5 !
M is the double cover of 53 - L corresponding to o. Its completion to

a branched cover is M|3. M23 is identified with the manifold obtained

by splitting 83 along o-l(x) for x a regular value of ¢ and pasting
two such split 53'5 together, Hence, M23 is also the completion of M.’
2n+lr M2n+|

| .and M, " are diffeomorphic. .. . R B

Corollary 2,20, 82n+2 C'BP2n+2'

WTM@,M
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+
Proof. Any element of 82n+2 is a manifold an |. Since
2n+| 2ntl .
M) X M,” < BP, .5, This proves the corollary.

D. Knowing that 82n<: BPZn’ it is natural fto ask how large a subset this

B4k =

for n odd. Thus, by indirect means, one has the result that every ele-

forms. We will show that for k > |, BP4k and discuss the case Bn
ment of BP4k admits a particularly nice orthogonal group action.

LeT?SLZH = the set of diffeomorphism classes of paralielizable
(n-1)-connected 2n-manifolds with (n~2)-connected boundary.

For n even we know [33] Tha+f%/2nlis in 1-1 correspondence with
equivalence classes of even symmetric bilinear forms over Z (via middle
dimensional intersection form),

Definition, Let A be a symmetric square matrix with even entries
on the diagonal. We say that A is of link type if no row contains more
than one odd entry,

Lemma 2,21, If A is of link type, then A = V + V' where V is a
Seifert matrix for some link L C:SB.

Proof. Given the matrix A, the lemma will be proven by construct-

ing a surface F as a disk with attached bands, such that if V is the

Seifert matrix for F, then A = V + V', Thus, we want a surface F with

n bands, for A n x n, Let a; € HI(F), i =1l,...,n, be the homology
ciasses corresponding to the hands, A = (aij)' Then we require
aij = e(ai,aj) + e(aj,ai). First, some observations:

) a;; = 29(ai,ai) specifies the twisting of the band corresponding
to a.

2) e(ai,aj) for i # j is independent of the twisting of the i-th

and j=th bands. It is specified by the embeddings of their cores.
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3) Consider the two points of intersection of a band core with
DZ. Call these the feet of the band,

Choose an orientation for the disk and therefore for its boundary.
Given two points p,q ¢ Sl = 302 dividing SI into unequal segments, let
Lp,q] be the smaller segment. We say p < q if, when this segment is
oriented from p to g, the orientation agrees with the orientation of SI.

Assume that the feet of each band divide S' intfo unequal segments.
If p and q are the feet of a band with p < q, we say that a point x is
between p and q if x € [p,q].
| 4) Letting v(a,a") = 6(a,a') + 8(a',a), note that we can obtain
Yla,a’) = odd by planting one foot of a' between the feet of « and ad=-
Justing the linking accordingly. (See Fig. 4.)

5) One can obtain y(a,a') = even by keeping both feet of a' out
trom in between the feet of a. (See Fig. 5.)

We wish to show that one can make all of these indicated adjust-~
ments (foot placement, linking, band twists) without any one of them
interfering with any other.

Induction Hypothesis: The lemma is true for all matrices A of link

type and size r x r for r < n, A=V + V' where V is the Seifert matrix
for an orientable surface F realized as a disk with r attached bands.
The homology classes of the bands are represented by a. € HI(F)‘ By the
feet of o, we mean the feet of the i~th band. Assume that the feet of a
band are never both placed between the feet of another band. Assume
also that if y(a,a') is even, then a has no feet between the feet of a'
and vice versa, If y(a,a') is odd, then each band has one foot between

the feet of the other.

Case I. IfAis | x|, A= (a), take a disk with a single band
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having a half-twists, This obviously satisfies the lemma and the in-
duction hypothesis,

Case |l, Suppose A = (aij) is (n+1) x (n+l) and of link type. Let

A = (aij)’ i =n, j 2n. Certainly A is of link type and, therefore, we

may apply the induction hypothesis. Since an+l,j is odd for at most one

j» 1 & j 2 n, choose the feet of « as follows: Let p be a point in

n+|

between the feet of a., if a is odd, and choose g > p such that q
J

n+l, j
does not lie between the feet of any band. Then p and q will be the
feet of a . Note that such p and q can be chosen since a . = odd
n+i n+l,j  —

and, hence, a; | = even for | 2 k S n (since A is of link type). There-
, 2ver

fore, no other feet stand between the feet of aJ nor do the feet of aJ
stand between any feet (this follows from the induction hypothesis).

I f an+|,j is even for 1.5 j S n, then simply choose p < q sucﬁ that
p énd q stand outside the feet of all the bands. Again, p and q will be
the feet of LR

Now construct the core of the (n+l)-st band by first doing the odd
linking with aj (if there is such) without creating any linking with the
other bands. This can be done since the linking can be done locally in
the neighborhood of a band. If there is no odd linking, jusT embed an
arc from p fo q such that there is no linking with any band.

Finally, change the arc by cutting smali segments from it and re-

placing these by segments linking the a; so that a = y(a

n+i, i el %)

All of this can be accomplished by our remarks. The result is the con-
struction of the core of the (n+i)-st band., Now thicken this core into

a band and introduce an+| e half=twists., The result is a new surface
,,’ . - -

'Vééffsfyihéw+He induction hypothesis and such that aij = w(ai,aj) for

i S ntl, j 5 n+l,
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Hence, the lemma is proved by induction.
Remark. The process outlined in the lemma is illustrated in

Figure 6,

N %" o @}"‘ 8(a,a’) = 0
*@Z}(' 6(a',0) = |

»
R
~

Figure 4
-4
o’
yla,a’) = 6(a,a’) + 6(a',a)
=1+ |
=< _ Vla,at) = 2
Figure 5
A=16 |
|
4 2 =2

__ Figure 6 , , e

Lemma 2,22, Let A be any symmetric square matrix with even entries
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on the diagonal. Then there exists a unimodufar matrix P such that PAP'
is of link type.
Proof. A is a matrix overZ. Llet K = (EU.) be the matrix of mod-2

residue classes over 22. A matrix over 22 will be said to be of link

type if no row contains more than one non-zero entry, Thus, A is of

link type - & is of link type. However, over 22, the symmetric matrix

A is congruent to a matrix B of the form

- B = 0 . s 0 i
N S B = PP
o ... 0 - where P is invertible over 22.
I 0. .. 0

Let P be the matrix of zeroes and ones over Z such that P = P, Since P
is a product of elementary matrices each of which corresponds to changing
a8 row by adding another row to it, it is clear that P is invertible over
Z, hence, unimoduiar. Thus, PAPT = FAP' = B, Hence, PAP' is of link
type, proving the lemma.

Definition. Let Nzn(L) denote the manifold whose boundary Mzn-'(L)
is obtained by equivariant surgery on SZn-I to produce an O(n=1)=1ink

manifold corresponding to the link L CLSB.

Proposition 2.23, For n even,>2 any element of ?¢én is represented

2n 3

by a manifold N°"(L) for some link L < §°,

Proof. N e%n = N is represented by the equivalence class of
its intersection form. |If Nl and N2 have intersection matrices A',A2
such that A2 = PAIP', P unimodular, then NI X NZ’ Any symmetric matrix
with even diagonal entries is realized by a manifold insyL ne Thus,
given N e;y%n, let A.=7jnter59c+ion matrix., Choose P unimodular such

that PAP' is of link type. Then the previous lemma implies that there
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is a link L ©S° such that N°™(L) has intersection matrix PAP'. Hence,
N N2,

Corollary 2,24, BP

it}

4k B4k for k > 1|,

Proof. BP4k = 3 4K

Remark., If n is odd, then an # BPznu In fact, since Nzn(L) has

intersection form V - V! = A where A = intersection form on the spanning
surface for the link, it follows that Mzn_'(L) has no torsion in ifs

homology groups.

E. The Diffeomorphism Classification

Recall the classification result of Chapter O, 1If n is even and

TRl BP, then we have M = 2" ¢ H (N) x H (N) ~Z, the intersection

pairing, b(f): TH _ (M) x tH (M) > Q/Z, and q(f): TH__ (M) > Q/Z the

|
linking'form and linking quadratic form,

2n-| 2n=-1

Lemma 2.25, Let M =M (L) for L c S°. Suppose M=l

(L) is
constructed from a spanning surface F for L and let

f: HI}F) x HI(F) + Zbe the bilinear form of L, ffx,y) = 8(x,y) + 8ly,x).
Let b(L) and q(L) be the corresponding linking pairing and quadratic form,

Then, for n even, we may identify f with the pairing Hn(N) x Hn(N) + Z,
2n

N = N“ML), and b(L) = b(f), q(L) = q(f).

Proof. This follows directly from the fact that Nzn(L) has inter-

section pairing V + V',

Theorem 2,26, Let n > 2 be even., Then

) BP, =B, , the set of O(n=-i)=-link manifolds.
Zn 2n

2) Given M2n-l € B, corresponding to a link LC SS, then the diffeo-

2n
2n-1 . : X . . 3
~ is determined by -invariants of-the link L-&S7 - In

. R . 3 3
particular, suppose given MI’MZ € an with MI < LI < 57, M2 > L2 < S,

merphism ftype of-M
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Suppose that q(LI) = q(L2) and cok(f(Ll)) = cok(f(Lz)), then, if
c(L') 2 o(Lz), one has
My %M, # g (ol = o(L))es

where L is the Milnor sphere. (If cok(f(Li)) have no summands of order
2 or 4, we may replace q(LI) = q(Lz) with b(L') = b(Lz).)

Proof. This follows immediately from the lemma and Theorem 0.5.

Remark. Note that if f = f(L), then cok(f(L)) is an invariant of
the link L. The form f(L) depends on the choice of spanning surface.
However, we may assume that the spanning surface F is derived by Seifert's
algorithm for a planar projection of L. Then, fI and fz differ at most

0

by direct sums with U = [I é] if fl and f2 are both bi!inéar forms for L,

Thus, fl QUD ... U = f,®U® ... ®U. Hence, cok(f ) = cok(f,).

| 2
Also, if N|(L) and N2(L) denote the corresponding handle-bodies inf*één,
then, since direct sum with U corresponds to connected sum with

s" x s"-(small n-disk), we see that N (L) % 3N, (L), This is another
way of proving that the diffeomorphism type of Mzn-'(L)~is independent

of the choice of spanning surface.

Theorem 2,27, let MI’M2 € an, for n-odd, n > 2, Suppose

-— P 3 = -
M, = M(L'), M, = M(Lz), L,y © 57, Let by = w(Li) dencte the Z,

quadratic forms for these links. Suppose that Ll and L2 have the same
number of components, Then
= G
1) If n=30r7, M' M2.

2) 1f wilrad(wi) 0, i =1,2, then

3

My

3) 1f wilrad(wi) 0, i =1,2, then

M2 # (c(wl) + c(wz))°zl,

— "
MI ~ M2 ] M2 # Z'

where ZI = Kervaire sphere,
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Proof. Again, this is an application of the generai classification
Theorem 0.6 for BPZn' The only point to check is that the Zz-quadrafic
form of the link L is the quadratic form associated with the skew form
on H (N(L)). However, Erie [7, page 215] shows that if x is the class
on the Seifert surface corresponding to a band and, hence, corresponding
to a class x € Hn(N(L)), then %-f(x,x) =0 or | according as x has
trivial or non-trivial normal bundle, We showed that (L) (x) =.%-f(x,x)
in Section |.

These two theorems generalize Hirzebruch's theorem on the relation
between the signature of a knot and its corresponding knot manifoid.

Notation. In the examples to follow we refer to 2.26 as Theorem A

and 2,27 as Theorem B,

F. Applications and Examples

1) Let Lk bé the (2,k) torus link as in the example on page 55. Let

2n-
M = ML) for n 2 3, odd. Then, applying Theorem B to the link in-

variants listed on that page, one finds:

MI x S2n-| M5 A zZn-l

Y
M2 ~ T M6 rT " ..
M3 % z2n-| M7 % S2n-—l k+8 k
M, % (s™t o« sy g g2l Mg sP=t « g"

where T = tangent sphere bundle to s" and.Z is the Kervaire sphere,
This periodicity example is due to Durfee, He observed it in the

context of Brieskorn varieties (Mk ¥ £(k,2,2,.4.,2)). We include it

here because it fits very well into our link manifold context. In a

sense, the periodicity in the invariants of the links L, explains the =~ ~

k

periodicity in the list of manifolds Mk‘
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2) L2k is a 2-component torus link with a particular orientation.
~
Let L, denote the same link with the orientation of one of the compo-

nents reversed.
o0
- L4

A
It is easy to see that L2k has a Seifert surface F which is simply a

(

AN

disk with one band having 2k half-twists. Thus,

B: HI(F) x H'(F) +Z, 6(a,a) =k

i

2k,

f2 H (K x H(K) > Z,  f(a,a)

<a,a> = 0, where a denotes the generator of H'(F). The Z, quadratic

form of ﬁk isZ?(D (the zero form on the I-dimensional Zz-vecfor space),

2n-|

Hence, by Theorem |, M (fék) % 5" % s" for n 2 3 and n odd. Thus,

when L2k is replaced by f&k' the periodicity collapses from 4 to |.
2n-|

For n even, the manifolds M (L2k) are not at all periodic. In
fact, since f = [2k], we see that Hn_‘(Mzn'l(fék)) = Z,, when n is even.
Adn- -
Let Mgz e the S2n ' sphere bundie over S2n with characteristic

element kt where 1 ¢ "Zn-I(SO(zk)) is the characteristic map for the

- N
tangent bundle of S2n '. Then M2k is the boundary of the corresponding
disk bundle, which has intersection form [2k]. Thus,

M4n-l(-A

by Theorem A.

For n =1, M3(L2k) is a standard lens space as can be seen directly
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from the description of it as one surgery on 53.

It is beguiling to note that, in the last analysis, all of these
differences between M(Lk) and M(EL) arise out of the fact that two links

of the type pictured below are of different [ink symmetry type.

D o

2n-1

3) Note that if M (L) € an for n = 3 or 7 and L has r+! compo-
nents, then Theorem | implies that
MR ™ kg™ g s" x 5T g oo # 8" % S™) where there are r

terms in the connected sum. Thus, for example, letting
K(r) = (52 x 53) # oo # (32 x 53), r terms, then K(r) admits a vast
collection of inequivalent 0(2)-actions.

4) Borommean Rings. Recall that the Borommean rings have only one

symmetry class (see Section 2). Hence, there is only one Borommean
ring manifold in each dimension. To analyze it, we can use any conven-

ient projection and orientation for the Iink.
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8( ,){ a b ¢ d
a I 0 (I
b -1 I 0 !
c 0 0 - l
d 0 0 =i

Thus, V is the matrix above., The pairing f(x,y) = 6(x,y) + 8(y,x) has

matrix M = V + V', M=1 2 -1 1 =i

-1 0 l

! ~2 |
-1 | | =2
- _
A simple reduction of M reveals that cok(f) = Z, @>Z4. To find the
]
rational congruence class of M, note that given M = [é g d, A invertible
~A=lre

and A and B symmetric, then, letting P [é A IC ], one has

A O
- P'MP = - .
0 [-CA”'C'+B]

2 =l -4 -2 -}
I 2]®("3‘)E--| 2j .

Here PIMP = [
Thus, ‘ ol(l) = 0,

—
Note that P = | 0

—

-2

3
-1

0 | T
|

|

3

-1

3

6 0o 0

0 0 0 |

S pa—

is, in fact, unimodular over R(2). Hence, the Z2 quadratic form yiL),
being the mod-2 reduction of f, is given by y = ¢, @ n, ®n_.

A=V - V' is easily seen to be congruent to [_? (')] @ [0] @ [0] over

Z, Hence, for n odd, the corresponding manifold in an

is

2, # " ks p ™ xS Formatiy,

Proposition. Assume n 2 5, n odd, Z the Kervaire sphere, then
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o4 "« s # o(s"! & s™) admits the structure of an O(n)-manifold

]
with orbit space D4 and fixed point set corresponding to the Borommean

rings in 604 = 53. For n = 3 or 7, the same statement is true for

! n

T i VS

(S ).

5) Let L be the link pictured below:

v, w2 w w w5 w6 wo o 8

v, 0 -l 6 0 0o ¢ o0 o0

v, 0 b=l 0 0 0 0 0 oO

Wy 0 o I -1 0 0 0 o0 o

- Wy 0 0 0 _— 6 0 o0 o0
Wy 6 0 0 o | -I‘ 0O 0 0

We 0 0 0 0 0 0 o0 0 o

W 0 0 0 0 0 0 -l 0 o

a I 0 0 0 0 0 =1 =i 0

B 0 0 0 0 0 - | 0 -

M=V + V' is the matrix of f. A lengthy but straightforward computation
reveals that M is congruent to E—(I) _é] @[_? -(I)] @ l:_? -(;] G:')[? (l)] @ [0]

over Z. Hence, cok(f) =Z, o(L) = 0, Thus, for n even, n > 2, Theorem A

2n-|

implies that M<™™ ! (1) % sM=1 4 N

6) Let L be the link below.

(-

]

with the orientation of one component

’ reversed,

)

[

This is, of course, the previous example
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OOOOI—:'O
OOOI—'OO
OnUI_..I.OOO
o - - O O O O

+1

Replacing W, by Wy for convenience, we see that M = V + V! has the

following form:
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An easy check reveais that cok(f) = Z, A somewhat long but simple
computation shows that, rationally, M is congruent to
diag(2,3/2,4/3,5/4,6/5,7/6,8/7,9/8,4/9,-l/4,0)._

Hence, o(L) = 8, Thus, Theorem A applies to show that

2n=-|

M (L %z # (" x s") where I is the Milnor sphere, and n even 2 4,

Remarks. a) It is interesting to note that the change in orienta-
tion between the last two examples is refiected in the addition of an

exotic sphere.

2 2 2

nel _ 2 s 24 . 2n+|
b) Let K = V[(zo+zI )z, LRI I e z, iNns

e Ld
Then KZn-I is an O(n=1)-manifold with orbit space homeomorphic to D4.

However, since (zo + zlz)(zo2 + zlb) is not weighted homogeneous, we can-

not assert that the orbit space has the usual smoothing. |f this were
the case, then the corresponding fink would be that of example 6 and one

could conclude that K & +z # (5™ «x s,



CHAPTER 111
ALGEBRAIC BRANCHED COVERS AND DEGENERATION

In a sense, this chapter may be regarded as a continuation of the
last sections of Chapter |. We take a second look at algebraic branched
covers and, specializing to weighted homogeneous polynomials, prove the
homological periodicity result (Corollary 1,24) of Chapter | by deriving
it from a lemma about the monodromy of xk + f(z). Then, by deforming
cycles in Fk = {(x,2) € Cn+|lxk + f(z) = 1}, we calculate the intersec-
tion and Seifert pairings in terms of these pairings for F = {z|f(z) = I},
This leads to an inductive procedure which allows one to compute the
intfersection form for .E x?i + f(z) in terms of the Seifert pairing for
f(z). In particular, é:; may recover the intersection form for a Bries-
korn variety. These results about intersection forms parallel the

results obtained via branched coverings and O(n)-actions. They are

suggestive of more general theorems about group actions,

. More on Algebraic Branched Covers

Let z € C" and f(z) be a polynomial with an isolated singularity at

the origin. Choosing ¢ > 0 sufficiently smali, let

n+|l k

My = Vix = £z 0 2™ ang M= {0x,2) e ™K = g,

[x|2k + [zl2 = €%} for k 2 I an integer. Define p: M, » M, by p(x,z) =
(xk,z). Thus, p is a k-fold cover of M‘ branching along

K= {(x,2)|x = 0 = f(2)}.

87



88

Lemma 3.1. M % Vix® = £z N si”*'.

2n+i

Proot. Letting K = V(x - #(z)) N s

, hote that the following

diagram commutes:

MK-K___D__,»MI-K-—-—E—» s2m= g
lw" jw' /lp/
Ap r’e

S —— S'

where y"(x,z) = x/|x|, v'(x,2) = x/|x|, v(z) = £(2)/]f(2)| and

Ak(x) = xk. Hence, by the previous section on branched covers, we may

identify K - K % M - K. Thus, it suffices to check the behavior of

p: Mk > M| on a tubutar neighborhood of K,

Let N = N(K) = {(x,z) ¢ M,IIXI 2 8} for 0 < 8§ << g,
R=p7tan = 10,20 e m | [x]® = 61,
A

ﬁ S Y D2
§ A

: _ glx,z) = x

lp lp g(x,z) = x
2 pi{x,z) = xK

N—---—q———‘-=>D6

Choosing 6 small enough so that q is regular, we see that p: N+ N may

be identified with K x D2 -+ K x D2, (a,b) » (a,bk). Hence, we may iden=-
tTify Mk and K,

,|xl2k + [zl2 < 82} where

Letting F, = {(x,z)lxk - f(z) = &

0 < &8 << € we may idenﬂfyﬁ"k as the k-fold cyclic branched cover of

F=F. Since 3F %M, it follows that oF, % M %K,
Lemma 3.2. F} ¥ Din.
Proof. B, = C(V(x - f(z2) - &) N si”*') = C(s‘z”") = D‘Z‘n.

Remark., Thus, K may be regarded as the boundary of the manifold

obtained by taking the k=fold cyclic covering of D2n branching along a

2n 2n-|
»

submanifold FC D IF R KCS . Note that this description agrees
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with the general construction in the first chapter. Note also that K is

the k-fold cyclic branched cover of Sin-' branching along K and
Sﬁn_' - kY Sl is a fibration of the type considered in Chapter |;

hence, Proposition 1.23 applies to Hy(K). However, in this case there
is even more structure since the complement of K in Sin+l also fibers
over the circle. This leads to an independent proof of Proposition 1.23
at least in the case of weighted homogeneous polynomials,

From now on we assume that f(z) is a weighted homogeneous polynomial.

Recall some facts about weighted homogeneous polynomials:

D 1f K= V(O 52" and £ is the fiber of the fibration
s?ml ok _29.51, then F is homotopy equivalent to {z € C"|f(z) = 1},
The fibration is equivalent to the fibration E-—-i-i;->$l where
E={zeC"||f(z)]| = I} and ¥(2) = arg f(z). Thus, from now on we may
regard F = {z e C"|f(z) = 1}.

2) Given that f is of type (WI’WZ""’wn)’ the monodromy for E,

—

h: F +F, is given by h(ZI'ZZ""’Zn) = (WIZI'WZZZ"“’wnZn) where

|
it

exp(2mi/u), § = 1,2,...,n. Hence, if F(x,2) = x + £(z) and

E - S' is the associated fibration with fiber Fk = {(x,2) éCn+'IF(x,z)=l},
then H: Fk +IFk is given by H(x,z) = (Wx,h(z)) where W = exp(27i/k) and h

as above,

3) The full fiber ﬂ'-'k is a branched cover of fF‘ with branch set

F={(0,2)]|f(z) = 1}, n:Fk-*FP ﬂ092)=(X&ZL

1/w |
4) Recall that pxz = (p / ‘z,,...,o /w"zn) and flpxz) = pf(z),
Lemma 3.3, F“’H’I via z + (0,z) for f(z) = | extends to an inclu~

sion cF *FF'.
Proof. Regard cF = I x F/{(0,2) ~ (0,z")}. Map (p,z) ~ (l-p,px2),

0 % p =1, Note that (l=p) + f(pxz) = l-p + pf(z) = |=p+p = I.
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Lemma 3,4, The above inclusion cF -+ Fl is a homotopy equivalence,
Procf, This is obvious since E} has the homotopy type of Dzn.
Now m: H—'k-—’lFl by wix,z) = (xk,z). Hence,

I/k

meR) = Ll aep) M oxz) |0 S S ke, 05051, 2 e F).

Let x'cF = {(wi(l-p)l/k,p*z)lo Sp 51, zeFr (w=exp2ri/k)). Thus,
n°'(cF) = t:/xicF. By the same arguments as in Chapter 1, the inclusion
n—l(cF) +f%:ois a homotopy equivalence, Hence, if {ai}:=l is a set of

(n-1) spheres imbedded in F which form a basis for Hn-l(F) (recall that

F has the homotopy type of a bouquet of spheres), then we may regard

cai¢>cF‘>lF' and chai‘-'-chFC FFk. Let ai = ca, v ><<:ai and ><Jozi =

i i+

chai\J x ca,. Then B - {xJai[j = 0,000,k=2, i =1,2,...,r} is a

set of spheres imbedded in Fk forming a basis for Hn(Fk). Note that as

an element of the chain group CnGFk), we should write xJai = chai -

j+
xJ ’c.ai. Regard c: Hn_I(F) > CnﬂFk), c(ai) = ca, as a homomorphism

of groups. h: F + F induces h: Hn_l(F) - Hn— (F). Let h denote this

|

map and also the matrix of the map with respect to the basis {ai} of

Ho_((F). Similarty, H: A H, GF .
Define h(ai) = chai - xchai.
Lemma 3.5, H(xjai) = xj+!h(ui).
Proof. Hlcap) = H{(y,z)|(y,2) ¢ ca.}
= {(wy,hz)|(y,2) ¢ ca;}
= x{(y,h2)|(y,2z) ¢ ca,}
= x{ (=) hoxz |02 p 51, 2 ¢ a., fz) = I},
But hip*xz) = pxh(z),
Hence,  Hlca) = x{((1-p) X oxn(20)]0 2 p 5 1, 2 ¢ o)

xc(hai).
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g+l

Thus, H(xJai) = H(chai - X cai)
= xjH(cai) - xJ+'H(cai)
= xJH(chai - xchai)
H(xjai) = xj+lh(ai).

Corollary 3.6. With respect to the basis & for Hn(Fk), H is given

by the matrix
r- sty

[Hlg = 0
? OhQ

L:h -h =h . .. iEJ
Thus, the monodromy H: HnﬂFk) -+ Hn(Fk) is completely determined by h and
K.

Conjecture. This resuit about the monodromy of xk + f(z) is true
for any polynomial f(z) with isolated singularity at the origin.

We now use this result to examine Hy(K), K = VixK + f(z)) N 32n+ia

Proposition 3.7. Llefting A = the subgroup of Hn(Fk) generated by
{ai}, there is an exact sequence
0 > H (K) > An s Ho_ (K) >0
where 2 = I + n + h2 + ... 4 hk-l.

Proof. Consider the Wang sequence for the fibration 52n+| - K~ S!.

0 —>H (5 =1K —>H (F ) —12H ol (F )e—sH (S = 1K) —> O
n+1 n k n k n

?‘ Alexander Duality U
H™ ! ak) H™ 1K)

Zl Poincare Duality ?‘
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' I-H
Hence, 0~ HnOK) -+ HnGFk) ———-a-HnGFk) > Hn_'dK) -+ 0,
By the previous corollary
[1-Hlg = |1 -n ]

~h

h h oo h+£J

Claim. The above matrix is equivalent to I + h + .., + h*=' via row
and column operations,
Proof of claim.
=X r; -X
I -x | =X
~ .
- ) -X
2
X X o . . I¥x 0 >x+x™ x . . . b¥x
! 10 3
| |
=y
r I =x I
~ l - No o ~
|
2 2 K=1
XX X ... X (l4x+x™ + ... + x )‘J

Since row and column operations amount to basis changes in Hn(F ), the
proposition follows from this claim,

Remark. As noted before, this proposition follows from another
argument unrelated to the monodromy. Once again we get the corollary
that H*GKg) = H*“Kg+d) when K is a homology sphere,

u<g =vix9 + A 2™ and d = order h).

2. Degeneration Technique

n+l| k

Consider'Fk = {{x,z) ¢ C x + f(z) = 1} for f weighted
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k=1

homogeneous. We showed that Ldlx'cF +!Fk was a homotopy equivalence and
i=0

in this manner obtained information about the topology ofka and its

"boundary™ K = V(xk + f(2)) N 52n+l. Now consider this approach from

another viewpoint, Let p: Fk + C, p(x,z) = x, Then

_|( F for x~ £

x) = .

P V) for xX = 1

Recall that cF = {((I-o)l/k,p*z)lf(z) =1, 0=%p 21}, Thus,

1]

(x'cF) = the line segment from 0 to w' where w
p g
w®

exp(2mi/Kk).

The cones which piece together to generate HnGFk) arise from degen-
eration, as cycles on F collapse in approaching the singular fibers of
the map p. This suggests a method of calculating the intersections of
classes in Hn(Fk).

-Loy.

Let @ = ca - xca, b = cB - xcB € HnﬂFk) with a,B € Hn(F), F=p
Thus, p(a) = p(b) = union of the line segments from 0 to | and 0 to w.
Imagine deforming b until it lies over the dotted lines in the figure

below, Call this d(b),.

Then a and d(b) intersect only a+ two points. We may then calculate
these intersection numbers directly or by referring them to iinking num-
bers in spheres about the points of intersection,

Lemma 3.8. Given a path a: [0,1] > C and f(z) a weighted homogen-
eous polynomial, z € C", then there is an induced path &: [0,1] > C"

such that f(&(1)) = a(*)-{(zo)u;gfrany specified Zé;

Proof. Suppose f is of type (WI’WZ""’wn)‘ Then given any y € C
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'/WI H/w '/W.

we may define yxz = (y Zyireensy nzn) where vy "is usually under-
stood to be a principal root. Here we can surely define a(t) = "a(f)*zo"
where it is understood that we take principal roots for a(O)*zo and
obtain the rest of the curve by analytic continuation.

Lemma 3.9. Suppose a: [0,1] + C as above and that a(+)X # | for
0 =+ < 1. Then there is a path y: [0,1] ~F, such that for

(x,2) € p"I

(a€0)), v(0) = (x,2z) and ply(+)) = alt) for p: Fk » C,
plx,z) = x,

Proof. Note that (x,z) ¢ p-l(a(O)) implies that x = «(0) and, hence,
xk £ 1. Define p(t) = (| - a(T)k)/(l - xk) and let p: [0,1] » c" as
above so that f(p(+)) = p(+)f(z)., Define y(1) = (a(t),p(+)). Need oniy
check that y(t) € Fk.

oK + @) = arn)k

+ p{t)ef(z2)
= (K = SR + 1) - e R/ - K

= £(2)/C1 = X = $(2)/5(2) = I,

Remark. Note that under the hypotheses of the above lemma we have
actually constructed a map B: p_'(x) x [0,1] > F., Blx,z2},1) =
(a(T),S(T)) with pB((x,z),1+) = a(t), If ok = I and of0,1] is a simpie

arc, then Image(B) = c(p™' (x)).

ve "
T
We will use this construction shortly to form the deformed cycles.
Note also that if a(f) =+, then B: F x [0,1] + Fk (F = p_'(O)) is
given by B((0,2),1) = (+,(1 - +F)xz).
—— BOF x [054D) = {0, (= 9% |0 s+ 51, £(2) = I},

Hence, B(F x [0,1]) = cF as described before.
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Observe that the tips of all cones under consideration consist of
the set {(w',O)li = 0,l,.e.,k=1}, Since intersection numbers may be

referred to linking numbers in a small sphere about the cone tip, it

is necessary to determine cfF f\Szn : where Sin-; is a small sphere in

Fk about (1,0) (similarly for (w ,0)),

cas R2n—~|
Proposition 3.10. One may choose S

that cf rxgin" = {z ¢ 2" '

about (1,0) ierk such
2n=~1

?

[£(2) ¢ RY}. That is, iIf K=WV(f)N s

=l - 4o the fiber of the fibration si“" - K-255!,

it

a2
then cF N Se
Proof, m: Ek > Cn, n(x,z) = z is a cyclic branched cover branch-

ing along F = {z]|f(z) = 1} < Cc", Since z = 0 is a zero of f(z), we

may choose 0 < € << | such that D "M F =¢. Then w-I(Dgn) is just k

disjoint copies of Dg and similarly for 1r-'(S§n_i

o) = {',00}, let gin-l = the copy of Sznnl surrounding (1,0),

)e Since

= (- ox2) [ $(2) = 1, 050 5 1)

i cF f\sz“’l__ﬁﬁ, {pxz]f(z2) =1, 020 % 1} A si”"
21
(z]#2) e RNy s2,
Thus, cF N §§”" % (2 ¢ 2” "$(2) e RY).  Q.E.D.

Next we deform cones, Let x € C such that xk # | and let

a: [0,1] > C be a path with no self intersections such that a(0) = x,

all) = w', Let C, denote the cone C_ = B(p—l(x) x 1),

|

Suppose that a(l) = |, We want to choose a so that COl is a suitable

_ deformation of cF. In particular, C_f Szn- = J, should be recognizable,

& -
Now J ~— n(Ja) and n(Ja) = {p(t)xz|f(2) = | - xk}(\ Sin I where
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p(t) = (| = a(T)k)/(l - xk). Suppose that near t = |, a(t) is chosen so

that | - a(H® = (1 = (1 = x5). Then p(+) = (I ~ 4) and
Jo B LU= Dezf(2) = 1 - 1N si”" ={z ¢ si"" - Klarg f(2) =

| ! |

arg(l - ) = ¢” (arg(l = <)) where ¢ Sin" - K=+ S is the Milnor

fibration. Summing this up we have:

Lemma 3,11, Let Ja = Cafw gin-l. Suppose a is chosen so that near
t=1, l=-ab®= -1 -x5. Then 3, = ¢ (argi = x*)) where
b2 Sin-' - K> 5' is the Milnor fibration.
Discussion. | - a(t)X = (1 - (1 = x5
= o = x4 10 - x5
So alt) = R+t - xk))l/k (principal k-th root).
Note that if we want a(l) = |, then we must choose x so that

0 <arg x < %—arg W,

# «
NG

'

o :

If x is chosen so that %-arg W < arg x < arg w, then xk will iie in the

lower half space and if a'(+) = (xk + () - ><k))l/k

, Then a'(0) = x,
a'(l) = w,

In the first case, C,N cF = {(1,00}, and in the second,
C i) xcF = {(w,0},

Now fo form an appropriate deformation of IF = cF ¢ xcF, let

x = e't, 12 Y
@ as above such that a(Q) = X\ all) =
X, = e't + "
a' such that a'(0) = X5 alt(i) = w,
X, = e't + e"i — B R
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a = Jjoin of the line from x to X, with a.
a, = join of the line from x to x, with a',
o 2 2
U
Define
X+
< d(ZF) = C, UC, .
X v o4 | 2

Remark, Given X and X, as above we have arg{i - x|k) < 0 and

arg(l - xzk) < 0. Also, it follows from the tast lemma that

C, f\'gin" = fiber of ¢ over arg(l - xlk) and C, N xgin-! = fiber of ¢
|

K 2

2 ).

over arg(l - x

Now given a ¢ Hn_!(F) represented by a sphere a embedded in
F = p-l(O), we have defined Ia = ca U xca < IF, Transport a to a cycle
a'c p“'(x) by trivializing the bundle p_'({+x|0 S+ 21}) and define
d(zra) = C“l(a') UCaZ(a').

Certainly Ia and d(Ia) represent the same homology class in Hn(Fk)
and given b ¢ Hn-l(F)’ we see that d(ra) and Ib intersect in only two
points,

Recall the Seifert pairing. Let % denote ¢~ ' (1) where
1 Sin‘i - k> s' as before. Then there is a pairing
9: Hn-l(q:) x Hn_l(@r) + Z given by 6{(a,b) = 2(a,i*b) = (i a,b) where
ix = transport to ¢! (pos argument) and i* = transport to ¢! (neg
arqument) .,

Note that F and %~ have the same homotopy type and given a < F have
corresponding sphere a = {p*z||p*z| = 1, z € a} in% . Thus, we may con-

fuse F with %,

Proposition 3,12, Given a,b e Hn“(F) as above, then

<ta,Ib> = 6(a,bl} + (—l)ne(b,a).
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- ar”
Proof. By the remark, we may interpret C, ﬂ%in b s i*7‘1,
|

A - A
c, N xsgn [ i;7r. Similarly, we may interpret C (a')N\'S = i¥*a,
2 !
C (a') N xS = ixa. Now
s )
2
<Za,Ib> = <d(Ia),lb>
= <C, (a') - Cy (a'),cb - xcb>
| 2
= <C_ (a'),cb> + <C_ (a'),xcb>
* *2
= Q(Ca (a') n g,cb NS+ l(Ca a') n k%,xcb )
I 2

= 2(i*a,b) + L(iyxa,b)
= (-D"2(b,i%a) + 2(a,i*b)
= 8(a,b) + (=1)"6(b,a),
Computations of the other intersection numbers go the same way.

Here is a sketch: Abusing notation, write Za = ca - xca, d(Ia) =

ci*a - xcigza. Then

<fa,xEb> = <d(Ia),xIb>

= <ci*a - xciya,xcb = x’ch>

= <=-XCiga,xch>

= <-ciya,cb>,
Whence <fa,xIb> = -g(iya,b)

= -%(a,i*b) = -6(a,b).
Similarly, <xzb,Za> = (- e(b,a).
Theorem 3,13, Let {al,...,ar} denote a basis for Hn_l(F) and

{xiZaJIO S i Sk=2,1s5jsr}= the corresponding basis for Hn(Fk)'

Let V be the matrix of 6: H_ (F) x Hn—I(F) +Z, e(ai,aj) = v.., Then

n-| P

the intersection matrix for HnGFk) has the form
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- -
N= Bv+ (-0 -V
DM v e et Ly
(-1l
-V
D"y oy (-|>”Y:J

Proof. This follows from the preceding discussion.
Note that this result exactly parallels the result that would be
obtained via branched covers. In the algebraic case actual computations

are often possible.

3. Examples and Computations of Intersection Forms

4

] LPE x2 + f(z) = 1, hence, N = V + (~])"r,

2 2 2 _ n .

2) F: Xpot Xt e+ 7+ f(2) =1, zeC, f(z) weighted homo-~
geneous, F: f(z) =1, 6 Hn-l(F) x H _,(F) > Z basis {ai}, i = l,0ee,r
for H (F), V = (v..), v.. = 8(a.,a.).

n-| ij ij i’

Proposition 3,14, Since each a; is an (n-l)-sphere embedded in F,

we may speak of Zkai = k=th suspension of a;. For each a; there is an em-
bedding of Zkai infF. The set {Zkai} forms a basis of Hopio ®)e
k K 2 2,172
Proof, Let I a = {(xl,xz,...,xk,f*z)|xi eR, } X, 21, t= (in e,

i=l
zea., The {Zkai} are a basis for H ., (F) since they are exactly the

cycles obtained by iterating the degeneration procedure, That is, begin

With x % + £(z) = I, Za = {(x‘,f*z)lx' € R,o..}. Then take f, (z) =

i |
2 . 2
X + f(z) and work with X, + f‘(z) cen o

Proposition 3,15, LetfF: x|2 + x22 + ... t xk2 + f(z) = | have

usual orientation as a complex submanifoid of Cn+k. Let

Nl{k={)+k(k=1)

777” = ("l) . Then

Kk Nt k=1

<Zka,z b> = u(8(a,b) + (=1} 6ib,al)).
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n+k-lv,)

n S2n--|

Thus, the intersection matrix forF is given by N = u(V + (~1)

where V is the Seifert matrix for the mebedding of F: f(z) =1 i

Proof., To determine <Zka,2kb>, fiber F over one of the variables,

2 2

say x Then ’ef'F}J X, T+ .. +£(z2) = | - 2 and

K | Xk |
C(Zk—la) = {(x',...,xk,z) € Ekalxk 2 0}
crz®lay = {0, eee,x,2) € Zkalxk < 0}.
Thus, ta = cz¥ v crebla,
£
<b—9
)
) N A

We can choose coordinates about p = (0,...,0,1,0) such that

F,: x 2 + ces t xi_l + f(z) = +2

|
Cr’ 'a: x; real, Ix.” = i, X 20 ...

Thus, we may regard the coordinates of this cone about p to be coordinates

for ca plus XppoeesXp o Thus, (ca,xl,...,xk_l) gives orientation for

ceily at p. Now dce ') has orientation (i*cb,i*x|,---,i*xk_g) =

(ci*b,-ixl,...,-ixk_'). Together these define an orientation for fF at p:

(ca,xl,.e.,xk_',ci*b,-ixl,...,-ixk_')

n(k=1)

= (~-1) (ca,ci*b,xl,.,.,xk_l,~ix|,...,—ixk_l)

n(k=1)_,_  k(k=1)/2

= (=1) -1 (ca,ci*b,x',ixl,xz,ixz,...,xk_‘;ixk_l).

k(k~1)/2

”(k").(_|) . Then the above shows that

Let u = (=)

«czka,csk i%bs = pecca,ci*bs

ue2(a,i*p)

ue6(a,bl.
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simitarly,  <c'zfla,crr® Vb = e ® a0
= e (=" (p, i%a)
T DL P T
Hence, <Zka,2kb> = p(e(a,b) + (-l)n+k"6(b,a)).
Remark. Let f: xo2 + xl2 + o0 + xn2 = | and let " denote the gen-

erator of Hn(F). Then the same method as above shows that

n(n-l)/IZ(l . (_|)n.|).

<™ = (-
Remarks. For k = | this proposition agrees with the previous discus-
sion, giving N = vV + (="',

fn=2and k2 I, then N = v + (=K

V! up to sign. The
intersection matrix depends only on three dimensional topology associated
with f(zl,zz). We treated this case more generally from the viewpoint of
O(k)=-actions,

The calculation suggests a generalization of the theorem on O(n)-
actions with orbit space p* (Chapter 11) to higher dimensional orbit
spaces.,

3) Generalizing 2) we pose

Problem A. Find the intersection matrix for

™ ., ™ Mk n
Feoxgm 4 x40 4 X, + f(z) = | for f weighted homogeneous, z ¢ C",
m. 2 2, in terms of the Seifert matrix for F: f(2) = |,

Problem B. Express the Seifert pairing forFFm: X"+ £(z) = | in

terms of the Seifert pairing for F: f(z) = |,

Note that B = A, Just iterate B to find Seifert pairing for F and
then automatically get the intersection pairing.

Let {al,...,ap} be a basis for H | (F), {xiZaJ} the corresponding

basis for HnGFm).
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8: H _I(F) x Hn_l(F) > Z

n Denote both pairings by 6,
6: H® ) xH(F)>Z

nom nom

Lemma 3,16, Let Fk have its natural orientation. Then

0(x'za,x'z0) = («N"Vea,p) 0

IA
1A
x
U
N

0(x' ~za,x'tb) = (-1"6(a,b) |

1A
A
=
1
N

and otherwise 6( , ) = 0,

In matrix form, letW = [ ex], V = [6]. Then

V=en"ty oy
vy
v
— v
Proof. LetE = {(x,z)|x + f(z) € S'}, $: E > S y 0(x,z) = x" + f(2),
Recall that this is equivalent to the fibration ¢: S2"! - kK » 5!,

e =
Fo=F=¢

(. 8: H (F) x H F) > Zmay be defined by 6(Za,Ib) =
L(iyZa,Zb) where & is linking number in E, ix = translate fiber of ¢ by
small positive argument. Let p: E » C, p(x,z) = x. Calil p(Za) the

"shadow" of Ia. Compare the shadows of iy,Ia and Ib.

To obtain e(za,Ib), regard

L(igZa,Ib) = <ciyla,cLb>

<Iciga,Icb>,
Let t+ denote the suspension coordinate, Then the above gives an orienta-
tion

(ciga,igt,cb,t) = (-)"*!

(Ciyb,cb,t,iyt).
This implies that <Icisa,Icb> = (-l)n—'<ci*a,cb>. Hence,

 eza,zp) = (="g(a,b).

It then follows immediately that
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0(x'Za,x'Ib) = 6(za,zb) = (D" 'o(a,b,

Now consider Ib + xIb, If Ib = ¢ ~ xc where p(c) = [0,1], then
xIb = xc - x2c and IZb + xIb = ¢ - x2c. Comparing the shadows of iyxla
and Ib + xLb, we see that these cycies may be deformed away from one
another infE.

mt

’*r///fw 9(3,243
—P(sb+rzld

o
Hence, 2(iyZa,lb + xIb) =
Thus, 0(Za,xIb) = =2(i.Za,Zb) = (~-1)"8(a,b).
Remark. The lemma will be applied by iteration., Thus,
8(225,2%) = (D" V(=1 8(a,b), 6(2%,2%0) = (122 hg gen-
kn+k(k+1)
erally, 8(25a,Kp) = (wK{N=DHIFZHectk=lg (o )y =y T (a0,
For example, if [F: x|2 + ...t xk2 + f(z) = |, then
atfa, ko> = 825 14,2 ) + (cnMR ety 2R )
n(k=| )+k(k—l) e I
= (-1 77 (ota,b) + (- e (b,a))
recovering the proposition in 2).
Mo . .M MK n
Take F: Xo F X F et x4 f(z) =1, m; 2 2, where z ¢ C and
f(z) is weighted homogeneous, let I'=2Z xZ x ,,, x Z a direct
my m, m,
product of cyclic groups, and let Xis i =0,...,k represent generators of
So_S| Sk
Zm . Thus, elements of T are represented by x = Xy X| eee Xpoe Then

' s
, + [ i
H 4 ) has a basis {xzK 'alx = Hxi', 02s, £m=~2, aruns over basis for

H (F)},
n-|

. i
Define 1: Z > Z, by 7(x ) = =1, ©(x )

[

0 for i £ 1 (mod N) where
x, denotes the generator of Zy+ Extend t to a function t: T + Z, by

€ € -
t(Hixi') = Hir(xi'). Let x = inverse of x for x e I,
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Proposition 3,17, Under the above assumptions, the intersection

pairing < , >: H o ) x Ho+F) > Z is given by

axzitly yoktly, o u(t(Xy)e(a,b) + (="K Gxre(b,a))
nk+k(k+1)

where x,y € I'; a,b ¢ Hn_l(F); u= (=~ VAR

. mj Mg
Proof., First letfF!': Xp ot e tox 4 f(z) =1,
[''=2 xZ x,,,xZ , By iterating the lemma, we may compute
M "k
. ! t H
8 Hn+k-l(r ) x Hn+k-l(F.) + Z. It is easy to see that

e(x'Zka,y'Ekb) = HT(X'y')8(a,b),
for x',y! € T', Express SOLLLI xzox'5k+la = xzoi(x'zka), x €T, x"eTl",
Recall Proposition 3,12 which says that
<IA,IB> = 68(A,B) + (=10 g(B,A)
<IA,x IB> = -6(A,B)
<x 1A, 18> = (-N™K*g(g a)

where A,B ¢ H (FS.

nt+k-1|
In our notation this clearly becomes

So To So To n+k +o So
<X IA,x TIB> = 1(x “x )6(A,B) + (-1 Frix %« )8(B,A),
o) o o "o : o "o

Letting A = x'Zka, B = y'Zkb and substituting, we get

o2 a,yrf* s = uteEyeca,b) + <D™ K Gx0(b,a).

This proposition generalizes Pham's calculation for the intersection
matrix of a Brieskorn variety [see 28]. It also, we hope, puts it in a
more conceptual context and may lend some insight into the harder problem
of obtaining the intersection matrix for an arbitrary nonsingular poly-
nomial hypersurface. Various particular calculations suggest themselves.

Example. lnTersecfioniMafrix for a Brieskorn Variety, Let

Mg, m

F:ox ~ + ...+ x k- land T' =7 x .., xZ ., Note that we may regard
o k Mo m,




105

L.
Hk(F) as generated by {kaa|x = HxiI el, 0% 2i 3 mi—2} where a = w-1,
m
w = exp(2mi/m ), the generator of H;(F) as a Z ~-module (F: xoo = 1),

o
Hence, we may use the notation x 4—>x£ka.

Proposition 3,18, Under the above notation

<, > Hk(}F) x Hk(EF) + Z is given by

k(k=1)/2

<x,y> = (=1) (txy) + (=1 Rc(Ry)).

Proof. First note that 6: H;(F) x H;(F) + Z is easily calculated.

So 1ho %0 1‘o
We find 9(x0 »Xq ) = --'r(xo X ). Then apply the previous proposition to

™ My m
X, + oeee + X, + f(z) where f(z) .f(xo) = xoo. Then

nik=1)+k(k=1)

w = (-1) : and
s t - s, T
<x,y> = <x'xo°,y'g°°> = u(r(x'y')e(x°°,xo°)
k - ~|'o So - k -
+ (=1) t(x'y')e(xo %o }) = ul=tlxy) + (~1)"(=T(xy))

ktk(k=t) .
(=) TZ (&) + (=D (Fx)

k(k=1)/2

= (=1) (i) + =nXeyn.

Remark. One can easily check that this agrees with the Pham~

Hirzebruch calculation [see 13, page 85].
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Cyclic Branched Covers, O(nj-Actions, and

Hypersurface Singularities
Llouis Hirsch Kauffman
ABSTRACT

Tﬁis thesis investigates relationships among branched covers,
hypersurface singularities, and O(n)-manifolds. | extend a theorem of
Hirzebruch classifying knot manifolds to the case of link manifolds
(O(n)-mani folds with orbit space 04 and fixed point set corresponding
to a link in 53 = 804). The result classifies a link manifold In
terms of imbedding invariants of the link, Manifolds whose boundaries
are branched covers are constructed and the structure of the covers is
pursued from this point of view. Similar techniques enable us to cal~
culate intersection forms corresponding fo singularities of polynomials
of Type XT' t oeee * x:n + f(z). These provide settings for certain

periodicity theorems about Brieskorn varieties and offer interesting

links between low and high dimensional topoiogy.
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