FROM KNOTS TO QUANTUM GROUPS (AND BACK)
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1. INTRODUCTION

This paper traces how the Jones polynomial leads naturally to the notion of quantum
group, and how quantuin groups give rise to invariants of links via solutions to the Yang-
Baxter equation. Section 5 is an original treatment of the construction of the universal
R-matrix. All the other material has, or will appear elsewhere in similar form.

2. KNOT THEORY

Let’s begin by recalling the Reidemeister moves:
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These moves can be performed on a link diagram. A link diagram is a locally
four-valent plane grapl with extra structure at the vertices in the form of crossings

4-valent vertex

> X

These crossings are taken to indicate tlie projection of arcs embedded in a three-space,
and projected to the plane. The broken arc pair at a crossing indicates the arc that
passes underneath the other arc in space. Any link (a link is a collection of circles
embedded in a thiree-sphere or Buclidcan three space)} has a point of projection to the
surface of a two dimensional sphere or to a plane, so that Lhe projection (with under
and over-crossing indications) becomes a diagram for that link.
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Two links are said to be ambient isotopic if there is a continuous tiine-parameter
family of embeddings starting with one link and ending with the other one. The theory
of knots and links is the theory of link embeddings under the equivalence rejation of
ambient isotopy. (A knot is a link with one component. That is, a knot is an embedding
of a single circle into three-space.)

It is assumed that all the embeddings are represented (up to ambient isotopy) by an
embedding that is a differentiable curve(s) in the three-space. Links that do not admit
such a representation are called wild, and must be treated separately.

The Reidemeister moves generate the theory of knots and links in three-dimensional
space in the sense of the following theorem:

THEOREM (REIDEMEISTER [18]). Let K and K' be two links embedded in three-
dimensional space (either the three-dimensional sphere or the Euclidean space R3).
Then, K and K’ are ambient isotopic if and ouly if diagrams for K and K’ are related
by a finite sequence of the moves I, I1, II1.

REMARK: In Reidemeister’s day the notion of ambient isotopy was also combinatorial.
Let R denote Reidencister. For I, ambient isotopy was generated by a single move type
called an elementary combinatorial isotopy (or elementary isotopy for short). The
knots and links for R are piecewise linear - meaning that they consist of intercon-
nections of straight line seginents embedded in Euclidean space. Vertices are regarded
as the endpoints of these seginents, and any straight segment can be regarded as the
connection of two seginents, by adding a vertex at an interior point. The elementary
combinatorial isotopy has two directions: expausion, and coutraction. In an expan-
sion, one takes two vertices on the link, and a new vertex in the complement such that
the (two dimensional) triangle spanned by these vertices intersects the link only at one
of its three edges. Expansion consists in replacing this edge in the link by the two
remaining edges in the triangle. Contraction is the opposite of expansion — three points
on the link span a triangle intersecting the link only along two edges; these edges are
replaced by the third edge of the triangle.

!
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The Reidemeister moves conie about via examination of Lhe forms of planar projec-
tions of the elementary isotopies. For exainple, the diagram below shows how a type 1
Reidemeister move is the shadow ol an elemenlary isotopy.
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situation. For a modern treatment of the Theorem, using the continuous (or differen-
tiable) notion of isotopy, see [5].

While Reidemeister’s Theorem is an excellent starting point for a combinatorial theory
of knots and links, it does not make life easy. The easiest way to illustrate this is to
exhibit a demon such as the one shown below. (This demon - shown to the author by

Ken Millet —~ improves over previous culprits, and is the smallest possible for projections
on a sphere.)

This demon D is unknotted, but does not adinit any simplifying Reidemeister moves,
nor does it admit any type three moves. (A Reideneister move is said to be simplifying
if it reduces the number of crossings in the diagram.) In order to unknot D it is necessary
to first make the diagram more complex before it can become simpler. Examnples of this
sort show that the equivalence relation generated by the Reidemeister moves is subtle,
and that the matter of constructing invariants is non-trivial.

There are many accounts of the classical construction of knot and link invariants ([1],
[8], [4], [11], [21]). In the next section, 1 shall go directly to a model for the Jones
polynomial and discuss its physical interpretations. For these purposes it does make
sense to make one remark about the process ol abstraction leading to mathemalical
knots. If we were to make a knot or link from rope or other material, then the amount
of twisting on the rope would make a diiference in the behaviour or the resulting knotted
form. Such twisting has been abstracted when we go to the diagram or the mathematical
curve embedded in space. We can recover some ol this structure by considering framed
links. A framed link is 2 link such thai each component has a continuous normal vector

field. This is equivalent to thinking about embeddings of bands rather than circles.
Thus the figure below indicates a [ramed trefoil, with standard framing inherited [roin

its planar embedding.
a5
W,
2

If we keep track ol Lhe framing then one no longer has invariance under the type [
move:

For this reason it is useful to have the concept ol regular isotopy. Two links are
said to be regularly isotopic if one can be obtained from the other by a sequence of type
11 and type I1I moves only. Regular isotopy is the equivalence relation generated by the
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type II and type 111 moves. Note:
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Opposite curls cancel. This regular isotopy is the knot theoretic version of the Whit-
ney trick [24]. Actually, regular isotopy is a bit subtler than simple framing. The bands

shown below
W OO ~

are isotopic, but the corresponding string diagrams are not regularly isotopic (Lthey have
different Whitney degree [24].).

OG0 KT T

A usclul invariant of regular isolopy is the writhe, w(K'). The writhe is the sum of

the crossing signs
>4 o]

+i1 -

in a given diagram. T'hus

It is easy to see that the writhe is a regular isotopy invariant for diagrams. It is very
uscful for normalizing other invariants of regular isotopy. It turns out that most of the
invariants we shall discuss need such a normalization.

ITII. LINK INVARIANTS AS VACUUM-VACUUM AMPLITUDES

First, a quick description of the bracket model [12] of the Jones polynomial [9]: We
give a method of associating a well-defined polynomial in three variables, (K)(A, B, d),
to an unoriented link K. T'his polynoimnial is defined recursively by the forimulas:
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1. <> =AL=>+BLOCY

2. LoK>=dLK>
<oy=4d.

The first formula asserts that the polynomial for a given diagram is-obtained as an
additive combination of the polynomials for the diagrams obtained by splicing away the
given crossing in two possible ways. Thus the sinall diagrams indicate larger diagrams
that differ only as indicated. The second formula says that the value of a loop (simple
closed curve in the plane) is d, and that if a loop occurs (isolated) inside a larger diagram,
then the value of the polynomial acquires a factor of d from this loop. In particular,
the value of a disjoint union of N simple closed curves is dV.

Together, the two formulas completely determine (K), and () is well-defined just
so long as A, B and d commute with one anather. Thus this polynomial takes values in
the ring Z[A, B,d] of polynomials in three variables with integer coeflicients.

As it stands, () is not an invariant of any of the Reidemeister moves. [lowever, the
following formula is an easy consequence of 1. and 2. above.

PRroPosITION. ‘
<3/ > ‘:-'AB‘<:) C> + (ABJ+AI¥B‘)‘<\/<>.

As a result we see that (K) is invariant under the type 1I move if we select B = A~!
and d = —A? — A2, Furthermore, it now flollows directly that (K) is invariant under

R =A‘7§>+A<ﬁf>

/ > S AL +AYAEY
= ALK D +AL) >
=<§>@i>-

Thus, with B = A™! and d = —A? — A~2, we have that (K') is an invariant of regular
1sotopy. To obtain an invariant of ambient isotopy for oriented links, we form

fi (A) = (-A*Y"NK)/(0)

where K is oriented, w(K) is the writhe of K as defined in the previous section, and
(K) is the bracket evaluated on the unoriented link underlying K. The reason for this
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factor of —A? is that
o> =ALe> +ATLD
= ACAA )Ly + KD
)y

One then has the

TueoreM [12]. For any oriented link IC, Vi (t) = fre(t=Y) where Vi denotes the
original one-variable Jones polynomial.

Thus, the bracket, suitably normalized, gives a direct model for the Jones polynomial.

Tne VACUUM-VACUUM AMPLITUDE.

In the rest of this section I shall stick to the bracket, and show how it can be seen as
a “vacuum-vacuum amplitude” in a combinatorial version of topological quantumn field
theory [25]. More generally, we can consider an amplitude associated to a given diagram
by regarding the plane as 1 + 1 spacetime. By convention, let time run vertically up
the page, and space proceed from left to right. (This is the convention of the reader of
English.) Position the link diagram so that it is transversal to the space levels except
at critical points corresponding to maxima, minima and crossings.

BRI
X

Each minimum can be regarded as a creation of two particles from the vacuumn, each
maximum an annihilation, and each crossing is an interaction (thought of as involving
braiding in the extra spatial diniension orthogonal to the page). ‘To each of these events
we associate a matrix whose indices go over (say) the spins of the particles, and whose
values are the amplitudes for each of these processes.
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The amplitudes used here arc a generalization of amplitudes in quantum mechanics,
suitably generalized for the purposes of topology (In the process we take leave of the
usual interpretations of observation in quantum mechanics. In the topology the ampli-

tude itself is a real property of the system. There is no “collapse of the wave function”).
Therefore the amplitudes will take values in a commutative ring (e.g. in Z[A, A7']),
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and the sping will run over an arbitrary finite index set (e.g. {—1,+1}). Amplitudes
are calculaled according to the principles of quantum mechanics [7]:

(1) If an event occurs in a way that can be decomposed into a set of individual steps
(e.g. creations, anunihilations, interactions), then the amplitude of the given event
is the product of the amplitudes of the individual steps.

(2) If an event may occur in several disjoint alternative ways, then the amplitude of
this event is the sum of the amplitudes of the ways.

Given a diagram I{, and a set of matrices as above, we can calculate the amplitude
for particles to be created (rom the vacuum, interact in the pattern of the link diagram,
and return to the vacnum. This amplitude decoinposes as a sum of the amplitudes
for configurations of the diagram. (I take configuration as a neutral term here. Tor
amplitudes one may prefer the term hisfory. For a purely spatial interpretation one may
preler the term state.) Each configuration ¢ is an assignment of spins to the nodes
of Lhe diagram. (The nodes are the input and oulput nodes of the small diagrains
corresponding to the matrices). Given a configuration, each matrix has a well-defined
value, and the amplitude of this configuration is the product of these valucs. Thus
the vacuum-vacuum amplitude, T(K), for a given diagram K is the sum (over the
configurations) of the product of the matrix values for each configuration.

Symbolically, this works out in accord with the usual Einstein convention for repeated
indices: Write down a product of all the matrices lor the given diagram, in tudices, with
one index [or each node. The amplitude is then the value of this expression interpreted
as a sum over all cases of repetitions of an index in lower and upper positions.

be 5 a8
e ML

Having defined the vacuum-vacuum amplitude T'(K'), we must sce when it will be an
invariant of regular isotopy, and when it will model the bracket. In order for T' (K)
to be an invariant of regular isotopy, we need Lhe following restrictions on the matrices

[15]:
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(In 3. there is a corresponding lell-hand Lwist, and in 4. Lthere is also the same
equation for all crossings reversed.) Equalion 4. is called the Yang-Baxter Equation [3]
(here given withoul vapidity parameter).

ReMank: It is interesling to speculate aboul Lhe physical meaning of Lhiese restric-
tions. The twisl coudilion 3. is the most myslerious since it relates 1t and =1 via
creations and annihilations. A simpler physical situation may lend some insight here.
In the simplified scenario, we assuwme thal 1. holds, and that parallel identily lines are
interchangeable wilh pairs of creations and annihilations:

><<:—v?~<«—>

Then one has the sequence of identificalions

b i

STATISTICS

This has been interpreted as a depiction of the equivalence of spin and stalisiics (sce
e.g. [22] and references Lherein) where spin is regarded as calalogued by Lhie twist
of framing (become curl of diagram) and statistics corresponds to (he braiding of the
two lines. This shows that part of our diagrammatics cortespond to ordinary physical
interpretations, and that where the topology begins the equivalence of spin
and statistics leaves off. In this sense, the topology is an index of the non-standard
statistics.
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MODELLING THE BRACKET.

In order to model the bracket with a vacuwim-vacuum amplitude we need to find
creation and annihilation matrices that are inverse to one another, and that give a loop
value of —A2 — A~2. [lere is an answer to that puzzle:

b

Ma =M
m=| © Ja A

Jid O .

Note that the matrix Af has square the identity, and that the loop value is therefore
the sum of the squares of the entries of M. (See [13],[14],[15] for molivations for this
construction.)

With a given choice lor the crealions and annihilations, there is one choice for the I?
matrix to give the bracket:

a b o b a, \:
|\ —\
=A + A

/N, N J

c d o d c

With this choice, T (1) will satisly the defining equations of the bracket and therefore
() = T'(I() (since we have correctly adjusted the loop value).

REMARK: In fact it is interesting to note that if the creation and annihilation are inverse
matrices, and R is defined as above, then 2. follows easily, while 3. goes as below,

.7 = A
N - )+ =

and 4. is proved by first checking

“t @
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and then performing the [ollowing variation on our bracket derivation of the invariance
under the III move
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The upshot of this discussion is thal by simply ndjusting the crention and
amtihilation matrices corrcctly, we antowntically produce n model of the
bracket and a solution to the Yang-Daxter equation. ‘Uhis is the simplest inslance
of a solution to the Yang-Baxter equalion appearing nalurally from the knol theory.
This is the well-known [19] R—malrix corresponding lo the SL(2) quantum group. In
fact, the structure that we have created so far will now enable us o sce one molivation
for the construction of the quantum group.

IV, THE SL{2) QUANTUM GROUP

Note that we can wrile

o VT3 A
M= T LT

2
—V'—A 0 ~o o A
£ = y
-A O

~
and that, as A appronches 1, the imatrix & approaches

o 4

m
1

-1 o _].

The matnx € is significant in linear algebra becanse it expresses the delerminant of
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Now SL(2) (over a commutative ring) is the set of matrices of delerminant oue, and
can therefore be characlerized as the sct of malrices leaving the epsilon invariant:

SL(2) = (P | PePT =¢)
llere T denotes matrix transpose.

At A = 1 the bracket does not discriminate between under and overcrossings, and
the identity

<= ™ St O

corresponds directly ol the Fierz identity

€ab€¢d — 6ac6bd _ 6adéb
3 b
}{ e @) €7 Eqy X‘H>§ 5 ]

Thus at A = 1 {and also at A = —1) the diagrams become interpreted as iLensor
diagrams for SL({2) invariant expressions.

It is then natural to ask whether there is a generalization of this symmetry
for the topology and link diagrams. Specifically, we ask whether ¢ has a synunetry
group analogous to SL{2). Some experimentation shows that the way to ask this question

is to consider
a
=] < 4

with associative, possibly non-commutative entries, and ask for the invartances:
PEPT =%
1 o~
T Er =€ .

It is then an exercise in elementary algebra to see that these conditions are equivalent
to the equations: (¢ = VA) :

ca = qac db = qbd
ba = gab dc = ged
be = cb
ad —da = (q7" — q)be
ad—q 'be=1

These are the defining relations for the algebra U* = SL(2), ([6], [17]) , sometimes
called the SL(2) quantum group. It is not a group, but rather a Hopf algebra. The
co-algebra structure is given by the map

A=U*—U'@U"
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where v
APy =P erf.
W

Thus

AMa)=aQa+b®c
Ab)=a®b+bd
Ale)=c@a4dOb
Ad)=coOb+dod

In this case the Hopf algebra has an antipode and this is directly related to the fact
that the matrix P has an inverse v(/°):

d —qb
vP) = (——q"l(t n.l > ’

Recall that the aulipode is a map v : U* — U/* such that the following diagram
commutes

vl
w2 LL*@)U! |;§ : LLﬁﬁ(lf—2§+ C(?

where € and 3 are the co-unit and unit respectively and m denotes the multiplication
in the algebra. Ilere

e(Pj)=6; and ()= 6;
Thus tlie condition that ¥ be an antipode is just thal

L ‘)’(P;\')PJ'K = 5}

K
¥ i) = 5.
K

And this is the same as saying that P and y(P) are inverse matrices.

We could now discuss a number of things about the relationship of this quantum
group to solutions to the Yang-Baxter equation, and to its dual form as a deformation
of the Lie Algebra for SL(2) (see [6], [19]). But here there is not space for this. The
purpose of this section has been to show how the quantum group arises naturally {from
a combination of the topology and a desire to extend the algebraic symmetry inherent
in a significant special case of the vacuum-vacuum expectation model.

V. AT

In o
invaria
constry
rise, th

We |

followir
(A) «
(B) ¢
Diagr

where it
hence the
assume t|

(C)

Then we

THEOREM,

satisfies ¢

Proor: (Se



to Lhe lact

ng diagram

ultiplication

1is quantum
deformation
or this. The
turally from
stry inherent

From Knots to Quantum Gronps (amnt Back) 173

V. AND BACK

In order to indicate how the trail looks going back from quantum groups to link
invariants I shall make a leap to the formalism behind the so-called quantum double
construction of Drinfeld [6]. We shall then see how a Hopf algebra structure can give
rise, through its matrix representations, to invariants of links.

We begin with an algebra with generators eg,eq,...,en and €% e*,e", ..., e" and the
following relations describing multiplication in the algebra

(A) e;e0 =mie;
(B) e*e' = pite

Diagrammatically, I shall wrile l«-» e? > ?«-’» e,

&) I:Ifl «>» @)
tr= [ «» 8,

where it is understood thal the boxes denote the product expansion cocilicients, and
hence the boxes commute with the e-nodes (4,9 ) and with cach other. We furither
assume the following relationship between multiplying upper and lower e’s:

i x b 4k
eJ/L:M;xeK = emzK&' < ci .

Then we have

TUEOREM. With the above assumptions, the element.
— Ze b
(O - s ®CT = ®
S

satisfies the algebraic form of the Yang-Baxter equation:
P12 P13 fPry = P23 Pra po.

P12 = Ze,@e’@l, /113“:26,‘@1@6’,...]

PRroor: (See [15]).
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In a matrix representation the e-nodes sprout indices, and an algebraic solution to
the Yang-Baxter Equation becomes an knot theorist's matrix solution via an added

Pzi@ﬁ;w

denotes the algebraic solution, then

K

denotes the corresponding knotl theorelic R-matrix in some representation (the indices

permutation, Thus il

i

of this representation correspond to Lhe new lines).
As we know [romn the previous section, the knol Lheory demands a relationship be-

tween Lthe creation and annihilation matrices and the R-inalrix. T'his “Lwist relation”
is given diagrammalically as follows:

Thus
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and we need thal y(e,)® e’ is Lhe inverse of e, ® €* (with summation on repeated lower
and upper indices). 1t is then not hard to see that if we were to make the algebra into
a Hopf algebra such that the co-mulliplication lor the lower index e's is the mulliplica-
tion for the upper index e’s and vice versa (Lhis is Lhe double construction), then this
inverse requirement is equivalent Lo v being an antipode. (See the appendix.) The twist
conditions of the knot theory are intimately tied with the lop{ algebra structure for
the quantum group. This completes the journey back, albeit in an abstract mode.

APPENDIX

Ilere we verily that v, as defined in section b, is an antipode in the Ilopf algebra.
Recall that we demanded that y(e,) ® e® be inverse to e, ® e*. Mulliplying this out, we
find

(r(e) ® €'lle; ® ] = v(ei)e’ @ eic!

y(ei)e’ ® [Ii.fi('k

I

1l v(ei)e @ ex

= 111(/1?‘)’(6.’) ® Cj) ® ep

i

m((y® 1) (1Yei®c )@ ey |
m((y @ 1)(A(er))) @ ex X |

We are summing on repeated indices, and in the last step we used the facl that in the
Drinfeld double construction, the diagonal in the algebra of the e’s with lower subscripls
is given by the multiplication coellicients in the algebra of the upper ¢’s. Note also that
m denoles multiplication, and the formula {or v to he an antipode is

m((y @ 1)(Aer))) = (Dler)) =€ il k=0

m((y®@ D(Aler))) = 0 il k # 0.

Here we take eq to be 1, the identity element in the Ilopf algebra. Thus we have shown
that if v is an antipode for the Drinfeld double construction, then 7y (e,) ® e°® and
e; ® e° are inverses. This, in turn, shows that the diagrammatic twist condition for
the vacuum-vacuum expectation corresponds, through representation of the Drinfeld
construction, to the existence of an antipode in the Iopf algebra. In this sense, the
abstract quantum group defined by the formalism of the Drinfeld double construction
gives a universal link invariant.
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