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Preface. This book is a survey course in knot theory, starting with the basics of
the combinatorial topology, and leading quickly to state summation models for knot
invariants such as the Alexander polynomial, the Alexander-Conway polynomial,
the Jones polynomial and the Homflypt and Kauffman polynomials. We briefly
discuss relationships of these skein polynomials with surgery and three-manifolds.
Then we embark on Vassiliev invariants and their relationship with the functional
integral formulations of Edward Witten. We conceptualize the functional integral
in terms of equivalence classes of functionals of gauge fields and we do not use mea-
sure theory. This approach makes it possible to discuss the mathematics intrinsic to
the functional integral rigorously and without functional integration. Applications
to loop quantum gravity are discussed.

This book originated in a course of lectures at the Institute Henri Poincare
in 1997 and then courses given at the University of Illinois at Chicago in the late
1990s and the early part of the 21-st century. The point of the lectures was to
develop basic knot theory from the point of view of state summations and the
bracket model for the Jones polynomial, and then to move to Wittens functional
integral, quantum field theoretic approach to link invariants and its relationship
with Vassiliev invariants of knots and links. The Witten functional integral can
be approached in a number of ways and we take what is probably the simplest
route. We work with the formalism of the integral at the level of advanced calculus
without measure theory. This means that the integral of a function or of a gauge
field is not a number in our treatment, but an equivalence class of functions just as
one would write

∫
sin(x)dx = cos(x) + c in elementary calculus. In this case the

integral “Is” an anti-derivative, and set-theoretically it is an equivalence class of
functions wheref ∼ g means that f−g is the derivative of another function. In this
way we can work mathematically with the formalism of the functional integral. Of
course, at certain points we would like to say that “this means that the value of the
integral is such an such”. At such points we will take the leap and posit a value or
a relative value, and in this way obtain a powerful heuristic for thinking about link
invariants in a quantum field theoretic framework. There is no doubt that this is
an interim measure in an evolution of ideas and methods that will eventually lead
to a complete story satisfying to topologists and analysts.

This way to approach the Witten functional integral will serve us well in giving
a unified picture of how Vassiliev invariants come to be represented by the Kontse-
vich integral via weight systems for chord diagrams. We find that the perturbative
expansion of Wittens integral gives a series of elementary Feynman diagrams whose
associated integrals are exactly the Kontsevich integrals. This is the simplest case
of dealing with the perturbative expansion of the Witten integral, using the light-
cone gauge in an analysis that was initiated by Froelich and King and that in fact
goes back to the work of Khono in the 1980’s. With the help of this, we see how the
Kontsevich integrals are implicit in Wittens functional integral formulation. Math-
ematicians have been happy to see how to make the last vestiges of the Kontsevich
integrals rigorous, and so found the Vassiliev invariants on them. We hope that
in the future there will be an appropriate formulation of the functional integral so
that one can start with such a central formulation and unfold the invariants from
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that point. For the present, we have an illuminating approach that should not be
forgotten, as it contains the seeds for future mathematics. We will also discuss
other topics that emanate from this central place, such as the possibility of finding
a quantum field theoretic interpretation of Khovanov Homology that is as simple
as the Witten functional integral interpretation for the Jones polynomial. And we
will discuss relationships of these ideas with loop quantum gravity, quantum infor-
mation theory and virtual knot theory.





CHAPTER 1

Topics in combinatorial knot theory

The purpose of this part of the book is to record concisely a number of different
parts of basic knot theory. Much of this is related to physical models and to
functional integration, as we shall see. Nevertheless, we develop the knot theory
here as a chapter in pure combinatorial topology and keep this point of view as
we proceed to more analytical ways of thinking. We begin this chapter with the
patterns of Fox colorings for knots and links and how these colorings can be seen
to yield topological information.

1. Reidemeister Moves

A knot is an embedding in three-dimensional space of a single circle. A link is
an embedding of a collection of circles. Two knots (links) are ambient isotopic if
there is a continuously varying family of embeddings connecting one to the other.

Unless otherwise specified I shall deal only with tame knots and links. In a
tame knot every point on the knot has a neighborhood in 3-space that is equivalent
to the standard (ball, arc-diameter) pair. Tame knots (links)can be represented up
to ambient isotopy by piecewise linear knots and links. A link is piecewise linear
if the embedding consists in straight line segments. Thus a piecewise linear link
is an embedding of a collection of boundaries of n-gons (different n for different
components and the n’s are not fixed). A piecewise linear knot (link) is made from
“straight sticks.”

Exercise. Show that any “knot” made with ≤ 5 straight sticks is necessarily
unknotted. (i. e. ambient isotopic to a circle in a plane.) What is misleading about
this picture?

Reidemeister [1], in the 1920–1930’s, studied knots and links from the PL view-
point. He defined PL-equivalence of knots and links via the following 3-dimensional
move:

5



6 1. TOPICS IN COMBINATORIAL KNOT THEORY

In this move one can remove two sides of a triangle and put in the missing third
side, or remove the third side and put in the other two sides. The interior of the
triangle must not be pierced by any other arcs in the link.

*For tame links, PL-equivalence ≡ ambient isotopy*

We shall not prove this statement here. The reader may like to take it as an
extended exercise. The main point is that subdivision is possible, as we show below,
and any PL-equivalence can be approximated by a sequence of triangle moves.

These diagrams demonstrate that the subdivision of an edge (or the removal of a
vertex in collinear edges) can be accomplished via the Reidemeister ∆-move. (The
triangles involved in the demonstration can be chosen sufficiently small to avoid
piercing the rest of the link.)

Standard barycentric subdivision of a triangle can be used to assure that each
∆-move happens on ∆’s of of arbitrarily small diameter. (Taking edge subdivision

as axiomatic.)

Now consider planar projections of ∆-moves. We can assume that the point
of projection gives an image that is in general position. Typical triangles will look
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like

By using barycentric subdivision we can assume that each ∆ has a minimum num-
ber of edges projected over or under it. Since the edges that emanate from the
triangle may be theses edges we must take such cases into account, plus the case
of extra edges (one or two crossing each other) from elsewhere in the link. Cases
(a)→ (f) enumerate these local possibilities. Now lets translate (a)→ (f) into knot
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diagrammatic language:

(a)

(b)

(c)

(d)

(e)

(f)

By our subdivision argument, local moves of this type on diagrams will generate
ambient isotopy (PL isotopy) for tame links in 3-space. In fact, we can eliminate
(c) and (e) from the list, generating them from the others. We take as fundamental

(a) R(0) (“planar isotopy”)

(b) R(1)

(d) R(2)

(f) R(3)

Exercise. Accomplish moves (c) and (e) from Reidemeister moves R(0), R(1),
R(2), R(3).
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Knot and link diagrams are smoothed-out pictures of projections of knots and

links from 3-space with the crossing convention that puts a break
in the under-crossing line. You can regard the crossing as extra structure on a
graphical vertex of degree 4:

In this sense a knot or link diagram is a 4-valent plane graph with extra struc-
ture:

T π(T ) = underlying plane graph for the diagram

We have proved the

Theorem (Reidemeister). Let K and L be two tame links in 3-space. Let K
and L be diagrams for K and L obtained by projection K and L to a plane in general
position with respect to K∪L. Then K is ambient isotopic to L if and only if K and
L are connected by a finite sequence of the Reidemeister moves (0), (1), (2), (3).

This theorem reduces the topological classification of knots and links in three-
dimensional space to a combinatorial question about the equivalence classes of
diagrams under the Reidemeister moves. As we shall see, the diagrams provide a
pivot for translating many different ideas into the topological domain.

Some examples are in order. First of all, consider the diagram in Figure 1. You
can see that this diagram is unknotted because it always winds down in such a way
that if you were to pull the rope upward it would all unravel. You can take, as an
exercise to show the unknotting strictly by Reidemeister moves. Note that from the
graphical point of view, when you apply a Reidemeister move, you must see either a
1-sided, 2-sided or 3-sided region in the plane. There are natural generalizations of
the Reidemeister moves where a large-scale Reidemeister pattern occurs with other
weaving above or below that pattern, but we are not using generalized moves here.

A second example is shown in Figure 2. Here the diagram is unknotted but
there are no 3-moves and there are no moves that directly simplify the diagram. In
order to unknot it by Reidemeister moves, you will have to make it more compli-
cated!
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Figure 1. Descending Unknot

Figure 2. Hard Unknot

2. Linking number

Given two oriented curves A and B in R3, we can define a linking number,
Lk(A,B) that counts the (algebraic) number of times that one curve winds around
the other. In this section we shall give a purely combinatorial definition of the
linking number, by making a count involving the signs of the crossings between
one curve and the other. The signs of crossings and the corresponding definition of
linking number is shown in the diagrams below. The reader should note that one
can think of a crossing as one arc going half-way around the other arc. Thus we
assign ±1/2 to each crossing and define Lk(A,B) to be the sum over all crossings of
A with B of these half-integer contributions. The resulting summation is invariant
under the Reidemeister moves.

Lk(A,B) =
∑

p

ǫ(p)/2
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where p runs through crossings of A with B and ǫ(p) is the sign of the crossing as
defined below. Note that any crossing has a sign, but we use only the crossings
that occur between the two components A and B in computing the linking num-
ber. It is easy to see that the linking number is invariant under the action of the
Reidemeister moves.

ǫ = +1 ǫ = −1

Lk(A,B)
def
=

∑

p
p is a crossing of A with B

ǫ(p)/2

: Lk(L) = 1
2 + 1

2 = 1.

: Lk(W ) = 1
2 + 1

2 − 1
2 − 1

2 = 0.

Exercise. Linking number is invariant under the Reidemeister moves.

twist

writhe

For a link consisting in the two edges of a twisted circular band, as illustrated above,
we can divide contributions to the linking number into “twist” and “writhe”.

twist
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



0

−1/2
0

−1/2





− 1

2
− 1

2
= −1

writhe

In counting writhe you look at the self -crossings of the core curve of the band
and count them ±1. Thus writhe is defined for any oriented diagram D by the
formula

Writhe(D) =
∑

p∈Cr(D)

ǫ(p),

where Cr(D) is the collection of all the crossings in the diagram D. In the case of
the band B we let Core(B) be the core curve of the band as illustrated above (it
is a copy of either one of the two components of the boundary of the band) and
define Writhe(B) =Writhe(Core(B)).

If L is the boundary of band B (with both components of L directed in the
same direction) then

Lk(L) = Twist(B) +Writhe(B).

This is diagrammatic version of the Calagareanu/Pohl/White formula [] (expressed
by them in terms of 3-dimensional differential geometry) and used in studying
topology of DNA.

Lk(L) = Writhe(B) = +3.
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Exercise.

M M∗

Two Möbius bandsM ,M∗. Mirror images of each other. Show thatM andM∗ are
not ambient isotopic as surfaces in 3-space. Hint: Cut each band down the middle
and consider the linking numbers of the two edges of each cut band (orienting the
edges parallel to one another with respect to the band).

3. Coloring a trefoil knot

The linking number of a two-component link is a property of that link that
remains the same when the link is transformed by Reidemeister moves. We shall
now embark on the problem of finding properties of knots that are invariant under
the Reidemeister moves. Surprisingly, this is harder to find than the linking number.
We would like to somehow measure a ’self-linking number’ for a knot. And indeed
we see that it is possible to color the arcs in a trefoil diagram with three colors.

r p

b

The arcs in the diagram are colored from the set C = {r, b, p}.

r

p

b
r

r

r

Any given crossing either has three distinct colors incident to it or one.





r
r

r

r b

b

b
p

r

r

r p

b
r

p

b

b

p
r

r
r

r

b

(Two other cases work similarly.)
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These diagrams and a little extra case-work show that any diagram representing
the trefoil knot can be colored with three colors (using all three colors) according
to these rules. Since an unknotted diagram can receive only one color by the same
procedure, this proves that the trefoil knot is knotted.

Example.

r

r

p
p

p

r
r

b

b

This diagram also represents a trefoil knot.
It is an example of a diagram with a crossing that requires a single color.

Here are some examples of colorings induced by Reidemeister moves. Each
time one does a Reidemeister move, the new diagram is uniquely colored in terms
of its predecessor diagram.

r

r

r

r

r
r

r
r

. . .

r p
b

b

b
p p

r

b

b
p p

r

r

. . .

Example. The connected sum of two knots is obtained by removing a small arc
from each knot making it a knot in a “length of rope”, connecting the two lengths
of rope end to end, and closing the result, as shown in Figure 3. In this Figure we
illustrate that fact that T +K is 3-colorable for any knot K where T +K denotes
the connected sum of the trefoil and the knot K. We conclude that there does not
exist a knot K such that T +K is the trivial knot.

Example. We can prove that ifK andK ′ are any two knots thenK+K ′ unknotted
implies that both K and K ′ are themselves unknotted. This generalizes our result
about the trefoil to all knots. You cannot cancel a knot with another knot by the
operation of connected sum. We will give two proofs of this fact. The first proof
uses a method of infinite repetition. We suppose that knots K and K ′ can cancel
in a connected sum where all cancellation occurs in a 1− 1 tangle representation of
K +K ′. This means that we view K +K ′ as a knot in a string with a left end and



3. COLORING A TREFOIL KNOT 15

r

b
p

r
b r

r
r

r

r

r

T K

T + K

Figure 3. Connected Sum of Trefoil T and Any Knot K is knotted.

a right end. The left and right ends of the string are fixed during the cancellation
process, and no part of the isotopy that cancels the two knots every crosses over the
ends of the string. We can then say that the cancellation isotopy occurs in a box
containing K +K ′ with one end of the string emanating from the left end of the
box and the other end of the string emanating from the right end of the box. With
this we make a series of boxes, each one-half the size of the previous one and use the
decreasing sequence of adjacent boxes to form K∞ = K+K ′+K+K ′+K+K ′+ ...
where the knots get smaller and smaller as they approach the limit point of the
stack of boxes. We then make a closed loop by connecting the limit point to the
left most box string. Looked at this way K∞ is a topologically embedded circle in
three dimensional space. We now look at K∞ in two ways. First of all we have

K∞ = (K +K ′) + (K +K ′) + (K +K ′) + ....

The parentheses correspond to the original configuration of boxes, and each K+K ′

is isotopic to an unknotted segment, and hence

K∞ = U

where U is the unknot. On the other hand, we can reassociate the infinite connected
sum to form

K∞ = K + (K ′ +K) + (K ′ +K) + (K ′ +K)+) + ....,

and now we see that all the pairs K ′+K are isotopic to segments (since connected
sum is commutative). Therefore we conclude that

K∞ = K.

Hence

U = K∞ = K.

We have shown that if K +K ′ is unknotted, then each of K and K ′ is unknotted.
You cannot cancel knots.
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Figure 4. An infinite connected sum.

Figure 5. A closed infinite connected sum.

Figure 6. Tube for Connected Sum.

Figure 7. Tube after Isotopy.

Exercise. Prove that the Whitehead Link and the Borommean Rings are each
non-trivial links by showing that neither link has a non-trivial three-coloring. (If
either link were trivial, then it would have a three coloring induced by Reidemeister
moves from a non-trivial coloring of the unlink).
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4. First generalization of coloring

We generalize the three-coloring scheme by assuming that the arcs of the knot
or link diagram are labeled with elements of a set A in such a way that when a
labels an undercrossing arc at a given crossing and b labels the overcrossing arc,
then c = ab labels the remaining undercrossing arc. Here ab denotes a binary oper-
ation on the set A. This is illustrated below, and we shall see what rules this binary
operation must satisfy to be compatible with the Reideister moves.

a

ab = c

b





A binary operation on colors a, b produces a new color c = ab.

We will examine the behaviour of the coloring scheme under the Reidemeister
moves, but first, here is a re-write of our 3-coloring rules in terms of this algebraic
point of view.

In our 3-coloring example we had:
{

rr = r, bb = b, pp = p,
rb = br = p, rp = pr = b, bp = pb = r.

}

Note.
(rb)p = (p)p = p
r(bp) = rr = r

}
(xy)z 6= x(yz).

We can think of this 3-color algebra as a very simple system of discriminations.
Each color is seen to be different from the other because the product of any two of
them is the third color. Any color is seen to be equal to itself because the product
of the color with itself is itself. Here is a very simple algebra that is not associative!





aa

aa
a aa = a,

a

(ab)b
ab

b

b
b

a (ab)b = a,

aba

(ab)c

cb

bc
ac

a
(ac)(bc)

cb

bc

(ab)c = (ac)(bc).

To see the general rules, we examine the binary operation in relation to the
Reidemeister moves. Note that we do not assume that the product is associative.
We find the results in the diagrams show above. We see that in order to compatibly
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induce colorings on diagrams obtained before and after a given Reidemeister move,
we need that the moves satisfy the equations given in the axioms below.

Definition. An algebraic system with one binary operation a, b 7→ ab (not neces-
sarily associative) and satisfying the axioms

1. aa = a ∀a,
2. (ab)b = a ∀a, b,
3. (ab)c = (ab)(ac) ∀a, b, c,

is called an involutory quandle,
We associate an involutory quandle IQ(K) to any knot or link K by taking one

generator for each arc in the diagram and one relation of the form c = ab at each
crossing. This ideas of associating a quandle to a knot or link diagram, and indeed
the term quandle, is due to David Joyce [].

a c

b

T

c = ab
b = ca
a = bc





cb = (ab)b = a
ba = (ca)a = c
ac = (bc)c = b

· a b c
a a c b
b c b a
c b a c





IQ(T ) reconstructs our 3-coloring.

In general, the IQ of a knot or link can be quite complex. (It is not necessarily

finite.) For example the Hopf link L has a finite IQ:

a b

:
ab = a
ba = b

· a b
a a a
b b b



 closed finite system

and the unlink has:

a b

· a b . . .
a a ab
b ba a
...

an infinite IQ.
This distinction between finite and infinite gives another proof that L is linked.

On the other hand, you can check that L̃ has an infinite IQ.

a c

b

ba

:
bc = ba
c(ba) = c
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Remark. If you are interested in working with this sort of algebra, the follow-
ing Lemma is useful.

Lemma (Winker). In an IQ, a(bc) = ((ac)b)c for any a, b, c. Hence any
expression can be put in a canonical left-parenthesized form. (Notation. Write
xyzw = ((xy)z)w etc.)

Proof. ((ac)b)c = ((ac)c)(bc) = a(bc). �

Thus for IQ(L̃), above, we have:
{

bc = ba
caba = c

}
b = bac
c = caba

The collection {a, ab, bab, abab, . . .} is an infinite subset of IQ(L̃).
Winker verified that the first knot with infinite IQ is 819 (numeration from

Reidemeister’s tables).

819

Exercise. Show that IQ(E) has five elements where

E : (figure eight knot)

.

We could try to represent an IQ to a set C that is a module1 over Z via
ab = ra+ sb with r, s ∈ Z:

a = aa = ra+ sa = (r + s)a

therefore assume r + s = 1.

(ab)b = a : r(ra + sb) + sb = a

r2a+ (r + 1)sb = a

therefore assume r = −1. ⇒ s = 2. Then

ab = 2b− a.

1Kakoj modul?
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Check.

(ab)c = 2c− (2b− a) = 2c− 2b+ a;

(ac)(bc) = −(2c− a) + 2(2c− b)
= −2c+ a+ 4c− 2b

= 2c− 2b+ a.

The rule ab = 2b− a puts an IQ structure on any module over Z.

0

1 2 · 1− 0 = 2

2 · 2− 1 = 3 ⇒ 3 = 0⇒ C = Z/3Z.

1

0

2
5

−1

⇒ C = Z/5Z.





Note that not all 5 colors are used on this diagram.

In this scheme, each knot acquires a modulus2 and the IQ structure occurs on
a finite Abelian group. In order to define a unique modulus3, one can take the
determinant of a (reduced) relation matrix corresponding to the detining4 for ths
IQ.

e. g.
a c

b

T

ab = c
ca = b
bc = a

2b− a = c
2a− c = b
2c− b = a

a b c

−1 2 −1
2
−1

−1 −1
−1 2

M = matrix obtained by striking out one row and one column from relation matrix.

D(T )
def
= |Det(M)|.

D(T ) is called the determinant of the knot T . It can be used as a modulus5 for
coloring the knot diagram with ab = 2b− a, and D(T ) itself is an invariant of the
knot (link).

2????
3????
4????
5????
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Sometime divisors of D(K) will suffice. For example,

B=Borrommew rings

m. b. Borromean
rings?

Exercise. D(B) = 32.

But6

0
0

3

1
11

2
C = Z/4Z = {0, 1, 2, 3}.

We can color in Z/4Z.
Note that this coloring actually uses colors 0, 1, 2, 3.

Conjecture. No diagram for B can be non-trivially colored with less than 4
colors.

Harary7 and Kauffman define the coloring number C(K) of a knot or link K
to be the least number of colors needed by a diagram to color K. It is not hard
to see that C(fig eight) = 4. (Some diagrams of E require 5 colors, but there are
diagrams that require 4 and no diagrams that can be colored in < 4.)

6K chemu eto?
7????



22 1. TOPICS IN COMBINATORIAL KNOT THEORY

Every knot or link presents its own coloring problem in this context. Here is a
Z/5Z knot that I8 conjecture has C(K) = 5:

31

4

2
4

2

4 2
3 10

2

3 0

0

2 4

1

2

0

2

K

Conjecture. C(K) = 5.

Here is a Z/4Z coloring of the Whitehead link.

2
2

0

0

3

1

Is C(W ) = 4?

5. 2nd generalization of coloring

a

a b

b

a

a b

b
Now the operations keep

track of orientation.

Notation. If a ∗ b = a b and a#b = a b then




(a ∗ b) ∗ c = a b c
a ∗ (b ∗ c) = a b c
(a ∗ b)#c = a b c
a ∗ (b#c) = a b c





etc.

8????
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6. Translation of Reidemeister moves

1.
a

a a
a

a a = a

2.

b

b

a b

a

a b b

a b b = a⇔ b b = 1

3.

χ

χ bχ b a

χ b a b

a

c

χχ c

b





c = a b

c = b a b ⇔ a b = b a b

In this oriented context we are given a set C of “colors.” Each element a ∈ C is
also an automorphism a : C → C (by property 2) with a = a −1 and a (x) = x a ,
a(x) = x a . C is an automorphic set (the terminology is due to E. Brieskorn). The
special rules corresponding to 1. and 3. give us the axioms for a quandle. If we
just use 3. (not 1.) I call this a crystal. (Rourke and Fenn call the correspondence
structure9 with binary operations a rack (from “wrack” — a term used by J. H.
Conway and Gavin10 Wraith).)

Thus a crystal is a set (automorphic) C such that

a b = b a b a b = b a b

a b = b a b a b = b a b

for all a, b ∈ C.
In terms of the binary operations ∗ and #, these rules just say that they

distribute over themselves:

(a ∗ b) ∗ c = a b c

(a ∗ c) ∗ (b ∗ c) = a c b c

= a c c b c

= a b c

= (a ∗ b) ∗ c.

9V tekste “corres str”
10ili Cavin?
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Definition. Regular Isotopy (≈) = the equivalence relation generated by Rei-
demeister moves 0,2,3.

Exercise. The Whitney trick.

≈ ≈

≈ ≈ ≈

Note.

a

a a a

a a a a = a a a a a
= a a a
= a

The crystal does the Whitney trick algebraically. Note that this algebra corre-
sponds to the following topological moves:

≈

≈ ≈

Definition. A framed link is a link such that every component has a normal
vector field. This is equivalent to using bands instead of circles. The twisting of
the band catalogs the normal field.

The type 1 Reidemeister move does not apply to framed links.
We can use link diagrams to classity framed links. But
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Thus we must replace R1 by R1′:

This is called ribbon equivalence. (The equivalent relations are generated11 by
R0, R1′, R2, R3.)

Ribbon equivalence is very important in studying 3-manifolds via surgery. More
of this later on.

K an oriented link. Ĉ(K) = the crystal of K obtained by taking one generator
for each arc of the K-diagram and one relation c = a b or c = a b at each crossing.

Let C(K) = reduced crystal (≡ quandle) where we include the axiom a a =
a a = a ∀a.

Theorem. Let G(K) denote the group of automorphisms of C(K) generated
by the elements of C(K). Then G(K) is isomorphic to the fundamental group of
the complement of K in S3: G(K) ∼= π(K) = π1(S

3 −K).

Proof.

γ β

α





In π(K) αβ = βγ ⇒ γ = β−1αβ.

This corresponds to c = b a b in C(K).
We know from the Van Kampen Theorem that π(K) is given by one generator

per arc of the diagram and one relation per crossing in the form above. (Wirting12

presentation.) The rest is a bit of universal algebra. �

11V originale eta fraza sokrashena. Tak pravilno?
12m.b. Wirtinger?



26 1. TOPICS IN COMBINATORIAL KNOT THEORY

Theorems ofWaldhausen show that, for a (prime) knotK (

is composite. K#K ′:
K ′K

prime means K 6≃ K ′#K ′′

with K ′ and K ′′ non-trivial.) the topological type of K ⊂ S3 is determined by
(π(K), P (K)) where P (K) is the peripheral subgroup of π(K). The peripheral sub-
group is the subgroup generated by elements of π1(S

3 −K) that lie on the surface
of a tabular neighborhood of K.

P (K) is generated by one meridian m and one longitude λ.

m

λ

Since C(K) is generated by meridians, one can prove that: C(K) ∼= C(K ′)⇒ either
K ′ ≃ K or K ′ ≃ K∗r where

{
K∗ = mirror of K image (flip all crossings),

Kr = reverse orientation of K.

a

c

b

K

a

cb

K∗r





a b = c
c a = b
b c = a



 ⇔





a c = b
b a = c
c b = a





In this case K ∼= Kr so C(K) = C(K∗).
If we add the longitude λ(K) to C(K) then the resulting structure completely

classifies K.
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In π(K), λ(K) is the element obtained by taking the product of the elements
that you underpass as you walking along the diagram.

a

c

b

K

start walking from here

λ(K) = b a c .

Note that in the example above

cb

a

λ(K∗r) = c a b ;

the isomorphism C(K) ∼= C(K∗r) does not carry longitude to longitude.

Remark. There are exist knots K s.t. K 6≃ Kr. The first example is 817:





⇒ 817 6≃ 8∗17
K 6≃ K∗: one says K is chiral

Fact. 817 6≃ 8r17, 817 ≃ 8∗r17

A knot K is said to be reversible if K ≃ Kr. A knot K is said to be achiral13

if K ≃ K∗.
It would be nice to have a purely combinatorial proof that (C(K), λ(K)) clas-

sifies the knot K. The problem is in reconstructing the knot from the algebra after
doing algebraic manipulations.

Exercise.

a

b

c
a = c b
b = a c
c = b a





a = b a b
b = a b a = a a b a = a b a

So

a = b a b ,
b = a b a .

13tak?
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Try reconstructing from here:

a

b a

b

a

b a

b

Exercise.

c

a

b

d
a = d b
b = a c
c = b d
d = c a





a = c a b
b = a c
c = b c a = b a c a





a = c a a c = c a c a c
c = c a c a

So
a = c a c a c
c = c a c a

Try reconstructing from here:

a

a

c

c

a

c

a

a

ac

c

a
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Even in these cases of simple repeated substitutions to contracted self-referential
equations, the reconstruction is not obvious!

Exercises. 1) Show

E

is achival, i. e. E ≃ E∗.

2) Show π

( )
has presentation (a, b | aba = bab). Show there is a non-

trivial representation ρ : π

( )
onto−−−→ S3 = symmetric group on 3 letters. How m.b. ne

onto−−−→, a ։?

is this related to our 3-coloring?
3) Generalize the coloring and representation part of 2) via the IQ operation

ab = 2b− a.
4) U is unknotted, but no simplifying (making fewer crossings) R-moves are

available (and no R3 either). Hence U must be made more complex before becoming
simple (via R-moves).

U

7. Alexander module

This is a special sort of crystal representation.

a b = ta+ (1− t)b
a b = t−1a+ (1 − t−1)b

}
a, b ∈ C C = module overZ[t, t−1].

Exercise. (a) Check that these operations satisfy the axioms for a reduced
crystal.

(b) If

a b = ra+ sb
a b = pa+ qb

for fixed r, s, p, q, find out for what r, s, p, q these operations will satisfy the crystal
axioms.



30 1. TOPICS IN COMBINATORIAL KNOT THEORY

0

χ (1− κ)χ

κχ + (1− κ)2χ
= (κ2 − κ + 1)χ

⇒ (t2 − t+ 1)x = ∅

Coloring in the Alexander module, we generalize the modulus (determinant) to
the determinant of the corresponding matrix of relations over Z[t, t−1]. This gives
the Alexander polynomial. It is determined up to ±tn n ∈ Z. We write X

.
= Y to

mean X = ±tnY .

Exercise.

K : a

b

c
a = c b = tc+ (1− t)b
b = a c = ta+ (1 − t)c
c = b a = tb+ (1− t)a

a b c

−1 (1− t) t

t
(1 − t)

−1 (1− t)
t −1

∆K(t)
.
= t2 − t+ 1 Alexander Polynomial.

The Alexander polynomial ∆K(t) has the property that ∆K(t)x = 0 for all x in
the Alexander module (= module over Z[t, t−1] with relations given as above). (This
module is isomorphic with the homology module of the infinite cyclic covering of the
link complement over Z[t, t−1] where t : X∞ → X∞ is the covering transformation
in the infinite cyclic cover.)

Exercise. Show that every planar 4-valent graph (link projection graph or
“universe”), regarded as a map, can be colored with two colors so that each pair of
regions sharing an edge are colored differently.

Call this the “checkerboard” shading of the diagram, with the unbounded region
colored white. Colors white + black. Make a graph G(D) associated with the
universe D by taking one vertex of D for each shaded region and one edge for each
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crossing on the boundary of that region:

D

G(D)

For a knot or link diagram, associate signs ±1 to each edge of G(D):

: +1

: −1

K

:

+

++ G(K)

In this way, a signed graph G(D) is associated to each link diagram D. Work
out a complete translation of the Reidemeister moves to this category of signed
graphs.

Exercise.

DA

B C

◦◦ Associate a relation AB−1CD−1 = 1

DA

B C

◦ ◦ Associate a relation DA−1BC−1 = 1

For a given link diagram K put down one group generator for each region and

one relation for each crossing as shown above.




DA

B C

◦◦ AB−1CD−1 = 1




Set A0 = 1 where A = region label for the unbounded region in the plane.
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Call G(K) the resulting group.

A ◦
◦ ◦B

E

◦
C

D ◦◦





ADEB = 1
ABEC = 1
DACE = 1
A = 1




↔

DEB = 1
BEC = 1
DCE = 1

(a) Show that K ≃ K ′ ⇒ G(K) ∼= G(K ′).
(b) G(K) is the so-called Dehn presentation of π1(S

3 −K). Think about this
by using a base point above the plane and letting A correspond to a loop that drops
down through A and returns up trough the unbounded region.

(c) Show, using the Dehn presentation, that Ab[G,G] (the abelianization14 of
the commutator subgroup of G) has an additive presentation:

da

b c

◦◦ xa− xb + c− d = 0

a here a 7→ xa corresponds to the action A 7→ XAX−1 where X is a fixed element
of linking number 1 with K.

(d) Use the relations in (c) to get a polynomial ∆K(x) by taking an appropriate
determinant. (See J.W. Alexander. Trans. Amer. Math. Soc. 20 (1923) pp. 275-
306).

8. (A’) A state summation model for the Alexander (Conway)
polynomial

For simplicity, I will use | − |15 tangles here.

L R

A | − | tangle is a rope(s) tied between two walls. You can move it around, but
the end-points are fixed. Extra loop components are possible.
{States} = S(K) = all “self-avoiding” walks from L to R.

D K

A(D) =





S1

,

S2

,

S3





14abelianisation??
151-1?
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For each S ∈ A(K), we will define 〈K|S〉 n such way that

∇K =
∑

S

〈K|S〉

is an invariant of K. ∇K will turn out to be the Conway version (normalization)
of the Alexander polynomial. (See L. Kauffman. Formal Knot Theory, P. U. P.
(1983) for all details.)

∗
∗ ≡ →

each non-starred region has a pointer that points to one vertex. No vertex receives
more than one pointer.

−→

−→

A(K)↔ P (K) = Pointer States as described above.

∗
∗

∗
∗

∗
∗

[There states are also in |−| correspondence with maximal trees in the checkerboard
graph.

∗
∗

∗
∗



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Now the Vertex Weights:




〈 ∣∣∣∣∣

〉
= t

〈 ∣∣∣∣∣

〉
= −t−1

〈 ∣∣∣∣∣

〉
=

〈 ∣∣∣∣∣

〉
= 1

−t−1 t
1

1
for

Similarly

−t t−1
1

1
for

〈K|S〉 =
∏

p∈K

wt(p/s)

〈
1

2

∗
∗

3

∣∣∣∣∣
∗
∗

〉
= (t)(1)(−t−1) =

〈
1
|

〉〈
2 |

〉〈
3
|

〉

We shall see that ∇K is a polynomial in Z = t− t−1, and ∇K(t)
.
= ∆K(t2).

κ κ(1) κ(1)(−κ−1) (1)(−κ−1)(−κ−1)

K

∇K = t2 − 1 + t−2 = (t− t−1)2 + 1
∇K = z2 + 1

∇K(
√
t) = t− 1 + t−1 .

= t2 − t+ 1 = ∆K(t).

Theorem. ∇ −∇ = z∇ .

Proof.

∇ = t∇ − t−1∇ +∇

∇ = t−1∇ − t∇ +∇

⇒ ∇ −∇ = (t− t−1)
[
∇ +∇

]
= (t− t−1)∇ .

�

Theorem. K ∼ K ′ ⇒ ∇K = ∇K′ .
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Proof. Check invariance under Reidemeister moves.

e. g. N. B.

�

I discovered this model by abstracting the combinatorics inherent in Alexan-
der’s original paper on his polynomial.

Exercise. This exercise sharpens part (d) of the last exercise on page 17.1.
Alexander would compute ∆K(t) for the trefoil as follows.

A ◦
◦ ◦B

E

◦
C

D ◦◦
1

2

3





DA

B C

◦◦





tA− tB + C −D = 0

M =

A B C D E
1 t −1 0 −t 1
2 t −t −1 0 1
3 t 0 −t −1 1

Let M be matrix obtained from M by striking out any two adjacent columns.
∆K(t)

.
= |M |. E.g.

M =




0 −t 1
−1 0 1
−t −1 1


 (strike A,B)

⇒
|M | = −t

∣∣∣∣
−1 1
−t 1

∣∣∣∣+
∣∣∣∣
−1 0
−t −1

∣∣∣∣ = −t(−1 + t) + 1
.
= t2 − t+ 1.

The state model we have discussed in this section is a result of abstracting the
combinatorial structure of Alexander’s original definition.

1

−1
−χ

χ
 

1

−1

−κ−2

κ−2

(use variable t−2)

 
κ+1

−κ+1

−κ−1

κ−1

(multiply some rows by t+1)

v formule na meste
...... ne poniatno

 
1
κ+1

κ−1

1
(throw out terms that have a ...... (Some work here) )
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Result is

κ−1 κ
1

1
κ κ−1

1

1

for Determinant weights.
The state model sums over the same “states” as the product terms in the

determinant and, by a combinatorial miracle, gets the sings

−t−1 t
1

1
, −t t−1

1

1

instead of from the determinant! The above remarks constitute a proof that

∇K(
√
t− 1/

√
t︸ ︷︷ ︸

z

)
.
= ∆K(t).

9. (B) Surfaces, S-equivalence and. . .

Given an oriented link K ⊂ S3, ∃ an oriented surface F with ∂F = K (∂F
denotes the oriented boundary of F ): proof via Seifert’s algorithm 7→

1) From Seifert Circuits via

7→
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2) Add disk to each Seifert circuit.

Keeping them disjoint.

3) Add twisted bands as shown above

Exercise. 1) Apply Seifert’s algorithm to obtain an oriented spanning surface
for the figure eight knot

E
.

2)

F

This F is a disk with attached bands. Show ∂F ∼= .
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3) Every surface (orientable) with boundary has the abstract form

......

of a disk with attached bands.
4) Every link K ⊂ S3 bounds an embedded disk with attached (twisted, knot-

ted, linked) bands.

10. Supplement an quantum link invariants

Use oriented tangle category.m.b. ne ”0.”, a ”1.”?

0.

So + inverses
+ + inverses

2. = , = given.

3. = given (up + down).

4. = , =

given in all its oriented forms.Vo vtoroj kartimke
punkta 4 ne nariso-
vano kto iz strelok
legit vishe. Tak
pravilno?



10. SUPPLEMENT AN QUANTUM LINK INVARIANTS 39

Need: = .

Then other variants of 3. follow.

⇀ ⇀ ⇀

Now re-write as tensor equations under assumption that

Mab = λ−a/2δab Mab = λ+a/2δab

M
ab = λ+a/2δab M

ab = λ−a/2δab

←→↑Rab
cd c d

ba
=↓Rab

cd.

Lemma 1. ↑Rab
cd = λ

−(c+d)+(a+b)
2 ↓Rdc

ba

Proof.

c

b

d

a

j

i l

k

=

c

b

d

a

Mcj Mdi ↓Rij
kl M

kb Mla =↑Rab
cd

λ−c/2λ−d/2 ↓Rdc
baλ

+b/2λ+a/2 =↑Rab
cd

Thus ↑Rab
cd = λ

−(c+d)+(a+b)
2 ↓Rdc

ba. v 3-j kartinke
neponiatno kak ori-
entirovan vneshnij
put (v originale — v
obe! storoni)=

=
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yields same condition

↑Rab
cd = λ

−(c+d)+(a+b)
2 ↓Rdc

ba.

�

s t

b

d

a

c

=

l

j

k

i

s t

b

d

a

c

δac δ
b
d = Msi M

sk
M

ib
Mld ↓Ria

tj ↓R
tl

kc

δac δ
b
d = λ−s/2λ−s/2λ+b/2λ+d/2 ↓Rsa

tb ↓R
td

sc

δac δ
b
d =

∑

s,t

λ
−s+b

2 λ
−s+d

2 ↓Rsa
tb ↓R

td

sc

A similar equation holds for ↑R. We should compare these using the Lemma that
relates ↑R and ↓R.

Should also (later) check under what conditions16 ↑R and ↓ R can both be
solutions to YBE.

Note that we would get corresponding equations for ↑R but17 that these will
be changed by exactly the given relations between ↑R and ↓R.

Note also that ↑R satisfies18 YBE ⇔ ↓R satisfies YBE.

Question. Do ∃ non-spin preserving solutions to YBE such that we get a link
invariant that can detect differences between some knots and their reverses?

F
cut two holes

//

fill holesoo

��⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧

at
ta
ch
ha
nd
le

F ′

??⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧
cu
t h
an
dl
e

��

S-equivalence❄❄❄❄

__❄❄❄❄❄

16?
17?
18?
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Exercise 1.

∼
S

Note how the tube is knotted and linked with the surface.

Exercise 2.

≃

1-holed tours

disk ≃

1-holed sphere

Two surfaces are said to be S-equivalent if one can be obtained from the other
by a combination of ambient isotopy and a finite number of handle additions and/or
subtractions.

Note that F ∼
S
F ′ ⇒ ∂F ≃

isotopy
∂F ′.

We will prove the

Theorem (S-theorem).19 Two surfaces are S-equivalent if and only if their
boundaries are isotopic:

F ∼
S
F ′ ⇔ ∂F ≃ ∂F ′.

Moral. Use S-equivalence of surfaces to study isotopy of knots and links.
In order to prove the Theorem we need some Lemmas.

Lemma 1. Any orientable spanning surface for a link K is S-equivalent to a
surface obtained via Seifert’s algorithm.

19The elementary proof given here is due to Lou Kauffman, Dror Bar-Natau, and Jason
Fulman.
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Proof. Note that

≃ ∼
S

Thus

∼
S

and

∼
S

.

Any disk-with-bands surface can be represented by an embedding so that the bands
pass over and under one another as illustrated locally above. The local situations
shown above demonstrate that we can add tubes to get a surface obtained via
Seifert’s algorithm. �

Lemma 2. If K ′ is obtained from K by a sequence of Reidemeister moves,
then F (K)∼

S
F (K ′) where F (K) denotes the spanning surface for K obtained via

Seifert’s algorithm. (If K is a link diagram, we assume that F (K) is connected
and that each Reidemeister move preserves connectivity — so that F (K ′) is also a
connected surface.)

Before proving Lemma 2 it is useful to point out that some of the oriented
versions of the Reidemeister moves are consequences of the others. Lets assume
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that we have both versions of the type II move to work with:

and

Then we can cut down the number of type III moves needed as shown in the
following discussion.

There are two basic types of type III moves:

III0 = non-cyclic,

(the inner ∆ does not make an oriented cycle) and

III1 = cyclic,

(the inner ∆ does make an oriented cycle).

Useful Fact. Cyclic type III moves can be accomplished by combinations of
type II moves and non-cyclic type III moves.

Proof.

⇀ ⇀ ⇀

�

Proof of Lemma 2. There is nothing to check for type I Reidemeister moves,

since ≃ .

Now look at type II.

Case 1. ⇒ F ( ) = tube added to F ( ).
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Case 2. These surfaces are isotopic, but this is not the

only case. Continue.

will happen when the upper and lower Seifert circuits of

are disjoint, schematically as in .

Then is a single Seifert circuit, filled in as above.

If the upper and lower Seifert circuits are not disjoint, then we haveChto-to neponiatnoe
s napravlenijami

and

with no extra structure other than two Seifert circles on the right, this move would
disconnect the surface and take us out of category. Hence, the situation has the
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form

move←→

←→

(Black boxes representing rest of the Seifert surface.)
Thus the move between the two surfaces in this case consist in taking the

boundary connected sum with a punctured torus (or removing it). This is an S-
equivalence!

We have now shown that Reidemeister moves of type II (in both orientations)
induce S-equivalence on the corresponding Seifert surfaces.

It remains to examine how the Seifert surfaces change under type III moves
of non-cyclic type. For this purpose it is useful to use some algebraic terminology
from the theory of braids:

= σ1, = σ−1
1 , = σ2, = σ−1

2 .

∼= : σ1σ2σ1 ∼= σ2σ1σ2.

Look at the Seifert surface of σ1σ2σ1:

call this
the “coupon”

slide the
coupon
along the
train tracks︸ ︷︷ ︸
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This shows that σ1σ2σ1 and σ2σ1σ2 have isotopic Seifert surfaces. Other cases
such as

σ1σ2σ
−1
1

:

〈 twisted train tracks 〉

:

σ−1
2 σ1σ2

But

σ1σ2σ
−1
1
∼= σ−1

2 (σ2σ1σ2)σ
−1
1

∼= σ−1
2 (σ1σ2σ1)σ

−1
1

∼= σ−1
2 σ1σ2.

Since σiσ
−1
i = 1 ↔ ∼= this corresponds to isotopies of the corresponding

Seifert surfaces. This completes the proof of Lemma 2. �

With Lemmas 1 and 2 now proved, we have completed the proof of the S-
Theorem. Two connected surfaces F and F ′ are S-equivalent if and only if their
boundaries are isotopic.

11. The Seifert Pairing and Invariants of S-equivalence

Given an oriented surface F embedded in R3, we define the Seifert pairing

θ : H1(F )×H1(F )→ Z

where H1 denotes the first homology group by the formula

θ(a, b) = lk(a∗, b)
where lk denotes linking number, and a∗ is the result of pushing a representative
for a off the surface in the direction of the positive normal to the surface. This
pairing is an invariant of the ambient isotopy class of the embedding of F in R3.
We can examine how it behaves under S-equivalence.

The following functions of θ are invariants of S-equivalence. (See L. Kauffman.
On knots. for the proofs.)

(1) D(K) = Det(θ + θT ) (θT denotes the transpose of θ).
This is the determinant of the knot. It is the same (!) as the deter-

minant that we have defined via the quandle/crystal.
(2) σ(K) = Signature(θ + θT ).

This is the signature of the knot. Since the matrix θ+ thetaT is sym-
metric, it has a well-defined signature (= p+−p− where p+ = #positive entries,
p− = #negative entries on diagonal of PθPT = diagonal matrix, P invert-
ible over Q20.)

Exercise. Show that σ(K∗) = −σ(K) when K∗ is the mirror image
of K.

20???
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(3) Ω(t) = Det(t−1θ − tθT ) (here t is a (Laurent) polynomial variable.)
It is not hard to show that Ω is an invariant of S-equivalence, hence

that it is an invariant of K = ∂F . ΩK(z) = Ω(t) where z = t− t−1. ΩK

is a polynomial in z satisfying





Ω − Ω = zΩ

Ω = 1





In other words, ΩK(z) is the Conway normalization of the Alexander
polynomial!

Example.

F :

ab

θ a b
a −1 0
b −1 −1

t−1θ − tθT =

[
−t−1 0
−t−1 −t−1

]
+

[
t t
0 t

]
=

[
−t−1 + t t
−t−1 t− t−1

]

ΩK = Det(t−1θ − tθT ) = (t− t−1)2 + 1 = z2 + 1.

θ + θT =

[
−2 −1
−1 −2

]
⇀
r

[
−2 −1
0 −2 + 1/2

]
⇀
c

[
−2 0
0 −3/2

]

σ(K) = −2⇒ K 6≃ K∗.

Exercise. A knot is said to be a ribbon knot if it bounds a singular disk in
R3 whose singularities are all of the form

arc between two boundary points of
the disk intersects transversely an arc on
the interior of the disk.

(Such a knot bounds a non-singular disk in upper 4-space = R4
+ = {(x, y, z, t) : x, y, z ∈

R, t ∈ R and t > 0}. It is a long-standing conjecture that every such knot (i. e.
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every slice knot = knot bounding non-singular disk in upper 4-space) is ribbon.)

e. g.

You can make spanning surfaces for ribbon knots via

replacing each singular line by a hole and attaching one piece of ribbon to one-half
the boundary of the hole and the other piece of ribbon to the other half of boundary
of the hole.

Show that K ribbon ⇒ ∃ f(t) a polynomial in t such that

ΩK(t) = f(t)f(1/t).

Exercise. K = ∂F

F

Show that θ has the form

[
0 0
−1 −1

]
.

Conclude that ΩK(z) = ∇K(z) = 1.
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This is an example of a non-trivial knot with Alexander polynomial equal to 1.
We shall need new methods (or more work with π(K))) to prove it to be non-

trivial.

Exercise. Use the Conway switching identities for ∇K to show that the knot
drawn below has ∇KT = 1:

KT

This is the Kinoshita-Terasaka knot.
Subexercise: Find a diagram for KT that only 11 crossings.

Exercise. Find a formula for the genus of the Seifert surface in terms of the
number of Seifert circuits and the number of diagram regions in the link diagram.
(Answer: g = 1/2(−µ+R−S), µ = #comps, S = #Seifert circuits, R = #regions.)

Exercise. Find other knots of Alexander polynomial 1.

Exercise.

L L′

Compare the Alexander (Conway) polynomials of these two links. Generalize your
result.

Exercise. After Vaughan Jones discovered (1984) a Laurent polynomial in-
variant of knots and links satis

• VK(t) = VK′(t) if K ≃ K ′

• V = 1

• tV − t−1V = (
√
t− 1√

t
)V

it quickly became apparent to many people (Homflypt) that there was a beautiful
2-variable invariant:

• PK(α, z) = PK′(α, z) if K ≃ K ′

• P = 1

• αP − α−1P = zP

(a) Believe that the Jones and Homflypt polynomials are well-defined and do
some computations.

(b) Find your own proof that Homflypt polynomial is a well-defined invariant.
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Exercise. a)

≃ ≃

b) a) leads to diagrammatic notion of ribbon equivalence obtained by replacing
Reidemeister move #1 by 1′:

Ribbon Equivalence = 0., 1′., 2., 3. ≡ Isotopy Classes of Framed Links

Show that the crystal defined by axioms a a = 1, a b = b a b etc. (but not
a a = a) is an invariant of framed links.

Exercise. Use the FKT model to show that the highest degree term in the
normalized Alexander polynomial of a knot (i. e. ∇K(

√
t − 1/

√
t)) is tg where

g =genus of the Seifert spanning surface for the diagram used in the calculation
when the knot is an alternating knot. Conclude that an alternating diagram K
has Seifert surface of minimal genus among Seifert surfaces spanning the diagrams
equivalent to K under Reidemeister moves. (See Formal knot theory for this result
and a generalization of it.)
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Exercise (Fox Free Calculus and Fox’s Group Theoretic Definition of the
Alexander Polynomial). 21

b a

Ẽ

E

π

π

b̃

ã

universal covering of figure eight

In any covering space
ω̃τ = ω̃ + ωτ̃

where ω̃ denotes the lift of a loop in the base to a path emanating from base point
in the total space.

G = π1(E) = (a, b | ) free group on generators a,b.

ω ∈ π1(E) ⇒ ω̃ = Aã+Bb̃, A,B ∈ Z[G], the group ring of G.

Definition. ∂ω
∂a = A, ∂ω

∂b = B.

D : ∂a = ∂/∂a, ∂b = ∂/∂b

D(ωτ) = D(ω) + ωD(τ)

Fox derivation.

If D = ∂/∂a

⇒D(a) = 1

D(a2) = D(a) + aD(a) = 1 + a

D(a3) = D(a) + aD(a2) = 1 + a(1 + a) = 1 + a+ a2

. . .

D(an) = 1 + a+ . . .+ an−1 = [n]a

a−nan = 1⇒D(a−n) + a−nD(an) = 0

⇒D(a−n) = −a−n(1 + a+ . . .+ an−1)

D(a−n) = −(a−n + a−n+1 + . . .+ a−1).

21This exercise is written in cryptic style. See “A quick trip trough knot theory” by R. Fox
in Topology of 3-manifolds edit by M. K. Fort Jr. Prentice—Hall (1962) pp. 120–167.
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Definition. G = (g1, . . . , gn | r1, . . . , rm) is a group with n generators and m
relations, define the Jacobian matrix

J = (∂ri/∂gj).

If G = π1(S
3 −K), K a knot then have

φ : G→ (t :) ∼= Z, φ(x) = tlk(x,K).

Let Jφ = (φ(∂ri/∂gj)). Then

∆K(t)
.
= generators of the ideal in Z[t, t−1]generated by (m− 1)× (n− 1) minors in Jφ.

(Fox’s definition of the Alexander polynomial)
This definition ....22 the polynomial from any representation of the fundamental

group.

Example (Torus Knots K(p, q)). (p, q) relatively prime.

K(2, 3)

K(3, 4)

b

a

∗





π(K(p, q)) = (a, b : ap = bq), r = ap − bq

ψ(a) = tq, ψ(b) = tp

J = (∂ar, ∂br) = (1 + a+ . . .+ ap−1,−(1 + b+ . . .+ bq−1))

J =

(
ap − 1

a− 1
,−b

p − 1

b− 1

)

Jφ =

(
tpq − 1

tq − 1
,− t

pq − 1

tp − 1

)

⇒
∆K(p,q)

.
= gcd

(
tpq − 1

tq − 1
,
tpq − 1

tp − 1

)

Exercise. Check it out for p = 2, q = 3.

22???
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Now note: c = bab−1, r = c− bab−1

∂r

∂c
= 1,

∂r

∂b
= −1− ba(−b−1) = −1 + bab−1 ∂r

∂a
= −b

If a b = bab−1 = c
∂r

∂c
[c] +

∂r

∂b
[b] +

∂r

∂a
[c] = 0

expresses corresponding linear relation.

[c] + (−1 + bab−1)[b]− b[a] = 0

[c] = +b[a] + (1 − bab−1)[b]

↓ψ : a, b 7→ t

[c] = t[a] + (1− t)[b].
Moral. In the Wirtinger presentation, or in using the crystal, Fox’s definition
coincides with our “modular” definition of ∆K(t).

Exercise (Dehornoy and Laver’s Magma). A magma is an algebraic system
with one binary operation ∗ and one axiom:

a ∗ (b ∗ c) = (a ∗ b) ∗ (a ∗ c).
(The operation is left distributive over itself.)

Consider the magmaM(a): free magma on one generator a.

a

a ∗ a
a ∗ (a ∗ a) = (a ∗ a) ∗ (a ∗ a)
= ((a ∗ a) ∗ a) ∗ ((a ∗ a) ∗ a)
= (((a ∗ a) ∗ a) ∗ (a ∗ a)) ∗ (((a ∗ a) ∗ a) ∗ a)

at this point it branches into two possible distributions

What is the structure ofM(a)?
Dehornoy and Laver conjectured and then proved thatM(a) is totally ordered

by left truncation.

X ∗ Y : X is a left truncate of Y .

In order to prove this, they first regardedX ∗Y = X [Y ] (operator notation ∼ X Y )
and wrote

X ∗ (Y ∗ Z) = (X ∗ Y ) ∗ (X ∗ Z)
l

X [Y [Z]] = X [Y ][X [Z]]

Interpret.: X,Y, Z, . . . ∈ SetA
X ∈ A 7→ X : A → A

(X [Y ] denotes application of X to Y ) and

each τ : AA → AA (τ ∈ A)
s. t. τ [X [Y ]] = τ [X ][τ [Y ]].
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Then they looked for set-theoretic models and seemed to need axioms asserting
existence of inaccessible cardinals to make free models of M(a). But Dehornoy
found a way to embedM(a) ⊂ B∞, the Artin braid group!

β :M(a) →֒ B∞

β(a) = 1

β(X [Y ]) = β(X)s(β(Y ))σ1s(β(X)−1)

(Dehornoy’s inductive definition.)

s(braid) = braid resulting from shifting all of its strands to the right by one strand.

(braid)−1 = inverse braid (turn upside down and flip all crossings)

Exercise. Show that if we define the operation

A B = As(B)σ1s(B
−1)

for A,B ∈ B∞. Then

A B C = A B A C

A

B

B−1

}
A

}
s(B)

}
s(B−1)

}
σ1





A[B]

12. (C) Three Manifolds, Surgery and Kirby Calculus

∂ =boundary

S3 = 3-dimensional sphere = ∂(D4)

D4 = 4-ball = {−→x ∈ R4 | ‖−→x ‖ =
√
x21 + . . .+ x24 6 1}.

D4 ∼= D2 ×D2 just as ∼= .

Therefore

S3 = ∂D4

∼= ∂(D2 ×D2) = ∂D2 ×D2 ∪D2 × ∂D2

= (S1 ×D2) ∪ (D2 × S1).

S3 ∼= (S1 ×D2) ∪ (D2 × S1)
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The three-sphere is the union of two solid tori.

, S3 = R3 ∪ {∞}.





Look at R3 − (S1 ×D2) ⊂ S3 − (S1 ×D2)

Spin it about the dotted axis to get {S3 − (S1 ×D2)} − {∞},
and see that S3 − (S1 ×D2) ≃ ◦

D2 × S1.





Framed Links
up to ambient

isotopy
↔

Link Diagrams
up to ribbon
equivalence

≃ ↔

[For Kirby Calculus, see
1. R. Kirby. A calculus for framed links in S3. Invent. Math. 45, pp. 36–56

(1978).
2. R. A. Fenn and C. P. Rourke. On Kirby’s Calculus of Links. Topology 18,

pp. 1–15 (1979).
3. E. César de Sá. A Link Calculus for 4-Manifolds. (1977) Lecture Notes

#722 Springer–Verlag. pp. 16–30.]
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13. Surgery on a Blackboard Framed Link

K

l longitude

m
meridian

S3 − ◦
N(K)

U
m′ l′

S3 − ◦
N(U)

M3(K)
def
= [S3 − ◦

N(K)] ∪∂ [S3 − ◦
N(U)]

m↔ m′, l↔ l′.

[Note: S3 − ◦
N(U) ∼= S1 ×D2]

Examples.




M3( ) ∼= S2 × S1

M3( ) ∼=M3( ) ∼= S3

M3( ) ∼= S3 no surgery at all

M3(
...︸ ︷︷ ︸

n ) ∼= L(n, 1) Lens space

Alternate definition. Framed link L gives α : S1 ×D2 → S3.

M3(K) = ∂[D4 ∪α (D2 ×D2)] : ∂(D2 ×D2) = (S1 ×D2) ∪ (D2 × S1).

handle H attached to ∂D4.

H

D4
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Handle Sliding: 4D analog of

→ →

→

On the base(s) of the handles, the result is:

L R

→

(part of left has slide up on R’s handle.)

( ” )
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The end result of the handle-slide is that L is replaced by L′ = L#R̃ where R̃
is a parallel copy of R (parallelism23 defined by the framing).

Handle sliding preserves the topological type of the boundary of the 4-manifold

RL

↔

K ↔ K ′ ⇒M3(K) ∼=M3(K ′).

↔ or

K ↔ K ′ ⇒M3(K) ∼=M3(K ′).

Two link diagrams in the ribbon category (links up to ribbon equivalence) are
said to be Kirby equivalint (∼

K
) if one can be obtained from the other by a finite

combination of

• ribbon equivalence
• HS
• bu or bd

Theorem (R. Kirby). M3(K) ∼=M3(K ′) ⇔ K ∼
K
K ′.

Proof. See Kirby’s paper. �

23???
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Working with link diagrams via ribbon equivalence and HS and bu, bd is called
Kirby Calculus.

Note that it is corollary of the Kirby Theorem that

M3(K) ∼= S3 ⇔ K ∼
K
∅.

Is it possible to recognize whether a link K is Kirby equivalent to nothing? The
famous Poincaré Conjecture becomes a conjecture about exactly this:

Poincaré conjecture. M3(K) ∼= S3 ⇔ π1(M
3(K)) = {1}.

Exercise. π1(M
3(K)) ∼= π1(S

3−K)/〈λ(K)〉 where 〈λ(K)〉 denotes the normal
subgroup generated by the longitude of K.

Thus the Kirby Calculus Version of the Poincaré Conjecture is

π1(S
3 −K)/〈λ(K)〉 = {1} ⇔ K ∼

K
∅.

Example.

∅→K →K →K

∼= ∼=

→K
∼=

Thus M( ) ∼= S3.

Lets check π1(L) = π1(S
3 − L)/〈λ1, λ2〉.

a b

1

a

b b

2 b

relations are

a = a b , b = b b a = b a = β

λ1 = b , λ2 = b a = β−1α

(Letting α = a , β = b )

π1(S
3 − L)

〈λ1, λ2〉
=

(α, β | α = β−1αβ, β = α−1βα)

〈β, β−1α〉 = {1}.
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Example.

K

Claim. π1(M
3(K)) = (a, b, c | a5 = b3 = c2 = abc).

This 3-manifold is the Poincaré Dodecahedral Space, obtained from a dodeca-
hedron by identifying opposite sides with a 2π/5 twist.

This π1 is a finite group — with 120 elements — and Abel(π1) = H1(M
3(K))

is trivial.

Example. Borrommean Rings

Exercise. Show that π1(M
3(B)) ∼= Z⊕ Z⊕ Z by algebraic calculation.

Exercise. Prove that M3(B) ∼= S1 ⊕ S1 ⊕ S1. calculation.
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Example. Rourke and Fenn showed that candle sliding could be replaced by
the “Rourke—Fenn” move in Kirby calculus axioms.

⇀
K

⇀
K

∼=

=⇒

Rourke—Fenn move
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14. D. Bracket Polynomial and Jones Polynomial

Definition. 〈K〉 =∑
S

〈K|S〉d‖S‖−1

A ↔ ↔
B

smoothings

K

A A

B

S1

A
A

A

S2

2 of the 8 states of K

(A state S1 is obtained by smoothing all the crossings of K.)

〈K|S〉 = product of the weights A,B.
[
e.g. 〈K|S1〉 = A2B

〈K|S2〉 = A3

]

‖S‖ = #of Jordan curves in S

[e.g. ‖S1‖ = 1, ‖S2‖ = 2.]

Theorem. (a) 〈 〉 = A〈 〉+B〈 〉
(b) 〈 〉 = AB〈 〉+ (ABd +A2 +B2)〈 〉

Proof. (a) obvious from definition.
(b) Use (a):

A

B

A

A
B

B B

A

�

Let B = A−1, d = −A2 −A−2. Then

〈 〉 = 〈 〉
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and

〈 〉
= A

〈 〉
+A−1

〈 〉

= A

〈 〉
+A−1

〈 〉

=

〈 〉
.

Thus 〈K〉 with B = A−1, d = −A2 −A−2 is an invariant of regular isotopy.





CHAPTER 2

State Models and State Summations

Let K be a mathematical object (by which I usually mean an object in some
category, a space, a combinatorial decomposition of some space, a diagram, an
expression in some folmal system. . . ). Suppose that there is associated with K a
set S called the “set of states S of K.” Let us assume that there is a ring R and a
mapping

〈K| 〉 : S → R

such that 〈K|S〉 ∈ R for each S ∈ S.
We define the state summation 〈K〉 by the formula

〈K〉 =
∑

S

〈K|S〉d‖S‖

where ‖ · ‖ : S → R is a function dependent only on the set of states itself. (d is an
algebraic in determinate such that d‖S‖ ∈ R as well.)

In statistical mechanics one defines partition functions Z =
∑
S∈S

e‖S‖ where

‖S‖ = − 1
kT E(S) (e = lim

n→∞
(1 + 1

n )
n. k ↔ Boltrmann’s1 constant. T ↔ tempera-

ture. E(S) = the “energy” of the state S of the system under study.)
In this context K may denote an observable for the system. For example 〈K|S〉

could be the energy for the state S. Then 〈K〉 represents the average energy for
the system.

In general, we will write

[K] =
∑

S

[K | S]

for a state summation with respect to a general mathematical object K and its
corresponding set of states S. If such sums are infinite, then questions of integration
need to be considered. If finite, them matters of definition need to be looked into.

Many well-known mathematical gadgets are quite naturally seen as state sums.

1???

65



66 2. STATE MODELS AND STATE SUMMATIONS

Example. 〈(
a b
c d

) ∣∣∣∣∣

〉
= +ad, t( ) = +0

〈(
a b
c d

) ∣∣∣∣∣

〉
= +bc, t( ) = +1

〈M〉 =
∑

S

〈M |S〉 (−1)t(S)

⇒ 〈M〉 = Det(M).

S =rook patteras2 on n× n board; t : S → Z, t(S) = #of transpositions needed to

bring to .

In these notes we have seen state summations for the Alexander—Conway
polynomial and for the bracket polynomial. In both of these cases, the states
are “naturally” associated with the mathematical object K (the diagram) and the
intent of the state sum was to produce something invariant under the Reidemeister
moves. This strategy is quite different from the strategies we have seen up until now
for producing topological invariants of spaces. We shall see, as the course proceeds,
that one can define state sums to yield invariants of 3-manifolds as well as knots,
and that there are many variations on this theme of state summation — some being
suffused with algebra, others partaking of functional integration and geometry.

Lets begin again by looking at the bracket polynomial, first seeing what it does
topologically:

1. A. Applications of Topological Bracket Polynomial

〈 〉 = A〈 〉+A−1〈 〉
〈 K〉 = δ〈K〉, δ = −A2 −A−2

1◦.

〈 〉 = A〈 〉+A−1〈 〉
= (A(−A2 −A−2) +A−1)〈 〉

〈 〉 = (−A3)〈 〉
Similarly,

〈 〉 = (−A−3)〈 〉
1◦. Define w(K) =

∑
p
ǫ(p), sum over all crossings in oriented diagram K.

ǫ( ) = +1, ǫ( ) = −1.
Define

fK = (−A3)−w(K)〈K〉.
Proposition. (a) 〈K〉 is an invariant of regular isotopy.
(b) fK is an invariant of ambient isotopy (R1, R2, R3 + R0) for oriented links.

2???
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Proof. (a) done already. (b) easy. �

K K∗

Definition. The mirror image of K (denoted K∗) is obtained by reversing
(switching) all the crossings of K.

Proposition. 〈K∗〉(A) = 〈(〉A−1), fK∗(A) = fK(A−1).

Proof. Immediate from definition. �

Thus
K ∼=

ambient
isotopy

K∗ ⇒ fK(A) = fK(A−1).

If FK(A) 6= fK(A−1) then K 6∼= K∗. In this way, fK can (sometimes) detect
chirality. (A knot K is chiral if K 6∼= K∗ and achiral if K ∼= K∗.)

Example.

T

�� ��

A

�� ��

B

A

A AB

〈T 〉 = A2(−A3) + (A−1A)(−A−3) +A−1(−A−3)2

〈T 〉 = −A5 −A−3 +A−7

w(T ) = 1 + 1 + 1 = 3

fT = (−A3)−3(−A5 −A−3 +A−7)

fT = A−4 +A−12 −A−16

fT (A) 6= fT (A
−1) ⇒ T 6∼= T ∗.
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This is the simplest proof I know that the trefoil knot is chiral.

Notice also that the difference between the highest and lowest terms (i. e.
degrees) of 〈K〉 is an ambient isotopy invariant. i. e.

Let

{
MK = highest degree in 〈K〉 (e. g. MT = 5)

mK = lowest degree in 〈K〉 (e. g. mT = −12)

Let Span(〈K〉) =MK −mK .

Proposition. Span(〈K〉) is an ambient isotopy invariant of K.

Proof. Span(〈K〉) = Span(fT ). �

We begin with alternating knots and links:

In the checkerboard shading of an alternating link all the crossings have same
shaded type. This gives a way to locate states S with highest degree 〈K|S〉.

K S

〈K|S′〉 = A−5 = A−v ‖S′‖ = 3 =W

S

〈K|S〉 = A5 = Av ‖S‖ = 4 = B
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We see that, quite generally, for any alternating diagram (with all shaded crossings

of the type ) we have two special states S and S′ with





〈K|S〉 = Av, v = #crossings in K,

‖S‖ = B = #shaded regions in K,

〈K|S′〉 = A−v,

‖S′‖ = #unshaded regions in K.

Definition. A connected diagram K is reduced if it does not contain an isth-
mus :

K

An isthmus is a crossing that can be smoothed to cause the diagram to fall into
disjoint pieces in the plane.

Proposition. If K is reduced and alternating then the states S and S′ de-
scribed above contribute the highest and lowest degrees of 〈K〉. More precisely,

MK = v + 2(B − 1)

mK = −v − 2(W − 1)

and Span〈K〉 = 4v.

Thus the number of crossings of a reduced alternating diagram is an ambient
isotopy invariant of the corresponding knot.

Proof. 〈K〉 = ∑
σ
〈K|σ〉 d‖σ‖−1 where ‖σ‖ = #loops in σ and d = (−A2 −

A−2).
Thus S contributes 〈K|S〉 d‖S‖−1 = Av(−A2−A−2)B−1 and the highest degree

contribution from this degree can not be cancelled from any other state.
Examine what happens to the degree when we switch a smoothing:

A
−→ A−1

Al(−A2 −A−2)k Al−2(−A2 −A−2)k±1

l + 2k 7−→ l − 2 + 2(k ± 1)
= l + 2k − 4 or l + 2k.

where

k ± 1 =





k + 1 if the interaction (left side) is
A

,

k − 1 if the interaction is
A

.

Important Fact. In a reduced alternating diagram, the A-state (all smooth-
ings of type A) S has no self-interacting sites.
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Proof. (1)

7−→
A

A

⇒ For any Jordan curve in the A-state, all interactions occur on the same side of
that curve.

(2) If we have a self-interaction site, then (1)⇒ it is an isthums! Contradiction.

�

Therefore

A −→
A−1

Al(−A2 −A−2)k Al−2(−A2 −A−2)k−1

l + 2k 7−→ l − 2 + 2(k − 1)
= l+ 2k − 4.

In switching any single smoothing from the A-state the degree (largest possible
degree) drops by 4. As we saw on previous page, the best that any further switch
can do is to leave the degree the same. Therefore the A-state contributes highest
degree and the A−1 state contributes lowest degree.

It is easy to see that ‖S‖ = B (# of shaded regions) and ‖S′‖ = W (# of
unshaded regions). Thus

MK = v + 2(B − 1),

mK = −v − 2(W − 1).

Span 〈K〉 =MK −mK

= 2v + 2(B +W − 2)

= 2v + 2(#regions− 2) [#regions= v + 2]

= 2v + 2(v)

= 4v

�
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Lemma. Let S be a state with connected universe U (U is the 4-valent plane
graph giving rise to the states). Let S′ denote the state obtained by resmoothing all
sites of S. Let R = #regions in U . Then

‖S‖+ ‖S′‖ 6 R
and the inequality is strict if S and S′ are not the A (resp A−1) states for the
alternating diagram that overlies U .

Example.
(a)

A

A

S

‖S‖+ ‖S′‖ = 4 = R

S′

alternating

(b)

S′

S′





‖S‖+ ‖S′‖ = 2 < 4.

Proof of Lemma. Proof by induction on # regions in diagram. Bottom of
induction is : R = 2, S = S′, ‖S‖ = ‖S′‖ = 1: 1 + 1 = 2.

Now consider a crossing in a connected universe U .
Let denote both this crossing and rest of U by induction. Let ,

denote universes obtained by smoothing crossing.
Since is connected, one of , is connected. We may assume that

is connected for sake of argument. Then

R( ) = R( ) + 1,

and Lemma is true for by induction hypothesis.

Let S, S′ be dual states for U . By symmetry we can assume S = . Thus

S ↔ S̃ — a state of . By assumption, S′ = . Thus S̃′ : is a state of

dual to S̃ obtained by switching one site of S′. So we have

‖S̃′‖ = ‖S′‖ = ±1, ‖S̃‖ = ‖S‖.
Therefore

‖S‖+ ‖S′‖ 6 ‖S̃‖+ ‖S̃′‖ 6 R( ) + 1 = R( ).
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This completes the proof. �

Theorem. Let K be a reduced, non-alternating diagram. Then

Span〈K〉 < 4v(K).

Proof. Repeat the argument. That is, let S =A-state for K, S′ its dual.
Then

MK 6 v(K) + 2(‖S‖ − 1),

mK > −v(K)− 2(‖S′‖ − 1).

Therefore

Span〈K〉 6 2v(K) + 2(‖S‖+ ‖S′‖ − 2)

< 2v(K) + 2(R− 2) = 4v(K).

�

Corollary. If K is a reduced alternating diagram then K is a minimal dia-
gram in the sense that no equivalent diagram (R0, R1, R2, R3 ) has fewer crossings.

Example.

819

K

It can be verified that this is a minimal diagram for K.
Consequence: K is not an alternating knot.

Definition. K is said to be an adequate diagram if
1) K reduced
2) Neither the A-state S nor the A−1 state S′ have any self-interacting sites.

Then our arguments show:

Theorem. K adequate ⇒ Span〈K〉 = 2v(K) + 2(‖S‖+ ‖S′‖ − 2).

Example. r-fold parallel cables are adequate.

K

Exercise. ‖S‖ = 4, ‖S′‖ = 6, Span〈K〉 = 40.
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Exercise. K reduced and adequate. Assume K oriented with writhe w(K).
Let {

S = A-state of K
S′ = A−1-state of K

}

Show that K ∼= K∗ (i. e. K achiral)

⇒ ‖S‖ − ‖S′‖ = 3w(K).

(Conclude e. g. that K above (r =2 cable of trefoil) must be chiral.)

Solution to above exercise. Suppose K is reduced and adequate. Then

〈K〉 = Av(K)+2(‖S‖−1) + . . .±A−v(K)−2(‖S′‖−1)

fK = (−A3)−w(K)〈K〉.
maxdeg fK = v(K) + 2(‖S‖ − 1)− 3w(K)

min deg fK = −v(K)− 2(‖S′‖ − 1)− 3w(K)

K ≃ K∗ ⇒ fK(A) = fK(A−1)

⇒
{

v(K) + 2(‖S‖ − 1)− 3w(K)

= v(K) + 2(‖S′‖ − 1) + 3w(K)

⇒ ‖S‖ − ‖S′‖ = 3w(K).

�

Note that in the case of alternating knots,

‖S‖ =W = #White regions,

‖S′‖ = B = #Black regions.

Thus K alternating reduced and achiral ⇒ 3w(K) =W −B.

In this case of alternating knots we can do better. A general theorem of Gordon
and Litherland (C. Mc A Gordon and R. A. Litherland. On the Signature of a Links,
Invent. Math. 47, pp. 53–69 (1978)) states that for a knot k with diagram D, the
signature of k is given by the formula

σ(k) = Signature(Z)− η(D)

where Z = the Goeritz matrix for the white regions and

η(D) =
∑

p of type II

η(p) :

η=+1 η=−1 II

Here we define Goeritz matrix Z via the graph on white regions with




Z̃ij = −
∑

crossings p
touching regions i + j

(i 6= j)

η(p)

Z̃ii = −
∑

i6=j

Z̃ij




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Zij = any (n− 1)× (n− 1) matrix obtained from Z̃ by striking out k + ......3 row
and column.

Example.

k

Z̃ =

(
2 −1
−1 2

)

η(k) = +3, σ(k) = σ(Z)− 3 = 1− 3 = −2.
Example.

E

Z̃ =




2 −1 −1

−1
−1

2 −1
−1 2




η = 2, σ(E) = 2− 2 = 0.

In general, if k is reduced alternating of type with respect to shad-

ings (i. e. all crossings have η = +1), then σ(Z) = W − 1 where W = #white
regions.

Therefore

σ(k) =W − 1− P+

(P+ = #positive crossings in k’s diagram). Hence

σ(k∗) = B − 1− P−

(P− = #negative crossings in k’s diagram, B refers to k’s diagram. We rewrote k∗

so that comes to shading.)

3k+skolko?
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k k∗
k∗ k∗

W = 2
B = 3

Thus for k reduced and altarnating, we have that

σ(k)− σ(k∗) =W −B − w(k)

where W and B refer to the number of white and black regions in the diagram for
k.

Thus
(a) (W −B)− w(k) is an invariant of k.
(b) −3w(k) + 2(W − 1), −3w(k) − 2(B − 1) are each invariants of k via our

bracket calculation. Hence −3w(k) + (W −B) is an invariant of k.
(c) Therefore [−3w(k) + (W −B)]− [−w(k) + (W −B)] is an invariant of k.
Therefore w(k) is an invariant of k.
We have proved (by an argument due to Kunio Marasugi) the

Theorem. For k reduced and alternating, the writhe w(k) is an ambient iso-
topy invariant of k.

Corollary. A reduced alternating k such that k ≃ k∗ must have zero writhe
and also must have W = B.

Remark. The problem of classifying achiral reduced alternating knots is not
completely solved. One class of such knots is those whose graphs G(K) are isomor-
phic to their planar .....4 i. e. white and black checkerboard graphs are isomorphic.
(Show G(K) ∼= G∗(K) ⇒ K ∼= K∗ (K alternating).)

Exercise.

E

G(K) G∗(K)

4??
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Exercise.

K

(This is 817 from Reidemeister tables.) Show
1) G(K) ∼= G∗(K)

2)
−→
K ∼= ←−K∗ where −→ means oriented and ←− K oriented is equivalent to K∗

reverse oriented.

Deeper Fact. Deeper Fact:
−→
817 6∼=

←−
817.

−→
T

←−
T Here

−→
T ∼=←−T

2. Spanning Tree Expansion

[ ] = (Ad+B)[ ] =

[ ] = (A+Bd)[ ] = β[ ]

(Topological case: α = −A3, β = −A−3.)

active, inactive



2. SPANNING TREE EXPANSION 77

1

3 2

K

❈❈
❈❈

❈❈
❈❈

❈❈

A

❇❇
❇❇

❇❇
❇❇

❇❇

B

1

2
3

A
A

B
A

1

23

1

2
3

[K] = A2α+ABβ +Bβ2 Topological−−−−−−−→A2(−A3) +AA−1(−A−3) +A−1(−A−3)2

= −A5 −A−3 +A−7.
[ ∣∣

]
= A[ ∣∣
]
= B[ ∣∣
]
= β[ ∣∣
]
= α





Fact. A site i is active if in i i < j for all
j

interactions between

the two loops in i .

[K] =
∑

S∈T
[K | S]

T = set of single component states with marked activity (N. B. T ↔ Maximal
Trees in Checkerboard Graph G(K).)

Exercise. Use the spanning tree expansion to show that
1) There is no cancellation in the spanning free sum for a reduced alternating

knot, and the polynomial fK (topological bracket) has sign (−1)n+C for terms of
degree 4− n.
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2) The sum of the absolute valnes of the coefficients of 〈K〉 (for K reduced
alternating) equals the number of maximal trees in G(K).

3) Give examples of term cancellations in spanning tree expansion of 〈K〉 when
K is not alternating.

Open Problem. K any knot, fK(A) = 1. Does this imply that K is ambient
isotopic to the unknotted circle?

Exercise. Given a state S of a connected universe (planar projection diagram)
U in the plane, there is an orientable surface F (S) of genus g(S) such that

‖S‖+ ‖S′‖ = v(U)− (2g(S)− 2).

F (S):

Shade U

shaded channels

unshaded chanel

S

S

S′

‖S‖+ ‖S′‖ = 3, v = 3, g = 1.

Flip the crossings for unshaded channels:

a b

e

d

7−→
Flip a b

d

e
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e. g.

b

d f
a c

e

a b
e

d
b c

e

f

Flip

��

c d
a

f

b c

f

e

Show : K adequate ⇒
Span〈K〉 = 4(v(K)− g(S))

where S = A-state of K.
New crossing list requires surface of genus g(S):

a db b c c

e

d

f

e

a

f

Here g(S) = 1.

3. Trees, Single component States and 〈K〉(
√
i)

We have seen 〈K〉 = ∑
‖S‖=1

[K | S] where
[ ∣∣∣

]
= A,

[ ∣∣∣
]
= A−1

[ ∣∣∣
]
= −A−3,

[ ∣∣∣
]
= −A3

Here and refer to active sites with respect to a choice of vertex ordering.

For the states S with ‖S‖ = 1, you can go from any state to any other state by a
sequence of double flips where a double flip has the form:

։
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In other words, you change two sites such that one change disconnects and other
change reconnects.

In the case of alternating links we can see what the effect of a double flips is
on the state evaluation. Note that in general the two sites involved in the double
flip are of opposite type (one interior and one exterior). Thus if inactive, one is A
and the other is A−1. If active, they have opposite types of activity.

i

j

Here i can be active and j cannot be active.

i

j

Here i can be active and j cannot be active.
General case includes: AA↔ A−1A−1, −A3A−1 ↔ A(−A−3).
Thus the cases are
0) i+ j inactive −→ i+ j inactive
1) i+ j inactive −→ i active, j inactive
2) i active, j inactive −→ i active, j inactive
3) i active, j inactive −→ i inactive, j inactive
0) (A)(A−1) −→ (A−1)(A) : no sign change, deg 0 change
1) (A)(A−1) −→ (−A−3)(A) : sign change, deg 4 change
2) (−A−3)(A−1) −→ (−A−3)(A) : no sign change, deg 8 change
3) (−A−3)(A−1) −→ (A−1)(A) : sign change, deg 4 change
Thus we see that for alternating knots and links, there can be no cancellation

in the sum

〈K〉 =
∑

‖S‖=1

[K | S].

All terms of fK are of the form ±A4n some n ∈ Z. The sign is (−1)n+cA4n for
some constant c.

To see this, lets first look again the maximal degree term for 〈K〉. Lets suppose
that with respect to shading K is of the type ...5:

.

Then the A-state is locally with W circuits (W = # of unshaded

regions).

5??
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We can obtain a corresponding monocyclic state (‖S‖ = 1) by reassembling
(W − 1) of these sites. With appropriate labelling of the vertices these (W − 1)
sites are active. Thus we get a state S, ‖S‖ = 1 with

[K | S] = Av−(W−1)(−A3)(W−1)

= Av−2(W−1)(−1)(W−1).

This is exactly the highest degree as predicted by our previous theory.
In fK = (−A3)−w(K)〈K〉 this term receives a writhe compensation and we

know from the structure of the polynomial fK that fK is a polynomial in (A4).

Example.

4

3

2 1

��☎☎
☎☎
☎☎
☎

��❁
❁❁

❁❁
❁❁

A

��✲
✲✲
✲✲
✲✲

��✒✒
✒✒
✒✒
✒

A−1

��✳
✳✳
✳✳
✳

��✏✏
✏✏
✏✏

A

A

A2(−A3)2=+A8

A

A−1

A(A−1)(−A3)(−A−3)=1

A

A−1

��✳
✳✳
✳✳
✳

��✒✒
✒✒
✒✒

A−1

A−1

(A−1)(A−1)(−A−3)2=+A−8

A

A

A−1

AA(A−1)(−A3)=−A4

A−1
A

A−1

AA−1A−1(−A−3)=−A−4

〈E〉 = A8 −A4 + 1−A−4 +A−8
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There is one term for each tree in G(K). Note how the terms alternate in sign.

Now consider 〈K〉(
√
i) where i2 = −1.

A =
√
i, A−1 = 1/

√
i =
√
i/i = −i

√
i, A4 = i2 = −1.

−A2 −A−2 = −i− 1/i = −i+ i = ∅.

This means that the usual bracket sum for 〈K〉(
√
i) is a sum over single component

states.
Also,

−A3 = −i
√
i = A−1, −A−3 = A.

Thus we see that here the spanning free expansion and the standard bracket ex-
pansion coincide (and one dose not need to look at activity for 〈K〉(

√
i)). Fur-

thermore, we see from our previous argument about sign changes in the expansion
〈K〉 =

∑
‖S‖=1

[K | S] that for an alternating knot or link K there are no sign

changes in the terms expansion of 〈K〉(
√
i). This means that for K alternating

〈K〉(
√
i) = w#T (G(K)) where w ∈ {±i

√
i,±
√
i,±i,±1} = Ω8 and #T (G(K))

denotes the number of maximal trees in G(K)).

1−1

i

−i

√
ii

√
i

−
√

i −i
√

i

Ω8

e. g. for

E

,

〈K〉 = A8 −A4 + 1−A−4 +A−8

〈K〉(
√
i) = 1 + 1 + 1 + 1 + 1 = 5.

Now look at any knot K and consider 〈K〉(
√
i).

S
i

j

S′

i′

j′

What happens in a double-flip?
Say

i contributes Aǫ ǫ = ±1
j contributes Aµ µ = ±1
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then

i′ contributes A−ǫ

j′ contributes A−µ

So

〈K|S〉 = xAǫ+µ

〈K|S′〉 = xA−(ǫ+µ)

y degree change = 2(ǫ+ µ)

Now A =
√
i, A−1 = i

√
i, A2 = i, A4 = −1 etc.

The change is either 0 (ǫ + µ = 0) or 2(±2) = ±4.
Thus

〈K|S′〉 = ±〈K|S〉 .

This means that 〈K〉(
√
i) = wN where N ∈ Z and w ∈ Ω8.

Thus |N | = #T (G(K)) when K is alternating and more generally |N | is an
integer invariant of the knot or link K.

In fact, we shall now see that N (K) = |N | (N as above) is equal to Det(K) as

defined in earlier sections. Thus 〈K〉(
√
i) is a version of Det(K).

Let T denote a tangle with 2 inputs and 2 outputs.

T = D(T ), T = N (T ).

Then

〈 T 〉(
√
i) = 〈D(T )〉(

√
i)〈 〉+ 〈N (T )〉(

√
i)〈 〉.

Proof. Certainly

〈 T 〉(
√
i) = X〈 〉+ Y 〈 〉.

Therefore

〈 T 〉(
√
i) = X〈 〉(

√
i) + Y 〈 〉(

√
i) = X + ∅.

Therefore

X = 〈D(T )〉(
√
i).

Similarly,

Y = 〈N (T )〉(
√
i).

�

Claim. F (T ) = 1
i
〈N (T )〉(

√
i)

〈D(T )〉(
√
i)

is a rational number.
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Proof. Suffices to show that states of 〈N (T )〉(
√
i) and 〈D(T )〉(

√
i) differ by

a factor of i. (Recall previous discussion.) Now if

...
...

..
.

..
.

is a state of N (T ) then

. . .
. .
.

...

..
.

is a state of D(T ).
These states differ at just one cite: A → A−1 with A =

√
i, the factor is i or

i−1. �

Thus we have

(∗) 〈 T 〉(
√
i) = wDen(T )〈 〉+ wiNum(T )〈 〉

where Den(T ) and Num(T ) are integer valued invariants of the tangle T (w ∈ Ω8).
They are the determinants (we will see) of N (T ) +D(T ).

F (T ) = 1
i
〈N (T )〉(

√
i)

〈D(T )〉(
√
i)

= Num(T )
Den(T ) is called the fraction of the tangle T .

Here is nice application of formula ∗, due to David Krebes. Consider

〈

S T
︸ ︷︷ ︸

K

〉
(
√
i) using formula ∗

= wDen(T )

〈

S

〉
+ iwNum(T )

〈

S

〉

= wDen(T )iλNum(S) + iwNum(T )λDen(S)

= iwλ[Den(T )Num(S) + Num(T )Den(S)], (w, λ ∈ Ω8).

Conclusion. If K = Num(S ∗ T ) as above and m/Num(T ) + m/Den(T )ne sovsem poniatno
then m/Num(S ∗ T ) = N(K). Thus if m 6= 0 then K is necessarily non-trivial.
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Example (Kerbes). T =

D(T ) : Check N(D(T )) = 6

N (T ) : Check N(N (T )) = 32 = 9

Since gcd(D(T ),N (T )) = 3, any knot in which T occurs is necessarily knoted.
(Does this have applications to DNA?)

Fractions of tangles is an old object. See e. g. for a new proof of Conway’s
theorem using rational tangles and classifying them their fractions.

Now go back to our state sum for Alexander polynomial.

∇ = t∇ − t−1∇ +∇

∇ = t−1∇ − t∇ +∇

(sum over states S, ‖S‖ = 1)

−t−1 t
1

1
−t t−1

1

1

Let t = i, z = t− t−1 = 2i ⇒

i i
1

1
=
√
i



√

i
√

i

1√
i

1√
i




−i −i
1

1
= 1√

i


 1√

i
1√
i

√
i

√
i








∇K(2i) =
√
i
w(K)〈K〉(

√
i)

Now the rest of the story of the relationship with classical knot determinant you’ll
have to get via e. g. [On knots by L. Kauffman. Princeton Univ. Press 1987] where
we show:

1) ∆K(t) = ∇K(
√
t− 1/

√
t)

2) ∆K(−1) = Det(K) where Det(K) is defined as we did earlier.

Thus Det(K) = ∇K(2i) =
√
i
w(K)〈K〉(

√
i).
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Note that we have located the special element in Ω8 that will multiply 〈K〉(
√
i)

to make an integer.

4. B. Vassiliev Invariants and the Jones Polynomial

fK(A) = (−A3)−w(K)

(−A3)−1


 A A

A−1

A−1


 = −A−2 −A−2

−A−4

−A−4

(−A3)


A−1 A−1

A

A


 = −A2 −A2

−A4

−A4

f = −A−2f −A−4f

f = −A2f −A4f

Let A = t−1/4, gK(t) = f)K(t−1/4). Then




g = −
√
tg − tg

g = − 1√
t
g − t−1g



 g( K) = −(

√
t+

1√
t
)g(K).

So gK is an ambient isotopy invariant satisfying




t−1g − tg = (
√
t− 1√

t
)g

g
K

= (−
√
t− 1√

t
)gK

g = 1





This suffices to identify gK = VK(t), the original Jones polynomial.
Thus

V = −
√
tV − tV

V = − 1√
t
V − t−1V

Conclusion. Let t = ex. Then

x divides (V (ex)− V (ex)).

If

VK(ex) =
∞∑

n=0

Vn(K)xn,

then if we extend VK to a graph invariant (discussion below) by

V = V − V ,

then

x divides V .



5. RIGID VERTEX ISOTOPY 87

Hence, if G has K nodes,

x divides VG.

Therefore Vn(G) = 0 if n < #nodes(G) = #(G) of, for a given n,

Vn(G) = 0 for all G with #(G) > n.

We say the Vn(G) are of finite type.

• An invariant of (rigid vertex isotopy) graphs satisfying

V = V − V ,

is said to be a Vassiliev invariant.
• A Vassiliev invariant Vn is of finite type n if

Vn(G) = 0 for all G with #(G) > n.

We have shown that the Jones polynomial is built from an infinite set of Vas-
siliev invariants, each of finite type.

5. Rigid Vertex Isotopy

,





Plus usual Reidemeister moves.

Exercise. If RK is an invariant of ambient isotopy for knots and links, then
R = R − R makes a well-defined extension to rigid vertex graph isotopy

invariant.
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− = +

− = +

− = +

− = +





(Diagrams mean eval by a Vassiliev invariant.)

Conclusion. For any Vassiliev invariant V
V − V − V + V = ∅

This is called the four term relation.

Lemma. Vn a Vassiliev invariant of type n. G a graph with #G = n. Then
Vn(G) is independent of the embedding of G in R3.

Proof. If is a crossing in G⊂
α
R3 then gives G⊂

α′
R3 and

VG⊂
α
R3 − VG ⊂

α′
R3 = VnG′ = { } ⊂ R3 = ∅

(#G′ = n+ 1). Therefore

VG⊂
α
R3 = VG ⊂

α′
R3 .

This suffices. �
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We now look at the four term relation for Vn and #G = n. These are called
top row evaluations of Vn. We encode G as a circle with arcs (chord diagram).

1
2

G

↔

1
2

2

1

↔

Exercise (!). Show that on the top row the four term relation becomes

−

= −

Now define

(∗∗) − =

with the assumption that the trivalent vertex can be moved around in the plane,
legs cyclically permated etc. Then (magic):

−

= =

= −

The category of diagrams satisfying (∗∗) is a generalization6 of the category of Lie
algebras.

6. An Adequate Digression

This digression is devoted to a further remark about using adequate links. It
is easy to see that if K is alternating reduced, then K(r) is adequate, where K(r) is

6???
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the r-fold parallel cable of K. e. g.

K = K(1) K(3)

Now look at structure of A-state of K(r):

7−→
A-state

S(r) = A-state of K(r)

S′(r) = A−1-state of K(r)

W = #white regions for K

B = #black regions for K

V = #of crossings for K

⇒
‖S(r)‖ = r‖S‖ = rW

‖S′(r)‖ = r‖S′‖ = rB
and w(K(r)) = r2w(K)

maxdeg fK(r) = r2V + 2(‖S(r)‖ − 1)− 3w(K(r))

= r2V + 2(rW − 1)− 3r2w(K)

and

maxdeg fK(r) = r2(V(K)− 3w(K)) + r(2W (K))− 2

min deg fK(r) = −r2(V(K) + 3w(K))− r(2B(K)) + 2

An invariant of K(r) is also an invariant of K. These invariant numbers hold
for infinitely many r. Therefore the coefficients in the quadratics are themselves
invariant. Hence 




W (K)
B(K)
v(K)− 3w(K)
v(K) + 3w(K)




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all invariants of K ⇒
{v(K),W (K), B(K), w(K)}

all invariants of K alternating and reduced. (This argument is due to7)

Exercise. Generalize discussion on this page to show

Theorem. K adequate ⇒ v(K), w(K), ‖S(K)‖, ‖S′(K)‖ are all invariants
of K.

Call a diagram A-good (A−1-good) if its A state S (A−1-state S′) has no self-
touching loops.

K A-good ⇒ v(K)− 3w(K) and ‖S‖ are invariants of K.
K A−1-good ⇒ v(K) + 3w(K) and ‖S′‖ are invariants of K.

7. [Back to] Chord Diagrams and Lie Algebras

a

≡ T a

(T a)ij =

a

i j

a matrix with a label a.

a b
≡ T aT b

(T aT b)ij =
∑

k

(T a)ik(T
b)kj

a b

i k j
sum on internal index

In a (matrix representation of a) Lie Algebra there is a basis {T 1, T 2, . . . , T n}
and

T aT b − T bT a = fabcT
c sum on c.

Let assume that the structure constants fabc are totally antisymmetric: i. e. if
〈πa, πb, πc〉 is a permutation of 〈a, b, c〉 then fπaπb πc = sign(π)fabc, and fabc = 0 if
any two indexes are equal. There are many classical examples with these properties.

7Komu on prinadlegit?
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e. g. a standard representation of the SU(N). Lie algebra — which we will use
shortly.

[T a, T b] = T aT b − T bT a = fabcT
c

a b
−

a b

=

a b

a b

c

≡ fabc depends on cyclic order abc

a b

c

≡ −fabc

e. g. SU(2)

T 1 =



0 0 0
0 0 −i
0 i 0


 , T 2 =




0 0 i
0 0 0
−i 0 0


 , T 3 =



0 −i 0
i 0 0
0 0 0




(Adjoint Representation (T a)bc = −iεabc)
[T a, T b] = iεabcTc

eL = G, G group, L = Lie algebra of G

e. g. SU(N) = G = {U | U N ×N complex matrix, U∗ = U−1, |U | = 1}
(eM )∗ = eM

∗
. So eM

∗
= e−M or M∗ = −M .

Write M = iH . Then

M∗ = −M ⇔ −iH∗ = −iH ⇔ H∗ = H.

|eM | = etr(M). Hence tr(H) = 1. We conclude that the Lie algebra L of SU(N)
consist in N ×N Hermitian matrices of trace zero. Then eiH ∈ SU(N). For SU(2):

H =

(
a b+ ic

b− ic −a

)
= b

(
0 1
1 0

)
− c

(
0 −i
i 0

)
+ a

(
1 0
0 −1

)

Let

σ1 =
1

2

(
0 1
1 0

)
, σ2 =

1

2

(
0 −i
i 0

)
, σ3 =

1

2

(
1 0
0 −1

)

then

σ1σ2 =
1

4

(
0 1
1 0

)(
0 −i
i 0

)
=

1

4

(
i 0
0 −i

)
=
i

2
σ3

σ2σ1 =
1

4

(
0 −i
i 0

)(
0 1
1 0

)
=

1

4

(
−i 0
0 i

)
= − i

2
σ3

[σ1, σ2] = iσ3.

And generally, [σi, σj ] = iεijkσk gives the Lie algebra of Hermitian matrices for SU(2).
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In general in a Lie algebra, have [a, b] linear in each variable, satisfies Jacobi
identity

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0.

and

[a, b] = −[b, a].
In a basis {T 1, . . . , T n}

[T a, T b] = Cab
k T k

{Cab
k } structure constants.
Adjoint representation: ad(X)(Y ) = [X,Y ].

N. B. ad(X) ad(Y )Z − ad(Y ) ad(X)Z

= ad(X)[Y, Z]− ad(Y )[X,Z]

= [X, [Y, Z]]− [Y, [X,Z]]

= [X, [Y, Z]] + [Y, [Z,X ]]

= −[Z, [X,Y ]] = [[X,Y ], Z] = ad([X,Y ])Z.

8. Jacobi Identity [A, [B,C]] + [B, [C,A]] + [C, [A,B]]

We want to see a diagrammatic version of the Jacobi identity. Look again at
the formalism

a b

c

≡ Cab
c [T a, T b] = Cab

c T c.

We have interpreted it in terms of indices and the structure constants Cab
c .

It can also be interpreted as an “input/output” diagram for multiplication:

x y

[x, y]

y

where x and y are any elements in the Lie
algebra generated by {T 1, T 2, . . . , T n}.

Identities about the algebra then translate directly into diagrammatic identities
about the structure constants. To see the structure of this translation process, let

T a ≡
T

a

≡
T

a

∑

a

daT
a ≡

T

d

←− implicit summation on a closed segment

{da} are scalars, {T a} elements of the algebra.
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Then d̂ =

T

d

is a general element of the algebra. Then

[α̂, β̂] =




T

α
,

T

β

 =

T

α β

corresponds directly to the calculation

[α̂, β̂] = [αiT
i, βjT

j] = αiβjC
ij
k T

k.

Now lets translate the Jacobi identity:

[α̂, [β̂, γ̂]] + [β̂, [γ̂, α̂]] + [γ̂, [α̂, β̂]] = ∅

T

α β γ

+

T

β γ α

+

T

γ α β

= ∅

This is equivalent to

T

α β γ

+

T

α β γ

+

T

α β γ

= ∅

(The last two terms are in opposite order on previous page.)
By linear independence, the Jacobi identity therefore implies the following iden-

tity about the structure constants:

a b c

d

i

+

a b c

d

i

+

a b c

d

i

= ∅

Cai
d C

bc
i + Cci

d C
ab
i + Cbi

d C
ca
i = ∅
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We now take this diagrammatic form of Jacobi identity and transform it into
a move convenient pattern.

+ + = ∅

⇒

+ − = ∅

⇒

− − = ∅

⇒

= +

(Note that the arrow lets you decode which are the upper and lower indices

for the structure constants.) ⇒

= −

This way of writing the Jacobi identity is called “IHX” (for obvious reasons). The
identity

− =

is called “STU.” And we have used antisymmetry of Cab
c to derive IHX from STU.
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Actually, we would like to have structure constants such that Cab
c is unchanged

by cyclic permutation of abc. In the general case this can be accomplished by using
the Killing form,

gσλ = Cσρ
τ Cλτ

ρ (Note: gσλ = gλσ.)

g
=

This defines an inner product on the Lie algebra via 〈T σ, T λ〉 def= gσλ.

Theorem (Cartan). A Lie algebra is semi-simple (no non-trivial abelian sub-
algebra) iff Det(gσλ) 6= 0. Thus for semi-simple algebras the Killing form is non-
degenerate.

Proof. Strictly speaking, we want to show that if g is the given Lie algebra
and a ⊂ g is a non-trivial abelian ideal then Det(gσλ) = 0. By an ideal a, we mean
that [α, β] ∈ a for any α ∈ a, β ∈ g.

In terms of structure constants this means that we can choose a basis {T σ}
s. t. σ ∈ ã ↔ basis for a, and fall set of indices runs over g̃ ⊃ ã.

Thus

[T σ, T τ ] = Cστ
ρ T ρ, σ ∈ ã, τ ∈ g⇒ ρ ∈ ã.

Now lets use ′ (“primes”) to indicate indices for an abelian ideal a.

gσλ
′
= Cσρ

τ Cλ′τ
ρ

= Cσρ′

τ Cλ′τ
ρ′ (Cλ′τ

ρ = 0 if ρ /∈ ã)

= −Cρ′σ
τ Cλ′τ

ρ′

= −Cρ′σ
τ ′ C

λ′τ ′

ρ′ (Cρ′σ
τ = 0 if τ /∈ ã)

= −Cρ′σ
τ ′ ·∅ (a is abelian)

gσλ
′
= ∅.

Thus the λ′ row of the matrix (gσλ) is zero and hence Det(gσλ) = 0. �

Although we can define weight systems from Lie algebras more generally, we
shall here assume semi-simplicity and thus can assume that the basis {T σ} is or-
thogonal with respect to the Killing form. The reason that this is good for our
purposes is that in general

Lemma. Let Cσµν = gσλCµν
λ . Then Cσµν is invariant under cyclic permuta-

tion of σµν.
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Proof.

Cσµν = gσλCµν
λ = Cσρ

τ Cλτ
ρ Cµν

λ

=

τ

σ

µ ν

λ

ρ

τ

= = −

(via Jacobi identity IHX)

Cσµν = −

Each term is individually invariant under cyclic permutation. �

Thus if we choose an orthonormal basis for g with respect to the Killing form,
then Cµν

λ is already invariant under cyclic permutation, and the assignment

µ ν

λ

↔ Cµν
λ = fµνλ
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will produce a weight system for Vassiliev invariants. Specifically, we mean the
following:

D

7−→ ba

wt(D) =
∑

a,b

tr(T aT bT aT b)

D′

7−→

a

b
c

wt(D′) =
∑

a,b,c

tr(TcTbTa)fabc

The proof of the Lemma on the page 88 then shows that these weight systems satisfy
the 4-term relation. They do not in general satisfy the isolated chord condition

= ∅ :

i. e.

V = V − V = ∅.

Of course we know that a framed version of Vassiliev invariants would not demand
the isolated chord condition. On the other hand,

wt = tr(1) = dim(g) = d,

wt =
∑

a

tr(T aT a) = γ(g) = γ.

Therefore, define recursively: state sum for weight system

V = V − (
γ

d
)V



8. JACOBI IDENTITY [A, [B,C]] + [B, [C,A]] + [C, [A,B]] 99

to obtain a weight system corresponding to the given Lie algebra and satisfying
both 4-term relation and isolated chord condition. e. g.

V = V = V − γ

d
V

= V − γ

d
V − γ

d
V +

γ2

d2
V

= wt − γ

d
wt − γ

d
wt +

γ2

d2
wt

= wt − 2γ2

d
+
γ2

d

V = wt − γ2

d
.

Alternate notation:

V = V − γ

d
V

and

V = d

Here we have written the recursion in knot diagrammatic form where de-
notes a “virtual” crossing of the lines in the diagram. We will make use of this
formalism in discussing the Witten functional integral.

Example (SU(N) weight system). There is a nice basis for su(N) = Lie algebra
of SU(N) is fundamental representation given by Hermitian matrices of trace =
zero. H : H = H∗ = conjugate transpose of H .

Note: µ = eiH =⇒ µ∗ = e−iH∗
= e−iH = µ−1 =⇒ µ ∈ SU(N).

In this basis T a = λa/2 where {λa} is a basis for N ×N Hermitian matrices,

[T a, T b] = ifabcT
c, tr(T aT b) =

1

2
δab

with fabc totally antisymmetric. And

tr

(∑

a

T aT a

)
= (N2 − 1)/2.
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For example, the {λa} for SU(3) is shown below.

λ1 =



0 1 0
1 0 0
0 0 0


 λ2 =



0 −i 0
i 0 0
0 0 0


 λ3 =



1 0 0
0 −1 0
0 0 0




λ4 =



0 0 1
0 0 0
1 0 0


 λ5 =



0 0 −i
0 0 0
i 0 0


 λ6 =



0 0 0
0 0 1
0 1 0




λ7 =



0 0 0
0 0 −i
0 i 0


 λ8 =

1√
3



1 0 0
0 1 0
0 0 −2




Exercise. In the general case, define the Casimir element C via the Killing
form by

C =
∑

gρσT
ρT σ (gρσ) = (gρσ)

−1.

Prove that [C, T a] = ∅ ∀a. Thus C is in the center of g. In a matrix representation
this implies that C is a multiple of the identity matrix.

(Note: tr((λi)2) = 2 for ∀i.

tr

(∑

a

T aT a

)
=

1

2
tr

(∑

a

(λa)2

)

=
1

4
(8 · 2) = 1

2
(32 − 1) )

Exercise. Show that the dimension of the space of trace zeroN×N Hermitian
matrices (complex entries, dim over R = reals) is (N2 − 1).

For SU(2) we have λ1 =

(
0 1
1 0

)
, λ2 =

(
0 −i
i 0

)
, λ3 =

(
1 0
0 −1

)
.

(
a b− ci

b+ ci −a

)
= a

(
1 0
0 −1

)
+ b

(
0 1
1 0

)
+ c

(
0 −i
i 0

)

In terms of the {λa} basis, any Hermitian (N × N) matrix can be written in
the form

H = m01N +
N2−1∑

a=1

maλ
a

for real numbers (m0,m1, . . . ,mN2−1).

=⇒ m0 =
1

N
tr(H)

ma =
1

2
tr(Hλa) (tr(λaλb)− 2δab)
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Thus

H =
1

N
tr(H)1N +

N2−1∑

a=1

tr

(
Hλa)λa

=⇒ Hαβ =
1

N

(∑

γ,δ

Hδγδγδ

)
δαβ +

1

2

∑

α

∑

γ,δ

(λa)αβ(λ
a)γδHδγ

=⇒ δαδδβγ =
1

N
δαβδγδ +

1

2

∑

a

(λa)αβ(λ
a)γδ

=⇒
∑

a

(T a)αβ(T
a)γδ =

1

2
δαδδβγ =

1

2N
δαβδγδ

γ β

δ
α

a =
1

2

γ β

δα

=
1

2N

γ β

δ
α

=
1

2
=

1

2N
The Fierz Identity for su(N)

Note that this will yield a completely diagrammatic methid for computing the
su(N) weight systems.

Now lets use the Fiers identity to write out the recursion for the weight system
for su(N) satisfying 4-term relation and isolated chord condition:

V = V − γ

d
V

(γ = (N2 − 1)/2, d = N (See page 99))

=
1

2
− 1

2N
− N2 − 1

2N

V =
1

2
V − N

2
V

V = N

This then is a state summation for doing top row evaluations for the su(N) weight
system.
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For example

V
(top row so

we don’t care if
crossing is under

or over.)

=
1

2
V − N

2
V

=
1

2

(
1

2
V − N

2
V

)
− N

2

(
1

2
V − N

2
V

)

=
1

2
(
1

2
N − N

2
N2)− N

2
(
1

2
N2 − N

2
N)

=
1

4
N − 1

4
N2 − 1

4
N3 +

1

4
N3

=
1

4
N(1−N2)

NotaBene. This method for compating the weights is not the evaluation of the
invariant itself. The invariant gives ∅ for an unknotted circle, while this algorithm
gives the trace of the identity matrix to a bare chord diagram.

9. The Homfly Polynomial and Au(N)

The framed version of the Homfly polynomial rends




H −H = zH

H = αH

H = α−1H

H = 1

H invariant of regular isotopy.





Letting PK = α−w(K)HK , we get an ambient isotopy invariant polynomial PK

satisfying




αP − α−1P = zP

P = 1

P an invariant of ambient isotopy.





Just as with the Jones polynomial, we want to see that letting α = eNx, z = ex−e−x

will yield a series PK(x) =
∞∑
n=0

Pn(K)xn where Pn(K) is a Vassiliev invariant of

type n. But note

P = P − P = eNxP − e−NxP + o(x)

= (ex − e−x)P + o(x).

Hence x | P , proving this assertion as before.
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To understand the weight systems note:

P
K

= δPK , δ =
α− α−1

z

α = eNx = 1 +Nx+ o(x2)

α−1 = e−Nx = 1−Nx+ o(x2)

α− α−1 = 2Nx+ o(x2)

z = ex − e−x = 2x+ o(x2)

δ = (α − α− 1)/z = N + o(x2)

H = zH = (ex − e−x)H = 2xH + o(x2)

=⇒ framed weight system:

h = 2h

h
=N

H = H −H = (α− α−1)H

= 2NxH + o(x2)

=⇒ h = 2Nh

Thus in framed system we have

h = 2h

h = 2Nh

h = N

From this we get the recursion for the unframed system ϕ:

ϕ = 2ϕ − 2Nϕ , ϕ = N




e. g. ϕ = 2ϕ − 2Nϕ

= 2Nϕ − 2Nϕ

= ∅




Up to a global factor of 2#nodes, this weight system is identical to the su(N)
weight system. We conclude that the Homfly polynomial PK(α, z) for α = eNx,
z = ex − e−x is a generator for Vassiliev invariants based in the su(N) weight

system. In particular the Jones polynomial corresponds to SU(2).(∗)

(∗)We are using tV+ − t−1V− = (
√
t − 1/

√
t)V0 for Jones polynomial. This corresponds to

having A = iα in 〈K〉 so that loop value is α2 + α−2 + α =⇒ positive loop values in Vassiliev
evaluations.
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A similar story holds for O(N) in relation to the Kauffman polynomial:





L − L = z(L − L )

L = αL

L = α−1L

L = 1

Invariant of regular isotopy.





More generally, one can start with a quantum group (Hopf algebra) and/or
a solution to the Yang—Baxter equation and get streams of associated Vassiliev
invariants. If the quantum group is associated with (a representation of) a classical
Lie algebra, then the weight systems of the associated invariants will be those
coming from this (representation of the) Lie algebra.

We will omit discussion of these quantum link invariants from these notes, but
see e. g. L. Kauffman, Knots and Diagrams, Proceedings of Lectures at Knots 1996,
Tokyo, World Sci. Pub (1997) for a discussion of this aspect.

10. Remarks on the Jones Polynomial

We have advertised t−1V+− tV− = (
√
t−1/

√
t)V0 as the original Jones polyno-

mial. It is often convenient to regard the other Homfly specialization tṼ+−t−1Ṽ− =

(
√
t− 1/

√
t)Ṽ0 as the Jones polynomial. In particular, the loop value for the latter

is δ =
√
t + 1/

√
t and this will make some things in life a bit easier! These two

polynomials are really just versions of each other. For example, if we start with
〈K〉 and write A = iα, then

〈 〉 = iα〈 〉 − iα−1〈 〉
〈 K〉 = (α2 + α−2)〈K〉
〈 〉 = iα3〈 〉
〈 〉 = −iα−3〈 〉

Going to fK as before:

−iα−3


 iα iα

−iα−1

−iα−1


 = α−2 α−2

−α−4

−α−4

iα3


−iα−1 −iα−1

iα

iα


 = α2 α2

−α4

−α4

f+ = α−2f0 − α−4f∞
f− = α2f0 − α4f∞




+↔
0↔
∞↔



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Let ṼK be the polynomial obtained via

t = α4

Ṽ+ = 1/
√
tṼ0 − 1/tṼ∞

Ṽ− =
√
tṼ0 − tṼ∞

δ =
√
t+ 1/

√
t (
√
t = α2)

=⇒
tṼ+ − t−1Ṽ− = (

√
t− 1/

√
t)Ṽ∞

and
For Vassiliev :

Ṽ = (1/
√
t−
√
t)Ṽ0 + (t− 1/t)Ṽ∞

Let t = ex: 



e−x/2 − ex/2 = −x+ o(x2)

ex − e−x = 2x+ o(x2)

ex/2 + e−x/2 = 2 + o(x2)





Thus for Ṽ , we have the weight system recursion:

Ṽ = −Ṽ + 2Ṽ

Ṽ = 2

How is this related to our su(2) calculation?
The answer is that as far as this algorithm is concerned, we can replace

by a linear combination of and . Then we need:

There is
a mistake
here that

is cleared up
on pages 81–82.

Exercise. Find
out what is wrong
here and fix it.

= a + b

=⇒ = a + b =⇒ 2 = a+ b

= a + b =⇒ 1 = 2a+ b

=⇒ a = −1, b = 3

= − + 3

whence
Ṽ = −Ṽ + 2(−Ṽ + 3Ṽ)
Ṽ = −3Ṽ + 6Ṽ

giving a multiple of the su(2) weight system.

11. Quantum Link Invariants (Briefly)

Actually, what is going on here is very interesting in relation to the so-called
quantum link invariant models for 〈K〉 and its generalizations. Lets look at this. I
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will do the notes in cryptic form.

a b
↔Mab

a b
↔Mab

a

b

↔ δba

a

c

b

d

↔ Rab
cd

a

c

b

d

↔ R
ab

cd

a

e

d

h

b

f

c

g

L

7−→ T (L) =
∑

a,...,h

MadMbcR
ab
efR

cd
ghM

fgM eh

Need :

I. II. III.

IV. ,

for regular isotopy with respect to a ↑ direction.
Thus

a

i

b

=

a

b

⇔
∑

i

MaiMib = δab .

We can solve this equation with M =

(
0 iA

−iA−1 0

)
, i2 = −1, and Mab = Mab.

Note that τ( ) =
∑
a,b

ba =
∑
a,b

MabM
ab =

∑
a,b

(Mab)
2 = (iA)2 + (−iA−1)2 =

−A2 −A−2, the correct loop value for the bracket.
Equation II is

a

i

c

b

j

d

=

a

c

b

d

⇔
∑

i,j

Rab
ij R

ij

cd = δac δ
b
d ⇔ RR = I ⊗ I.

Equation III is the (so-called) Quantum Yang-Baxter Equation (QYBE)

= : (R⊗ I)(I ⊗R)(R ⊗ I) = (I ⊗R)(R ⊗ I)(I ⊗R)
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In our case, we want = A + A−1 and so we define Rab
cd = A

a b

c d

+

A−1

a b

c d

= AMabMcd +A−1δac δ
b
d and similarly for R = A−1 +A .

Equation IV follows from the definition

= A +A−1 = A +A−1 = .

Knowing this, we deduce III:

= A +A−1 = A +A−1

= A +A−1 = A +A−1

= A +A−1 = A +A−1 =

Note that this diagrammatic derivation translates directly into an algebraic proof
that R (and R) satisfies the QYBE.

Exercise. a) U = , Uab
cd = MabMcd. Show that with M as above, U =




0 0 0 0
0 −A2 1 0
0 1 −A−2 0
0 0 0 0


.

b) Use a) to show that R =




A−1 0 0 0
0 (−A3 +A−1) A 0
0 A 0 0
0 0 0 A−1


. Find R.

Now note that M = iε̃, ε̃ =

(
0 A

−A−1 0

)
and for A = +1 we have ε̃ =

ε

(
0 +1
−1 0

)
. The ε is algebraically significant because PεPT = Det(P )ε for any

2× 2 matrix (with commuting entries). Thus the group SL(2,C) can be defined by
SL(2,C) = {P | P 2× 2 matrix over C, PεPT = ε}. Now let

a b = εab,
a b

= εab

where εab = εab =

(
0 1
−1 0

)

ab

.
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Claim.
c d

a b

=

a b

c d

−
a b

c d

i. e. εabεcd = δac δ
b
d − δadδbc

Exercise. Prove this claim.

Now let = i , = i (case of A = 1). Then = i2 = − =

− + Define = − . i. e.
a b

c d
= −δadδbc. Then = − − or

(⋆) = − −

This gives the bracket expansion at the special value A = −1 and loop value δ = −2.
Here = = and each term has an algebraic interpretation so that (⋆)

is an algebraic identity. This shows how 〈K〉 has an underlying structure related
to SL(2). Following this line of thought further leads to the subject of quantum
groups.

Example. SL(2) = {A | AεAT = ε}:

A A = Aa
i ε

ijAb
j = εab

= − =⇒ A = A
−1

for A ∈ SL(2).

Theorem. A,B ∈ SL(2) =⇒ tr(A) tr(B) = tr(AB) + tr(AB−1).

Proof.

tr(AB) =
A

B

= − A B
−1

= −
A B

−1

= − A B
−1

+ A B
−1

= − tr(AB−1) + tr(A) tr(B−1)

Therefore

tr(A) tr(B−1) = tr(AB−1) + tr(AB).

Therefore

tr(A) tr(B) = tr(AB) + tr(AB−1).

�

NotaBene. The minima and maxima are identity lines in this proof.
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Note that if we had an algorithm that assigned δ to each loop value, including

= = δ = etc.

then we can look for a linear combination

= a + b

that is compatible with the loop evaluation. Assuming δ 6= 0 this means:
{

= a + b

= a + b

}
δ = aδ + bδ2

δ = aδ2 + bδ

whence

{
1 = a+ bδ
1 = aδ + b

}
=⇒

(
1
1

)
=

(
1 δ
δ 1

)(
a
b

)
. This has infinitely many

solutions for δ = 1. The solution a = b = 1/(δ + 1) for any δ. δ = −2 is the only
solution that gives a topological calculus in the sense that = ; for by the
above we repeat an old argument:

= a + a (a = b)

= a(a + a ) + a(a + a )

= (a2δ + 2a2) + a2 .

Thus need a2 = 1 a2δ + 2a2 = 0 =⇒ δ = −2. This calculation shows that it is
only at the special value corresponding to SL(2) that this linear combinations trick
can work topologically.

12. Fierz Identity for su(2)

=
1

2
− 1

4
T a = λa/2

a = T a

=⇒ =
1

2
− 1

4

Let a = λa

=⇒ = 2 −

λ1 =

(
0 1
1 0

)
, λ2 =

(
0 −i
i 0

)
, λ3 =

(
1 0
0 −1

)
.

You can check this directly. For example,

2 1

1 2
= 1 + 1 + 0 = 2

2 2

1 1
= 1(−1) = −1 etc.

From the Fierz identity for su(2) we conclude the weight system recursion

formula V = 1
2V − 1

4V − 22−1
2·2 V = 1

2V −V , V = 2. Lets compare
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this directly with the two recursions we have for the standard Jones polynomial:
t−1V+ − tV− = (

√
t− 1/

√
t)V0. Using the expansion

V = −
√
tV − tV

V = −1/
√
tV − t−1V

δ −
√
t− 1/

√
t

and t = ex, we obtained

(A)

V = −V − 2V
V = −2

Using framing compensation, we have H+ −H− = zH0, H = t−1H2.246,

z =
√
t− 1/

√
t, δ = −

√
t+ 1/

√
t (VK = tw(K)HK).

Letting t = ex, we get framed h = h compensating the framing

(B)

V = V + 2V
V = −2

Both (A) and (B) should give the same results, being two ways to express the weight
system for VK . This means: −V −2V = V +2V ⇔ + + = 0

in loop value = −2. But this is exactly the “binor identity”

+ + = 0, = −2
that we have shown to be compatible with loop counts. So indeed (A) and (B) will
produce the same counts and we see that the binor calculus for SL(2) underlies
this weight system.

To compare with loop value = +2, note

V = V + 2V , V = −2

=⇒ VG =
∑

σ

2
#

(−1)# 2‖σ‖

where a state σ is obtained from G by replacing each node by either or .
We only count crossings and smoothings arising from the nodes of G. N = #nodes,
‖σ‖ = #loops in resulting diagram. Then # +# = N . So

VG =
∑

σ

2
#

(−1)N (−1)# 2‖σ‖

VG = (−1)N
∑

σ

(−2)# 2‖σ‖

=⇒ If ṼG = (−1)NVG then Ṽ = Ṽ − 2Ṽ , Ṽ = 2. Thus, up to a

constant factor, VG is exactly the su(2) Lie algebra weight system. This documents
the relationship between su(2) and the Jones polynomial.



CHAPTER 3

IV. Vassiliev Invariants and Witten’s Functional

Integral

Witten’s integral

ZK =

∫
dA e

ik
4πL(A)W(A)

A(x) =

d∑

a=1

3∑

k=1

Aa
k(x)Ta dx

k, x ∈ R3

{Ta} is a Lie algebra basis such that

[Ta, Tb] = fabcTc (sum on c)

fabc totally antisymmetric. We will assume that tr(TaTb) =
1
2δab as in case su(N).

A(x) : • called a gauge connection.

• Aa
k(x) smooth function on R3 ⊂ S3.

• Thus A is a Lie algebra valued 1-form.

L(A) =
∫

S3

tr(A ∧ dA+
2

3
A ∧ A ∧ A) “Chern-Simous Lagrangian”

WK(A) = tr
(
Pe

∮
K
A
)
= tr

∏

x∈K

(1+A(x)). “Wilson Loop”

The product definition of the Wilson loop explains directly what the P (for
“path ordering”) means. In

∏
x∈K

(1 + A(x)) we take the (limit of) the product of

the matrices in the given order around the loop K.
We shall see that the functional integral formalism indicates that ZK is an

invariant of regular isotopy of K. This comes about from a reciprocal relationship
in varying the connection A and varying the loop K. Variation of A generates
curvature (dA + A ∧ A) via L. Variation of K generates curvature via WK . The
result will take the form

Z = Z − Z =
c

k
Z + o(1/k2).

In other words,

ZK =

∞∑

n=0

Vn(K)(
1

kn
)

where Vn(K) is a Vassiliev invariant of type n. The weight systems for these
(framed) invariants are exactly the weight systems we studied abstractly in the last

111
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section. Later we will extract more analytically rigorous constructions for those
invariants by following the lesson of the functional integral more deeply.

1. Calculus on the Wilson Line

WK(A) = tr
∏

x∈K

(1+Aa
K(x)Ta dx

K)

(1 + A(χ))

δWK

δAa
K(χ)

= Ta dχK

︸ ︷︷ ︸ WK

insert at χ in the loop

Notation.
K

≡ dxK ,
a

≡ Ta

K

a
χ





Picture of Ta dx
K inserted into

the Wilson loop at point x.

Here we we functionally differentiate purely formally and omit mention of delta
functions. Let

K

a

L =
δL

δAa
K(x)

K

a

W =W

a

K

These results really refer to varying in the field only in a very small neighborhood
of the point x.

Curvature of A : F = dA+ A ∧ A
For an arbitrary gauge field A(x) = Aa

i (x)Ta dx
i we regard

R(C;A) = e
∮
C
A
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as a “parallel transport” from one endpoint of the curve C to the other.

C

Definition. We say that A and A′ are gauge equivalent if there is a smooth
map U : R3 ⊂ S3 → L where L is the Lie group whose Lie algebra g is represented
by {Ta}, and A′ = UAU−1 + (dU)U−1.

Specifically, for A = Aµ dx
µ (Aµ = Aa

µ(x)Ta ∈ g) we have

A′
µ = UAµU

−1 + (∂µU)U−1.

This definition is (partly) explained by the following Lemma.

Lemma. For an infinitesimal path C : C
χ

χ + dχ the condition

that A′ is gauge equivalent to A via U is equivalent to the statement

R(C;A′) = U(x+ dx)R(C;A)U−1(x).

Proof.

(1 +A′
µ dx

µ) = U(x+ dx)(1 +Aµ dx
µ)U−1(x)

= U(x+ dx)U−1(x) + U(x+ dx)AµU
−1(x)dxµ

= (U + ∂µU dx
µ)U−1 + (U + ∂µU dx

µ)AµU
−1dxµ

= 1 + (∂µU)U−1dxµ + UAµU
−1dxµ

= 1 + (UAµU
−1 + (∂µU)U−1)dxµ.

�

Fact (not proved here).1 Take L = SU(2). U : S3 → SU(2) a gauge transfor-
mation. n = degree of U . Then if AU = UAU−1 + (dU)U−1 then with

CS(A) =
1

4π

∫

S3

tr(A ∧ dA+
2

3
A ∧ A ∧ A),

CS(AU ) = CS(A) + 2πn. Hence eikCS(A) is an invariant under gauge transforma-
tions of A when k is an integer.

The previous Lemma shows that the Wilson Loop WK(A) is invariant under
gauge transformations. Hence the integrand in

ZK =

∫
dA eikCS(A)WK(A)

is gauge invariant. Thus this integral is taken over Ã/L̃ where Ã = all gauge

connections and L̃ denotes the group of gauge transformations.

Getting on to curvature, we now look at R(C;A) for an infinitesimal loop C
and see dA+A ∧ A pop out:

1See: Jackiw, Annals of Physics 194, 197–223 (1989).
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Lemma. A,B matrices, λ a scalar. Then

eλAeλB = eλ(A+B)+(λ2/2)[A,B] + o(λ3).

Proof.

eλAeλB = (1 + λA + λ2A2/2! + . . .)(1 + λB + λ2B2/2! + . . .)

= 1 + λ(A +B) + λ2AB + λ2A2/2! + λ2B2/2! + o(λ3)

= 1 + λ(A +B) + λ2(A2 + 2AB +B2)/2 + o(λ3)

= 1 + λ(A +B) + λ2(A2 +AB +BA+B2)/2 + λ2(AB −BA)/2 + o(λ3)

= 1 + λ(A +B) + λ2(A+B)2/2 + (λ2/2)[A,B] + o(λ3)

= eλ(A+B)+(λ2/2)[A,B] + o(λ3).

�

≡ :

χµ

χµ + dχµ χµ + dχµ + δχµ

χµ + dχµ

R = Pe

∮
A
= R R

R = R(x, x + dx)R(x+ dx, x + dx+ δx)

R = R(x+ dx+ δx, x + δx)R(x+ δx, x)

R = eAµ(x)dx
µ

eAν(x+dx)δxν

≡ e(Aµdx
µ+Aνδx

ν+∂µAν dxµδxν+ 1
2 [Aµ,Aν ] dx

µδxν)

R ≡ e[−(Aµ dxµ+∂νAµ dxµdxν+Aνδx
ν)+ 1

2 [Aµ,Aν ] dx
µδxν ]

=⇒ R ≡ e(∂µAν−∂νAµ)+[Aµ,Aν ])dx
µdxν

R = eFµν dxµdxν

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]

(Here ≡ means equal up to 2nd order differentials.)

Note. A = Aµ dx
µ

dA+A ∧ A = ∂µAν dx
µ ∧ dxν +AµAνdx

µ ∧ dxν

=
1

2
(∂µAν − ∂νAµ + [Aµ, Aν ])dx

µ ∧ dxν

dA+A ∧A =
1

2
Fµνdx

µ ∧ dxν
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Holonomy around an infinitesimal loop measures the curvature of the gauge con-
nection.

Now put in the Lie algebra: [Ta, Tb] = fabcTc.

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]

= ∂µA
a
νTa − ∂νAb

µTb + [Aa
µTa, A

b
νTb]

= (∂µA
a
ν − ∂νAa

µ)Ta +Aa
µA

b
ν [Ta, Tb]

= (∂µA
a
ν − ∂νAa

µ)Ta +Aa
µA

b
νfabcTc

= (∂µA
a
ν − ∂νAa

µ)Ta +Ab
µA

c
νfbcaTa (fbca = fabc)

= (∂µA
a
ν − ∂νAa

µ +Ab
µA

c
νfabc)Ta

Fµν = F a
µνTa

F a
µν = ∂µA

a
ν − ∂νAa

µ + Ab
µA

c
νfabc

Don’t forget this formula for F a
µν ! We will use it shortly.

Notation. F a
µν = F

a

µ ν

R = eF
a
µνTa dxµdxν ≡ 1+ F a

µνTa dx
µdxν

=⇒ R ≡ R +R
F

δR
def
= R −R
≡ R

F

Wilson Loop is measured by curvature insertion.
Since WK = tr(RK),

δW ≡ W
F

2. Varying the Chern-Simous Lagrangian

Recall our definitions:

L(A) =
∫

M3

tr(A ∧ dA+
2

3
A ∧ A ∧ A) (CS(A) =

1

4π
L(A)).

Here M3 = S3, but M3 can be any can be any compact 3-manifold.

A(x) = Aa
i (x)Ta dx

i, [Ta, Tb] = fabcTc

fabc totally antisymmetric in abc. tr(TaTb) = δab/2.
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Let T = tr(A ∧ dA+ 2
3A ∧ A ∧A). Then

T = tr(Aa
j∂kA

b
lTaTb +

2

3
Aa

jA
b
kA

c
l )dx

j ∧ dxk ∧ dxl

= εjkl[Aa
j ∂kA

b
l tr(TaTb) +

2

3
Aa

jA
b
kA

c
l tr(TaTbTc)]dx

1 ∧ dx2 ∧ dx3

T = εjkl[Aa
j ∂kA

b
l tr(TaTb) +

2

3
Aa

jA
b
kA

c
l tr(TaTbTc)]d vol

Note. For a given choice of abc

εjklAa
jA

b
kA

c
lTaTbTc =

∑

π∈Perm{a,b,c}
sign(π)Aa

1A
b
2A

c
3TπaTπbTπc

= Aa
1A

b
2A

c
3[[Ta, Tb]Tc − [Ta, Tc]Tb + [Tb, Tc]Ta]

Hence, going back to summations,

εjklAa
jA

b
kA

c
l tr(TaTbTc) = Aa

1A
b
2A

c
3[fabi tr(TiTc)− faci tr(TiTb) + fbci tr(TiTa)]

= Aa
1A

b
2A

c
3[fabc/2− facb/2 + fbca/2]

(
=

2

3
Aa

1A
b
2A

c
3fabc

)

=
1

4
Aa

1A
b
2A

c
3[fabc − facb + fbca − fbac + fcab − fcba]

=
1

4
εijkAa

iA
b
jA

c
kfabc

T =
εjkl

2

[∑

a

Aa
j ∂kA

a
l +

1

3

∑

a, b, c

Aa
jA

b
kA

c
l fabc

]
d vol

L(A) =
∫

M3

T

δ

δAr
l

(εijkAa
iA

b
jA

c
kfabc) = εljkAb

jA
c
kfrbc + εilkAa

iA
c
kfarc + εijlAa

iA
b
jfabr

= 3εljkAb
jA

c
kfrbc (using antisymmetry of ε and f).
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∫

M3

d vol
δ

δAr
l

(
εijk

∑

a

Aa
i ∂jA

a
k

)

=

∫

M3

d vol εijk
∑

a

(δAa
i

δAr
l

+Aa
i

δ[∂jA
a
k]

δAr
l

)

=

∫

M3

d vol
(
εljk∂jA

r
k + εijkAa

i

∂j [δA
a
k]

δAr
l

)
[δ∂j = ∂jδ]

integrating by parts

=

∫

M3

d vol εljk∂jA
r
k −

∫

M3

d vol εijk∂jA
a
i

δAa
k

δAr
l

=

∫

M3

d vol εljk∂jA
r
k −

∫

M3

d vol εijl∂jA
r
i

=

∫

M3

d vol εljk∂jA
r
k −

∫

M3

d vol εkjl∂jA
r
k

= 2

∫

M3

d vol εljk∂jA
r
k

Hence

δL
δAa

i

=

∫

M3

d vol[εijk∂jA
a
k +

1

2
εijkAb

jA
c
kfabc

Now we use:

εrsiε
ijk = −δjsδkr + δjrδ

k
s

= − + for
i j

k

= εijk.

εrsi
δL
δAa

i

=

∫

M3

d vol[εrsiε
ijk∂jA

a
k +

1

2
εrsiεijkA

b
jA

c
kfabc]

=

∫

M3

d vol[(−∂sAa
r + ∂rA

a
s) +

1

2
(−Ab

sA
c
r +Ab

rA
c
s)fabc]

=

∫

M3

d vol[(∂rA
a
s − ∂sAa

r ) +Ab
rA

c
sfabc]

εrsi
δL
δAa

i

=

∫

M3

d vol(F a
rs)

where F a
rs is the curvature tensor for A.
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Another way to put this result (in our cryptic notation that does not write out
the Dirac delta function):

εrsi
δL

δAa
i (x)

= F a
rs(x)

Recall

K

a

L =
δL

δAa
K(x)

~wwwww�

L = F

Summary

δW = (W −W )

≡ W
F

W = W

We are now ready to make a variational analysis of the functional integral
formalism. We make the following two assumptions about the integration:

1)

∫
dAX(DY ) +

∫
dA (DX)Y = ∅ (Integration by parts)

2) ZK =

∞∑

n=0

(
1

k

)n

Zn(K) (
1

k
expansion)
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Now we compute δZK where δZ = Z − Z , the change ZK under

a small variation of the loop K:

δZ =

∫
dA e

ik
4πLδW

=

∫
dA e

ik
4πL WF

=

∫
dA e

ik
4πL WL

=
4π

ik

∫
dA We

ik
4π

L

= −4π

ik

∫
dA e

ik
4πL W

δZ =
4πi

k

∫
dA e

ik
4πL

W

( = volume form, = double Lie algebra insertion into Wilson

line.)

Conclusion. • If the loop is moved so as not to cross itself and not to trace
out any volume in 3-space, then δZK = ∅. Hence ZK is an invariant of regular
isotopy.
• We need to look at

Z − Z and Z − Z .

Lets begin by discussing Z − Z . Here denotes a Wilson loop that

touches itself. (We postpone the case of multiple Wilson loops for the moment.)
Note that we are making a sharp notational distinction between and .

Z = Z −Z by definition. Let ∆ = Z −Z . Apply the variational

argument to this with as the initial state and as the variational argument

the first Lie algebra insertion occurs along :

due to curvature:  .



120 3. IV. VASSILIEV INVARIANTS AND WITTEN’S FUNCTIONAL INTEGRAL

The next possibility for insertion occurs when we differentiate the Wilson line:

4πi

k

∫
dA e

ik
4π L W

χ

.

Since the upward movement of the line does not generate any volume the derivate
will not contribute in the direction. However, we are differentiating a product
and the other relevant term (Da+x) is when we return trough x in the direction.
This direction makes a non-zero angle with the area generated by the moving line.
Thus we will receive a second insertion in the direction, giving

∆ =
4πi

k

∫
dAe

ik
4πL W

This means that up to normalizing the volume element we can state that there is
a constant c such that

Z = Z − Z =
c

k
Z

Here we write

Z − Z = (Z − Z ) + (Z − Z )

=
c

2k
Z +

c

2k
Z

Note that we assume that |∆+| = |∆−|:
(Z − Z ) = (Z − Z )

whence

(∗) Z = 1
2 (Z + Z )

We also assume that Z = Z .

In this context, (∗) actually only makes sense up to ≡ (o(1/k)). [For exam-
ple, consider the Homfly polynomial H = αH , H = α−1H .

Then H ≡ H ≡ 1
2 (H + H ) ≡ 1

2 (α + α−1)H is OK

if interpreted: α = e1/k, H = 1
2 (α + α−1)H + o(1/k).] But the dif-

ferences Z − Z and Z − Z are good to order o(1/k2) as desired.

[e. g. H − H = (α − 1)H = (1 − α−1)H + o(1/k2) =

H −H + o(1/k2).]

Now

Z − Z =
c

2k
Z

=
c

2k
Z

The Casimir element in the Lie algebra is central and, we can assume,
diagonal in the representation. Thus in fact (by Schur’s Lemma) is a
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multiple of the identity. If N = dim of representative space and γ = tr( )
then = (γ/N)1. Anyway, since Wilson line takes trace, this means
Z = γ

NZ whence Z − Z = c
2k

γ
NZ

Z = (1 +
c

2k

γ

N
)Z

Z = e
cγ

2Nk Z + o(1/k2).

Similarly,

Z = e−
cγ

2Nk Z + o(1/k2).

We have shown that the Lie algebra insertion and framing compensations fa-
miliar from Vassiliev invariants are implicit in the structure of Witten’s functional
integral!

3. SU(N) Again

Recall the Fierz identity:

=
1

2
− 1

2N
.

Thus

Z − Z ≡ c

k

(
1

2
Z − 1

2N
Z

)

(x ≡ y ⇔ x = y + o(1/k2))

=⇒ Z − Z ≡ c

k

(
1

2
Z − 1

4N
(Z + Z )

)

=⇒
(
1 +

c

4kN

)
Z −

(
1− c

4kN

)
Z ≡ c

2k
Z .

Let q = 1+ c
4k + . . . such that

q1/NZ − q−1/NZ = (q − q−1)Z .

(This is heuristic. We would have to work harder to obtain the existence of such
a q.)

Now

Z − Z ≡ c

2k

γ

N
Z

and here

= diag((N2 − 1)/2N, . . . , (N2 − 1)/2N) (N ×N matrix)

γ = tr( ) = (N2 − 1)/2

=⇒ Z ≡
(
1 +

c

4k

(
N2 − 1

N

))
Z

So

Z = qN−1/NZ

q1/NZ − q−1/NZ = (q − q−1)Z
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Normalizing PK = α−w(K)ZK , α = qN−1/N , we have

αq1/NP − α−1q−1/NP = (q − q−1)P

qNP − q−NP = (q − q−1)P

This is the su(N) specialization of the Homfly polynomial.

4. Links and Wilson Loops

If K = K1 ⊔K2 ⊔ . . . ⊔Ks is a link with s components then ZK is defined via

ZK =

∫
dA e

ik
4πL(A)WK1(A)WK2(A) . . .WKs

(A).

How does this affect the switching formula when and are on different com-
ponents? The answer is the same as before. The D operator is applied to the
product

∏
i

WKi
(A). χ and χ occur in two factors of that product. If the Lie

algebra element is originally inserted in , then to obtain 6= 0 volume , the result
of D will insert in and we get the same formula as before.

5. The Vassiliev Invariants

We assumed ZK =
∞∑

n=0
Zn(K)

(
1
k

)n
.

Z =
c

k
Z

If G is a graph with n nodes, then, as in the usual argument, Zn(G) is independent
of the embedding of G ⊂ R3.

Z
, . . . ,︸ ︷︷ ︸
n nodes

=
( c
k

)n
Z , . . . ,

︸ ︷︷ ︸
insertions at all nodes in G.

=
( c
k

)n ∫
dA e

ik
4πL(A)W , . . . ,

︸ ︷︷ ︸
G

We wish to articulate that part of this integral that has no (1/k) dependence. To

get a (1/k) expansion of ZK , replace A by A/
√
k:

ZK =

∫
dAe

i
4π

∫
M3 tr(A∧dA)e

i

4π
√

k

∫
M3 tr( 2

3A∧A∧A)WK(A/
√
k)

= tr
(∏

x∈K

(1+A(x)/
√
k)
)
.

This shows that, up to a scale factor, {Zn(G)} is precisely our (framed) Lie algebra
weight system (for G with #G = n).
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6. More About the
(
1
k

)
-Expansion

ZK =

∫
dA e

i
4π

∫
M3 tr(A∧dA)e

i
6π

∫
M3 tr( 1√

k
A∧A∧A)

tr
(∏

x∈K

(1+A(x)/
√
k)
)
.

tr
(∏

x∈K

(1+
1√
k
A(x))

)
= tr

(
1+

1√
k

∫

K

A+
1

k

∫∫

K1<K2

A(x1)A(x2) + . . .
)

where
∫
· · ·
∫

K1<...<Kn

A(x1)A(x2) . . . A(xn) =

∫
· · ·
∫

K×...×K︸ ︷︷ ︸
n

=Kn

A(x1)A(x2) . . . A(xn)

−→x = (x1, x2, . . . , xn) ∈ Kn with x1 < x2 < . . . < xn.

This is an iterated integrals expression for the Wilson loop.

Remark. Strictly speaking, we should have defined

ZK =

∫
dA e

ik
4π L(A)W(A)∫

dA e
ik
4πL(A)

so that Z = 1

Remark. Suppose ψ(A) is a (complex-valued) function on gauge fields. Define
the loop transform of ψ by the formula

ψ̂(K) =

∫
LAψ(A)WK(A)

for K ⊂ S3 any knot. The loop transform of a function on gauge fields is due to Lee
Smolin, Ted Jacobson, and Carlo Rovelli and is used (as a short of giant Fourier
transform) in their theory of quantum gravity. They use the loop transform to
transfer the action of certain differential operators on the ψ(A) to corresponding
operators on the loops.

7. Remarks on Framing and Planarity

In our variational argument we wrote

δW =W
F





F a
νµTa ax

νdxµ

It is at this point in the derivation that the summation for the curvature insertion
may actually be restricted to a proper subspace of R3, affording the possibility that
the volume form appearing later may be equal to zero. In fact if the deformation
of the line does not result in any self-touching, then we would be restricted to the
proper subspace troughout the rest of the derivation.
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Now consider what sorts of deformation will result in the proper subspace.

︸
︷︷

︸

the changein
iti
al

di
re
ct
io
n

mid

direct
ion

finaldirection

If the initial and final directions are in the same plane as the change, then we will
be in a proper subspace, otherwise not. This is why an arbitrary Reidemeister
3-dimensional move can change the value of the formal integral.

We shall say that a 3-dimensional Reidemeister move is regular if initial direc-
tion, mid-direction, final direction and the change all occur in a plane. Typically,

is not planar (hence not regular). We have shown that ZK is invariant under regular
3-dimensional move.

In order to study ZK as an invariant of knots and links, we can, in effect,
choose a framing by representing K as a diagram with respect to a chosen plane.
Then ZK is an invariant of regular isotopy with respect to this plane and it can be
normalized to give an invariant of ambient isotopy.

A framing on an arbitrary 3-space embedding of K should give us the same
control with respect to ZK . When we specify a diagrammatic projection plane, we
are actually specifying a framing (the blackboard framing) as discussed earlier in
these notes.

−−−−−−−→
changes the framing

Problem. Think about the 3-dimensional normalization for ZK with respect
to a framing for K.

8. A Preview of Things to Come

In order to go move deeply into this functional integrals approach to knot and
link invariants we need to take the gauge theory more seriously. In particular ZK

is an integral over gauge connections modulo gauge equivalence. One way to make
better formal sense of this is to use “gauge fixing”: A choice of restriction on the
gauge so that each orbit under the action of the gauge group is represented exactly
once. Depending on the particular method of gauge fixing, different features of the
functional integral come forth.

A particular nice example of gauge fixing is the axial gauge used by Frölich
and King. They write (G = su(N)) M = S3, x ∈M , x = (x+, x−, t)

A(x) = a+(x)dx
+ + a−(x)dx

− + a0(x)dt

a−(x) ≡ 0 gauge choice.
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For L(A) = ikS(A), S(A) = 1
4π

∫
tr(a+∂−a0)dx+ ∧ dx− ∧ dt and, after complexifi-

cation, x+ = z ∈ C, x− = z ∈ C they find

〈aj+(z, t)ak0(w, s)〉 = −2δjk
δ(t− s)
z − w

〈a− aj〉 = 〈a+a+〉 = 〈a0a0〉 = 0.

This gives rise to a transport equation of the form

dQ

dt
= λ

∑

16i<j6n

z′i − z′j
zi − zj

Ωijφn, Ωij =
∑

a

I ⊗ . . .⊗ Ta ⊗ . . .⊗ Ta ⊗ . . .⊗ I

and is the underlying mechanism for Kontsevich Integral :

∞∑

m=0

(2πi)−m

∫

t1<...<tm

∑

pairings
P={(zi,z′

i)}

(−1)#P↓DP

m∧

i=1

(dzi − dz′i
zi − z′i

)

Ωn =
∑

16i6j6n

Ωijωij flat ⇔ Ωn ∧ Ω = 0

⇔ Ωij satisfies inf??????? braid relations

⇔ 4TR ((4-term relation??))

− = −

− = −

[t12, t23] = [t23, t13]

9. 3-Manifold Invariants — Preview

We can form

ZM3 =

∫
DAe

ik
4π

∫
M3 tr(A∧dA+ 2

3A∧A∧A)

for a given compact manifold and choice of Lie algebra g. Up to “framing” and
blowing up and blowing down (see our section on Kirby calculus) this should be
an invariant of 3-manifolds. Witten argued via field theory that for each compact
surface S there should be a Hilbert space H(S) s.t. S = ∂M1 (M1 3-manifold),
then ∃ 〈M1| ∈ H(S) and ifM =M1∪∂M2 then ZM3 = 〈M1|M2〉 for an appropriate
product on H(S). This linearicas2 the problem. He further argued that D2× S1 ⊃
◦ × S1 = G can be regarded as W(G, ρ) (Wilson line for a given representation ρ
of g). Then 〈D2 × S1;G, ρ| gives vector in H(S1 × S1) for each representation ρ.
Witten claimed these span H(S1 × S1).

2???
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Conclusion. IfM3 =M3(K) — surgery on a link K ⊂ S3, then ∃ constant cρ
s.t.

ZM3 =
∑

ρ

cρZS3,K,ρ

where K = K1 ∪ . . . ∪Kn and K, ρ really means various ρ’s to different composers
of K. The 3-manifold invariant is expressed as a sum over invariants of links with
different representations of g attached to their components.

Rigorous combinatorial models exist! For su(2) one can take

〈K〉[n] = 〈K n 〉

where n is an n-symmetrizer (n-parallel lines)

n
=

1

{n}!
∑

σ∈Sn

(coeff+(σ)) σ ,

e. g.

̂

= braid lift of permutation

∆n = 〈 n 〉, θ(a, b, c) = 〈
a
b
c
〉

where

a b

c

=

a b

c

j

i k

i+ j = a
j + k = b
i+ k = c





extends 〈 〉[n] to graphs with 3-vertices.
One can show :

a b
=
∑

i

∆i

θ(a, b, i)

a b

i

a b

(Finite sum by letting A = eiπ/r in 〈K〉.)
Let

w
=
∑

i

∆i
i


 i def

=
i



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Then

a

w
=
∑

i

∆i

a

i

=
∑

i

∆i

∑

j

∆j

θ(a, i, j)
a

j

a i

i

=
∑

j

∆j

∑

i

∆i

θ(a, i, j)

a

i
j

a

=
∑

j

∆j
a

j

=
a

w

(We mean compute bracket polynomial all the time.)

Moral. d(K) =
∑
i

∆i〈K〉[i] is handle-sliding invariant. An appropriate nor-

malization of d(K) yields the su(2) 3-manifold invariant and it matches with ZM3 =∫
DAe

ik
4πLM3(A)!

Much more work is being done and remains to be done in this domain. One of
the most interesting problems is to prove in the combinatorial model the conjectures
about ZM3(k) as k →∞. This, by the functional integral, is dominated by the flat
(curvature zero) gauge connections on M3. Numerical evidence for L(K) (e. g. by
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finite Fourier transforms of the values of L(K)) shows that it works. Many exact
calculations in special cases show this as well.

End of the IHP/CEB Course
December, 1977

Section. Linking Numbers, Gauge Fixing and Pertarbative Expansion
This will be section VI. of the notes, but first we shall .. .. ... .. .. ... .. . .. . .

..

10. V. Various remarks

(A) Lets begin by recalling the Dirac delta function: δ(x).
δ(x) is not a function really, the idea is:

−ε ε

1/ε

graph of
y = δε(χ)





∞∫

−∞

δε(x)dx = 1

δ(x) = “lim”
ε→0

δε(x) :

{
δ(0) =∞
δ(x) = 0 x 6= 0

∫ ∞

−∞
δ(x)dx = 1.

This is justified in the theory of distributions.

Note.

1 =

∫
d(f(x))δ(f(x)) =

∫
dx f ′(x)δ(f(x)) =

∫

x : f(x)=0

dx(f ′|f=0δ(fx))

11. Functional Derivatives

δF [f(x)]

δ(fx)
= lim

ε→0

F (f(x) + εδ(x− y))− F (x)
ε

e. g. F [f(x)] = f(x)n

δF [f(y)]

δfx
= n(f(y))n−1δ(y − x)

and
δ

δfx

∫
F [f(y)] dy =

∫
n(f(y))n−1δ(y − x)dy = n(f(x))n−1

Apply these definitions to our previous formal work differentiating the Wilson
loop.

Note that
δf(y)

δf(x)
=
f(y) + εδ(y − x) − f(y)

ε
= δ(y − x)
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and

δ
∫ b

a
f(y)dy

δf(x)
=

b∫

a

δ(y − x)dx = 1.

We can also write δF [f ]
δf where there is no x dependence in the denominator.

Thus
δfn

δf
= nfn−1

and

δ

δf

∫
fn(y)dy =

b∫

a

nfn−1(y)dy.

Putting in the x inserts a delta function in the integral.

What about different functions, as in
b∫
a

f2(y)g(y)dy

δg

δf
= 0 if g is not a function of f .

=⇒ δ
∫ b

a
f2g dy

δf
=

b∫

a

2f(y)g(y)dy

and
δ
∫ b

a f
2g dy

δf(x)
=

∫ b

a

2f(y)g(y)δ(x− y)dy

= 2f(x)g(x).

It is in this sense that we did variational calculus in the last section.

(B) Consider just-touching Wilson lines: .

What do our variational arguments tell us about these, assuming we move such
a point as a ring vertex.

In such a deformation we are moving two parts of the Wilson loop simultaneously.
This should be a multiple of the standard insertion

.

(C) Smolin and Rovelli∗ use the functional integral as a “Fourier transform”:

Given ψ(A) a function on gauge connections A, they define the loop transform ψ̂(K)

∗See e. g. Lee Smolin. Quantum Gravity in the Self-Dual Representation. In Contemp.
Math. Vol. 71, 1988, pp. 55–97.
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defined on loops K ⊂ R3 (or K ⊂M3 a given 3-manifold) via:

ψ̂(K) =

∫
DAψ(A)WK(A).

One can then transfer operators to loops formally as shown below:
Let ∆ψ be a differential operator applied to ψ. Then

∆̂ψ(K) =

∫
DA(∆ψ)WK = −

∫
DAψ(A)(∆WK(A))

(via integration by parts.)
Since ∆WK can often be reformulated in terms of insertion operations on the

loops, this provides a new language!
Here are some examples.
1◦. Let

∆ = − F = −
∑

r,a,s

F a
r,s dx

r δ

δAa
s

.

Then

∆̂ψ = +

∫
DA(∆ψ)W

= −
∫
DAψ∆W =

∫
DAψ F W

=

∫
DAψ

WF

=

∫
DAψW F

=

∫
DAψ(A)[W −W ].

Thus the operator ∆ translates into a loop deformation operator, and ∆ψ = 0

corresponds to ψ̂(K) a link invariant! In the Ashtekar Theory ∆ψ = 0 is called
the diffeomorphism constraint. It is supposed to be globally satisfied by the func-
tions ψ(A) in this theory. As we know, even in the case of the chern simous

functional ψ(A) = e
ik
4π CS(A) we at best get ∆̂ψ( ) = 0 for flat deformations

of the loop. It would be interesting to know what sort of analytic constraint this
would means. Perhaps the theory can be used with such a restraint. Then framed
knot invariants would be directly related to the Ashtekar theory.
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2◦. Let

H = −

F

.

Then

Ĥψ =

∫
DAψ(A)

F

W

=

∫
DAψW

F

.

Hψ = 0 is called the Hamiltonian Constraint in the Ashtekar theory.

In order for Hψ to be non-zero, H must act at an intersection of loops.

Ĥ7−→ F .

(Otherwise the epsilon causes Ĥψ to vanish.)

This apparently means that (framed) link invariants are fundamental for quan-
tum gravity!

(D) Gaussian Integrals and their Infinite Dimensional Generalizations
Let

∆ =

∞∫

−∞

e−λx2/2dx.
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Then

∆2 =

∫∫

R2

e−
λ(x2+y2)

2 dxdy =

∫∫

R2

e−
λ(x2+y2)

2 r drdθ

= 2π

∞∫

0

e−
λr2

2 r dr =
+2π

λ

∞∫

0

e−
λr2

2 d(λr2)

=
2π

λ

∫ ∞

0

e−t dt =
2π

λ
(−e−t)

∣∣∞
0

= 2π/λ

∞∫

−∞

e−λx2/2dx =
√
2π/λ (λ > 0)

∞∫

−∞

dx e−
λx2

2 +Jx =

∞∫

−∞

dx e−
λ
2 (x2−2/λJx+J2/λ2) +

λ

2

J2

λ2

=

∞∫

−∞

dx e−
λ
2 (x−J/λ)2eJ

2/2λ

∫ ∞

−∞
dx e−

λx2

2 +Jx =

√
2π

λ
eJ

2/2λ

∞∫

−∞

dx e−
λx2

2 xN =

(
δN

δJN

) ∞∫

−∞

dx e−
λx2

2 +Jx
∣∣∣
J=0

=

√
2π

λ

(
δ

δJ

)N

eJ
2/2λ

∣∣
J=0

g(J) = eJ
2/2λ

√
2π

λ

∂g

∂J

∣∣
J=0

=
J

λ
eJ

2/2λ

√
2π

λ

∣∣
J=0

∂2g

∂J

∣∣
J=0

=

(
1

λ
eJ

2/2λ

√
2π

λ
+

(
J

λ

)2

eJ
2/2λ

√
2π

λ

)∣∣∣
J=0

=
1

λ

√
2π

λ
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h(J) = eJ
2/2. We want to evaluate ∂Nh

∂JN

∣∣
J=0

.





∂h

∂J
= JeJ

2/2 = Jh

∂2h

∂J2
= h+ J2h

∂3h

∂J3
= Jh+ 2Jh+ J3h = 3Jh+ J3h

∂4h

∂J4
= 3h+ 3J2h+ 3J2h+ J4h

= 3h+ 6J2h+ J4h

Let D = ∂
∂J :

D5h = 3Jh+ 12Jh+ 6J3h+ 4J3h+ J5h

= 15Jh+ 10J3h+ J5h

D6h = 15h+ 30J2h+ 10J4h+ 5J4h+ J6h

= 15h+ 45J2h+ 15J4h+ J6h

So DNh
∣∣
J=0
6= 0 only if N is even.

Then think of ↑ as bringing down a J and ↓ as eliminating a J .

DN (JKh) = (↓ JK)h+ JK(↑ h).

The terms that contribute to |J=0 are sequences ↑ . . . ↓↑↓↑ that sum to zero and
never go below zero.

e. g.

0 1 2 3 2 1 2 3 4 3 2 1
1 2 3 2 3 4





Pair off . . . . . . numerical factor: 4 · 3 · 2 · 3 · 2 · 1 = 4!3! and
(
1
λ

)6
=
(
1
λ

)N/2

Note that:
↓ JK = KJK−1 so down arrows contribute K.
↑ g = J

λg so up arrows contribute (1/λ).
Let

Cap(N) =





(n = 12)





= {well-formed parenthesisstructures with N/2parentheses pairs.}
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For each α ∈ Cap(N) define |α| = numerical contribution obtained from corre-
sponding differentiation rules.

e. g.





∣∣∣∣∣
0 1
1

0 1
1

0 1
1

∣∣∣∣∣ = 1 · 1 · 1 = 1

∣∣∣∣∣∣∣∣∣∣
0 1 2 3 4 3 2 1

321

∣∣∣∣∣∣∣∣∣∣

= 3!

∣∣∣∣∣∣∣∣∣∣∣ 0 1 2 3 2 1 2 3 2 1
1 2 3 2 3

∣∣∣∣∣∣∣∣∣∣∣

= (3 · 2)(3 · 2 · 1) = (3!)2





=⇒
( ∑

α∈Cap(N)

|α|
)(

1

λ

)N/2

= DN (e−J2/2λ)
∣∣
J=0

But4

eJ
2/2λ =

∞∑

n=0

J2n

(n)!

(
1

λ

)
1

2n

√
λ

2π

∞∫

−∞

dx e−
λx2

2 +Jx =

√
λ

2π

∞∑

n=0

Jn

n!

∞∫

−∞

dx e−
λx2

2 xn

=

√
λ

2π

∞∑

n=0

Jn

n!

√
2π

λ

[
DneJ

2/2λ
∣∣
J=0

]

=

∞∑

n=0

Jn

n!

( ∑

α∈Cap(2n)

)(
1

λ

)n

=⇒ 1

n!2n
=

1

(2n)!

∑

α∈Cap(2n)

|α|

∑

α∈Cap(2n)

|α| = (2n)!

n!2n

We have proved this using integrals. Try to prove it by pure combinatorics!

4kak oformit?
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12. The Combinatorics of Parentheses

0 1 2 1 0 1
1 12

α

2 1

0

1

dual tree





2!1! = |α|

From the point of view of the tree dual to the parenthesis structure, the norm |α|
of the parenthesis structure α is a product of depth counts.

e. g.

3 2 2

0

1
2

β

|β| = 23 · 3

(2n)!

2nn!
=

(2n)(2n− 1)(2n− 2) . . . (1)

2nn!

=

(
(2n)(2n− 2)(2n− 4) . . . (2)

2nn!

)
(2n− 1)(2n− 3) . . . (1)

= (2n− 1)(2n− 3)(2n− 5) . . . (1) = (2n− 1)!!

Now note that (2n − 1)(2n − 3) . . . (1) is equal to the number of unrestricted
pairings of a row of 2n points.

e. g. n = 2: (4− 1)(4− 3) = 3 · 1 = 3

, ,
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Now look:

0

1
2

3















Each time you add one more depth (n) you get n choices to add on: e. g.

systematically always go to the right for the new “paths”.
This gives a combinatorial proof that

∑

α∈Cap(2n)

|α| = (2n− 1)(2n− 3) . . . (1).

Note also that
(2n)!

2nn!
=

(n+ 1)!

2n

[
1

n+ 1

(
2n

n

)]

It terms out that Cap(2n) has cardinality Cn = 1
n+1

(
2n
n

)
, the nth Catalan Number.

It is quite interesting to see why 1
n+1

(
2n
n

)
counts the number of parenthesis

structures on 2n points. We will digress with two proofs of this fact. There may
be more proofs lurking in the background!
(i) Here is a purely combinatorial way to count |Cap(2n)|.

Start by looking at all sequences of ( and ) with n )’s and n (’s — not necessarily
we formed. e. g. ) ( ) ( is such a sequence for n = 2.

Fact. Any such sequence can be constructed as an expression in parenthe-
ses (×) = × and anti-parentheses )× (= ×
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e. g. ) ( ) ( =

) ( ) ( ) ( = =

=

As the second example shows, such decompositions are not unique.
We will obtain a decomposition into parentheses and anti-parentheses by in-

ductively taking each ) ( occurrence as an and containing as though the ’s are
not present. The residue is written in forms. Next page for examples:

( ) ) ) ( ( ( ) ( )→ ( ) ) ( ( ) ( ) ( ) ) ( ( ) ( )

→ ( ) ( ) ( ) ( ) ( ) ( )

→ ( ) ( ) ( ) ( )

→ ( ) ( )

→
The decomposition is not unique.

However, list all parenthesis structures and associate to each one a structure
collection with anti-parenthesis via the following rule: The original structure is
obtained from any mixed s structure by flipping one anti-parenthesis and all the
(anti-)parentheses containing it.

A mixed structure is said to be in standard form if it has this “one-flip” prop-
erty.

e. g.




We do not allow

on the list.

For n = 3, the complete list is:

This process generates (n+1)#Cap(2n) distinct mixed structures. In fact it creates
all mixed structures of ) and ( because the procedure we outlined for conversion can
be construed to arise from flipping one ) ( and all ) (’s containing it (non-uniquely).

For example in the procedure above, we take it to the stage ( ) ( ) but stop

here and convert to since the deleted sequence is already well-formed.

Note.

a b c ≡ ( a ) b ( c ) = a b c

≡
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Equivalent expressions are obtained by idemposition ( mod 2 cancellation on
the horizontal boundary).

Thus:

=

=

Apply = repeatedly to put the mixed expression into standard form∗.
Note that you may also need to use

a b =) a ( ) b (= a b

a b =) a ( ( b ) does not reduce.

But

= ) ( ( ) ) ( =

and

a b c = ) a ( ( b ) ) c = a b c

e. g.

=

Each expression can be converted into standard form, and hence arranged in the (n+
1)#Cap(2n) list.

But there are exactly
(
2n
n

)
expressions since these are strings of ), ( with n )’s

and n (’s. Therefore

(n+ 1)#Cap(2n) =

(
2n

n

)
.

Combing this with our previous work, we have shown

∑

α∈Cap(2n)

|α| = (n+ 1)!

2n
|Cap(2n)|

where |Cap(2n)| denotes the cardinality of the set Cap(2n).

There are other ways to count |Cap(2n)| = 1
n+1

(
2n
n

)
. Here is a quick sketch of

another method I find particularly amusing:

T = ∗+ + + + + + . . .

Formal sum of all cap structures.

Notation.

{
= ∗ = ∗ = ∗ .

x + y = x + y

∗You can prove that the standard form is unique by obtaining it by a canonical procedure:

1◦. Do a bc ⇒ a b c from deepest spaces upward.

2◦. Do ab c = a b c from top down.
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Then

T = T T + ∗.

Let F = result of replacing ∗ 7→ 1, 7→ x.

F =

∞∑

n=0

dnx
n, dn = |Cap(2n)|.

Above equation =⇒

F = xF 2 + 1

xF 2 − F + 1 = 0

F 2 − x−1F + x−1 = 0

F = (x−1 ±
√
x−2 − 4x−1)/2
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Newton =⇒
√
1 + x = 1 +

1

2
x+

1
2 (

1
2 − 1)

2!
x2 + . . .

=

∞∑

n=0

(
1/2

n

)
xn

(
1/2

n

)
=

(
1
2

) (
1
2 − 1

) (
1
2 − 2

)
. . .
(
1
2 − n+ 1

)

n!

=

(
1
2

) (
− 1

2

) (
− 3

2

)
. . .
(
−−2n+3

2

)

n!

= (−1)n−1 1 · 3 · 5 · . . . · (2n− 3)

2nn!

= (−1)n−1 (2n− 2)!

22n−1n!(n− 1)!(
1/2

n

)
=

(−1)n−1

22n−1n

(
2(n− 1)

n− 1

)

F =
x−1 ± x−1/2

√
x−1 − 4

2
√
x−1 − 4 =

∞∑

n=0

(
1/2

n

)
(−4)n(x−1)

1
2−n

=

∞∑

n=0

(−1)n−1

22n−1n

(
2n− 2

n− 1

)
(−1)n22nx−1/2xn

=

∞∑

n=0

(−1)x−1/2

2−1n

(
2n− 2

n− 1

)
xn

= x−1/2 +

∞∑

n=1

(−1)x−1/2

2−1n

(
2n− 2

n− 1

)
xn

=⇒ F =
x−1 − x−1/2

√
x−1 − 4

2

=
∞∑

n=1

1

n

(
2n− 2

n− 1

)
xn−1 =

∞∑

n=0

1

n+ 1

(
2n

n

)
xn.

This gives an alternative proof that

1

n+ 1

(
2n

n

)
= |Cap(2n)|.

13. Generalizing the Gaussian Integral

We worked with

∆ =

∞∫

−∞

e−λx2/2dx.
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Now let −→x = (x1, x2, . . . , xn) ∈ Rn and A be an n × n symmetric matrix.
Consider

∆ =

∫

Rn

e−
−→x A−→x T /2d−→x where d−→x = dx1dx2 . . . dxn.

A real symmetric matrix can be diagonalized by a rotation R:

RAR−1 =




λ1 0
λ2

. . .

0 λn


 .

Volume does not change under a rotation. Hence we can replace A by the diagonal
matrix of its eigenvalues.

Then

∆ =

∫

Rn

e
−

n∑
i=1

λix
2
i/2
dx1dx2 . . . dxn

=

n∏

i=1

∞∫

−∞

e−λix
2/2dxi =

n∏

i=1

√
2π

λi

∆ = (2π)n/2/
√
Det(A) = (2π)n/2

√
Det(A−1)

All this works nicely so long as we assume that A is invertible (or as the physicists
say “no zero models”).

∫

Rn

e−
−→x A−→x T /2d−→x = (2π)n/2/

√
Det(A)

Now look at

Z(J) =

∫

Rn

e−
−→x A−→x /2+JT−→x d−→x

A an n × n symmetric and invertible matrix; J ∈ Rn; −→x = column; −→x T = row.

We assume A has positive eigenvalues.

Let 〈x, y〉 = xTAy Then

〈x+A−1J, x+A−1J〉 = 〈x, x〉 + 〈A−1J, x〉+ 〈x,A−1J〉+ 〈A−1J,A−1J〉
= 〈x, x〉 + 2〈A−1J, x〉+ 〈A−1J,A−1J〉
= 〈x, x〉 + 2(A−1J)TAx+ (A−1J)TAA−1J

= 〈x, x〉 + 2JTA−1Ax+ JTA−1AA−1J (A = AT )

= 〈x, x〉 + 2JTx+ JTA−1J.
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Therefore,

Z(J) =

∫

Rn

dx e−〈x,x〉/2+JTx

=

∫

Rn

dx e−
1
2 〈x+A−1J,x+A−1J〉+ 1

2J
TA−1J

=

∫

Rn

dx e−
1
2 〈x,x〉e+

1
2J

TA−1J

Z(J) = Z(0)e+
1
2J

TA−1J

Now Z(0) can be computed by diagonalizing A. This can be accomplished by a
rotation R of Rn:

RAR−1 = diag(λ1, λ2, . . . , λn).

Hence

Z(0) =

∫

Rn

e−
1
2 (λ1x

2
1+...+λnx2

n) =
n∏

i=1

∫

R

dx e−λix
2/2

Z(0) = (2π)n/2/
√
Det(A)

∫

Rn

dx e−〈x,x〉/2+J1x1+...+Jnxn =
(2π)n/2√
Det(A)

e
1
2J

TA−1J

whence

1√
2π

n

∫

Rn

dx e−〈x,x〉/2xα1

1 xα2

2 . . . xαn
n =

1√
Det(A)

∂|α|

∂Jα1
1 . . . Jαn

n
e

1
2J

TA−1J
∣∣
J=0

.

This generalized the 1-variable calculation. e. g.

∂2

∂Ji∂Jj
e

1
2J

TA−1J
∣∣
J=0

=
∂2

∂Ji∂Jj
e

1
2

∑
k,l

JkA
−1
kl

Jl∣∣
J=0

= A−1
kl

def
= xixj

def
= 〈xixj〉0.

This tells us that all the moments (of xα1
1 . . . xαn

n ) can be expressed in terms of
moments of order two.

The derivative ∂|α|/∂Jα1
1 . . . Jαn

n gives rise to (2n)!/2nn! = (2n−1)!! terms just
as in the one dimensional case. This is the number of ways to form the pairs

xi1xi2xi3xi4 . . . xi2n−1xi2n

where i1i2 . . . i2n is the list α1 1’s, α2 2’s, . . . , αn n’s,. Thus

〈x1x2x3x4〉0 = x1x2x3x4 + x1 x3x2 x4 + x1x2x3x4

= x1x4x2x3 + x1x3x2x4 + x1x2x3x4

Note.

〈x1x2x3x4〉 = x1x3x2x2 + x1x2x2x3 + x1x2x2x3

= x1x3x2x2 + 2x1x2x2x3.

This is called the Wick Expansion.
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Now, in analogy to the infinite dimensional Chern—Simous integral, consider

Zk =

∫

Rn

d−→x eik( 1
2λijkx

ixj+λijkx
ixjxk).

(Using Aij = λij to avoid confusion with gauge connection A.)

Let x 7→ −→x ′ =
√
k−→x

Zk = −k−N/2

∫

Rn

d−→x e i
2λijx

ixj

e
i√
k
λijkx

ixjxk

= −k−N/2

∫

Rn

d−→x e i
2λijx

ixj
∞∑

m=0

im

m!km/2
(λijkx

ixjxk)m

mth term in asymptotic expansion given by

∫

Rn

d−→x e i
2λij(x

ixj)(λijkx
ixjxk)m

=

(
λijk
−i∂
∂Ji

−i∂
∂Jj

−i∂
∂Jk

)m ∫

Rn

d−→x e i
2λijx

ixj+iJix
i∣∣
J=0

=
1

(2πi)−N/2
√
Detλ

[(
λijk
−i∂
∂Ji

−i∂
∂Jj

−i∂
∂Jk

)m

e+
i
2λ

ijJiJj

]

J=0

((λij) = λ−1)

e. g. m = 2:



(
λijk
−i∂
∂Ji

−i∂
∂Jj

−i∂
∂Jk

)2 ∫

Rn

d−→x e i
2λijx

ixj+iJix
i



J=0

=
1

(2πi)N/2
√
Detλ

(
6λijkλi′j′k′λii

′
λjj

′
λkk

′
+ 9λijkλi′j′k′λiiλkk

′
λi

′j′
)

k k′ i′

j′

i

j

k k′ i′

j′

i

j

n = # of independent loops in the diagram. Thus we refer to the m-loop term.

For a closer analogy with our Chern—Simous integral, look at variables as
matrix entries — say (XI

J)I,J=1,...,N symmetric (or Hermitian) matrices. (Xa)
I
J ,

a = 1, . . . , d and look at
∫
d(XI

aJ ) exp
(
−1

2

∑
λab tr(XaXb) +

∑
gabc tr(XaXbXc)

)
,

(d(XI
aJ ) = dx1 . . . dxN2)
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Temporarily put d = 1 so have a single matrix in the integral with

tr(X2) =

N2∑

i=1

x2i (tr(X2) =
∑

I,J

XI
JX

J
I +XI

J = XJ
I )

tr(X3) =
∑

I,J,K

XI
JX

J
KX

K
I

(O(N) or U(N) acts by conjugacy on the integral.)

Note. 



λab tr(XaXb) = λab
∑

XI
aJX

J
bI

def
=
∑

[λ̃ab]
IK
JLX

I
aJX

K
bL

[λ̃ab]
IK
JL = λabδ

I
Lδ

J
K

for matching to quadratic form language.





X X
I

J
corresponds to XI

JX
J
I

K J

I

J

I

K

corresponds to XI
KX

K
J X

J
I

Thus the graph

(λ−1)ii′

(λ−1)jj′

(λ−1)kk′

gijk gi′j′k′

is replaced by the “fat graph”

K

J

I

.

∫
d(XI

J ) exp

(
−1

2
tr(X2) + ig tr(X3)

)
=

1
√
2π

N2

∞∑

l=0

(ig)l

l!
N#∂compsWd,S
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(Wd,S = of flat graphs will l v6 and S boundary component.) Put l = l(g, s)
Now lets shift to an infinite dimensional case. Take Chern—Simous integral in

Abelian gauge. In fact, we can just take formalism where there is no Lie algebra
so that Ai(x)dx

i = A(x). Then we have

ZK =

∫
DAe

ik
4π

∫
(AdA)WK(A)

to consider. ∫

R3

tr(AdA) =

∫
Ai dx

i ∧ ∂jAk dx
j ∧ dxk

=

∫

R3

Ai∂jAk dx
i ∧ dxj ∧ dxk

=

∫

R3

(εijkAi∂jAk)d vol

=

∫

R3

A · (∇×A)d vol

A ∂ A
= A · (∇×A)

Define the following operator L:

L(
A

+ φ)
def
=

A∂
− A∂ +

∂φ

[L(A+ φ) = ∇×A−∇ · A+∇φ]
Then

L2(
A

+ φ) =

∂ ∂ A

− ∂ ∂ A

0

+
∂ ∂φ 0

− ∂∂ φ−
∂ A∂

= − ∂∂ A
+

∂ A∂

−
∂ A∂

− ∂∂ φ

= − ∂∂ A
+ ∂∂ φ

Thus

L2(A+ φ) = −∇2A−∇2φ

Thus the square of L gives the Laplacian.
Define

〈X,Y 〉 =
∫

R3

X · Y d vol .

6???
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Then

〈 A
+ φ, L(

A
+ φ)〉 =

∫

R3

[
A ∂ A

+ ∂A − φ∂ ·A
]
d vol

=

∫

R3

[
A ∂ A − 2φ∂ ·A

]
(integration by parts)

Thus

〈(A, φ), L(A, φ)〉 =
∫

R3

(A · (∇×A)− 2φ∇ ·A)d vol

Note now how we can obtain an “inverse” for the Laplacian:

x

y

z

−→rr
θ

φ





In polar coordinates

∇2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sinφ

∂

∂θ

(
sin θ

∂

∂θ

)

+
1

r2 sin2 θ

∂2

∂φ2

Let R = |−→r −−→r ′|

−→r ′ 6= −→r =⇒ ∇2

(
1

4πR

)
=

1

R2

(
∂

∂R

(
R2 ∂

(
1

4πR

)

∂R

))

Of course, if −→r ′ = −→r =⇒ 1
4πR → ∞, but note that if ∂B = Sε, a sphere of

radius ε, then
∫

B

∇2

(
1

4πR

)
=

∫

Sε

∇
(

1

4πR

)
· d−→S = −

∫

Sε

1

4πR2
dSε

=
1

4πε2

∫
dSε = −1.

Thus

∇2

(
1

4πR

)
= δ(3)(−→r −−→r ′)

−1
4π

∫

R3

∇2

(
1

|x− y|

)
dy = +

∫

R3

δ(3)(x− y)dy.

So
−1
4π

∫

R3

∇2

(
1

|x− y|

)
J(y)dy = J(x).

If

G(x− y) = − 1

4π

(
1

|x− y|

)
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and

G ∗ J =

∫

R3

dy G(x− y)J(y)

then

∇2G ∗ J = J.

We have correspondingly constructed an inverse operator for L2 = −∇2. Thus
(G 7→ −G)

L2G ∗ J = J

L(LG ∗ J) = J

LG ∗ J = ((∇×G) ∗ J,−∇ ·G ∗ J)

〈J, LG ∗ J〉 =
∫
J · (∇×G) ∗ J

=

∫
J(x) · (x− y)× J(y)|x− y|3 .

Now we want to consider

SL(K,K ′) =
∫
DAe−

1
2 〈A,LA〉

∫∫

K×K′

A(x)A(y)
(1st non trivial Wilson

Loop Contribution)

=

∫∫

K×K′

∫
DAe−

1
2 〈A,LA〉A(x)A(y)

〈A(x)A(y)〉 def
=

∫
DAe−

1
2 〈A,LA〉A(x)A(y)

=

(
∂

∂J(x)

∂

∂J(y)

) ∣∣∣
J=0

e
1
2 〈J,L−1J〉

(Ignoring some constants and following

analogy with finite dimensional case.)

=

(
∂

∂J(x)

∂

∂J(y)

) ∣∣∣
J=0

e
1
2 〈J,LG∗J〉

=
∂

∂J(x)

∂

∂J(y)

∣∣∣
J=0

e
1
2

∫
J(x)· (x−y)×J(y)

|x−y|3

=????????
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(...... in terms of Ai(x)dx
i.)

SL(K,K ′) =
∫∫

K×K′

〈A(x)A(y)〉

= c

∫∫

K×K′

dx · (x− y)× dy|x− y|3

= −c
∫∫

K×K′

dx · dy × (x− y)
|x− y|3

= −c
∫∫

K×K′

(dx× dy) · (x− y)|x− y|3

SL(K,K ′) = −4πcLink(K,K ′).

This shows how C.S. Functional integral computes linking nos.

14. Digression on Linking Number

(The derivation below is due to Hagen Kleinert from his book “Path Integrals”
W. S. (1995) Section 16.5 pp. 652–655.)

Given a surface S let

δi(x
′, s) =

∫

S

dS δ(3)(x′ − x).

If C′ ∩ S = {p}

S

p

C ′

=⇒
∫

C′

dx′iδi(x
′, S) = 1

(a× b) · c = a b c

=
a b c

= a · (b × c)
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Say ∂S = C.

4πL(C,C′) =
∫

C

dx ·
∫

C′

dx′ x(x − x′)
|x− x′|3

=

∫

C

dx ·
(
∇×

∫

C′

dx′

|x− x′|
)

=

∫

S

dS ·
(
∇×

(
∇×

∫

C′

dx′

|x− x′|
))

Now

∇× (∇× V) = ∇(∇ · V)−∇2V
∂ ∂ V

= − ∂∂ +
V

∂ V∂

.

∇ ·
∫

C′

dx′

|x− x′| =
∫

C′

dx′ · (x− x
′)

|x− x′|3 = 0

∇2 1

|x− x′| = −4πδ
(3)(x− x′)

Therefore

L(C,C′) =
∫

S

dS ·
∫

C′

dx′ δ(3)(x− x′) =
∫

C′

dx′i δi(x
′ | s)

= Link(C,C′).
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15. Interpretation of Linking Number as Mapping Degree

A B

S1 S2

ê e = ê/|ê|, r = |ê|
e : A×B → S2

(L.............. map for two curves.)

∂e
∂S1
× ∂e

∂S2

∂e
∂S1

∂e
∂S2

e area =
(

∂e
∂S1
× ∂e

∂S2

)
· e

∂e

∂Si
=

∂ê

∂Si

1

r
+ ê

∂(1/r)

∂Si

∂e

∂S1
× ∂e

∂S2
=

∂ê

∂S1
× ∂ê

∂S2

1

r2
+

∂ê

∂S1
× ê1

r

∂(1/r)

∂S2
+ ê× ∂ê

∂S2

1

r

∂(1/r)

∂S1

A B C
=

A B C

(A×B) · C = A · (B × C)
But (

∂ê

∂S1
× ∂(1/r)

∂S2

)
· e = ∂ê

∂S1
· (e× e)∂(1/r)

∂S2
= 0.

Thus (
∂e

∂S1
× ∂e

∂S2

)
· e =

(
∂ê

∂S1
× ∂ê

∂S2

)
· ê/r3.

Therefore

Link(A,B) =
1

4π

∫∫

A×B

(
∂ê
∂S1
× ∂ê

∂S2

)
· ê

r3
dS1dS2

=⇒ Link(A,B) =
1

4π

∫∫

A×B

e∗dΣ, dΣ = area form on S2.
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For a single curve C with framing v:

v

v⊥
C

(v, v⊥,
−→
T C) forming righthand frame

Tw(C, v)
def
=

1

2π

∫
v⊥ · dv

twist
c : C × C → S2

Wr(C)
def
=

∫

C×C

e∗ dΣ

writhe,

Lk(C, v)
def
= Link(C,Cv), Cv = C translated along v

Theorem (Calagareann/White/Pohl).

Lk(C, v) = Tw(C, v) +Wr(C)

“Link = Twist + Writhe”

Proof. Omitted∗. �

This theorem has interesting applications to the study of DNA molecules in
molecular biology.

The proof of the theorem (above) by W. F. Pohl. M = ribbon of vec-
tors v. ∂M = C ∪ Cv. ∆ = {(m,m) | m ∈M} ⊂M ×M.

Blow up ∆ ⊂ M ×M by replacing ∆ by bundle of oriented normal directions

to ∆ inM×M . Call M̃ ×M the blow upM ×M . S(C,M) = closure (C×M−∆)

in M̃ ×M .

∂S(C,M) = [C × C] ∪ [C × Cv] ∪ [T (M,C)],

T (M,C) = unit tangent vectors to M based at points of C and pointing “into” M .
For (x, y) ∈ C×M−∆, let e(x, y) = (y−x)/|y−x|. This extends to T (M,C)∗.

e : S(C,M)→ S2

=⇒
∫

C×C

e∗ dΣ +

∫

C×Cv

e∗ dΣ +

∫

T (M,C)

e∗ dΣ = 0

=⇒ Lk(C,Cv) =
1

4π

∫

T (M,C)

+e∗ dΣ +Wr(C)

(with orientation induced from C ×M).

∗See “DNA and Differential Geometry” by W. F. Pohl. Math. Intell. 3, pp. 20–27.
∗See W. F. Pohl, Some Integral Formulas for Space Curves and Their Generalization. Am.

J. Math. 90, 1321–1345 (1968)
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Now let e⊥ be ⊥ e, e⊥ ∈ Span({)e, t}, t unit tangent t ∈ T (M,C) orientation
ee⊥ agrees with orientation vt of tangent planes to M along C.

e = cosφ v + sinφ t

e⊥ = − sinφ v + cosφ t

}
de · e⊥ = dφ+ dv · t
de · v⊥ = cosφdv · v⊥ + sinφdt · v⊥

Since v, v⊥, t are functions of curve parameter on C only, (dv · t) ∧ (dv · v⊥) =
(dv · t) ∧ (dt · v⊥) = 0.

Therefore e∗ dΣ = (de · e⊥)∧ (de · v⊥) = cosφdφ∧ (dv · v⊥)+ sinφdφ∧ (dt · v⊥)
on T (M,C) and

1

4π

∫

T (M,C)

e∗ dΣ =
1

4π

∫

C

π∫

−π

cosφdφ(dv · v⊥) + sinφdφ(dt · v⊥)

=
1

2π

∫

C

v⊥ · dv = Tw(C,Cv).

�

16. [Nazvanije za stranicej]

L = 1
2λijx

ixj + λijkx
ixjxk finite dimensional9.

Suppose L invariant under action of l-dimensional Lie group G. Visit10 eachNe ochenn poniatno
orbit of G once by ........... F : : Rn → R with an unique .......... on each G-orbit
and insert δl(F (−→x )) into integral. Multiply by volume of a G-orbit.

Note.
∫
dxδ(x) = 1 =⇒

∫
df(x)δ(f(x)) = 1 =⇒

∫
f ′(x)dxδ(f(x)) = 1.

So we must look at

Z =

∫

RN

dNxeik(
1
2λijx

ixj+λijkx
ixjxk)δl(F (−→x ))Det

(
∂F a

∂Tb

)
(−→x )

{Tb | b = 1, . . . , l} generators for g = LieAlg(G).

δl(F (−→x )) =

∫

Rl

dlφ eiF
a(−→x )φa

And we want to ..... the Det term into the Lagrangian. We will use “non-Ne ochenn poniatno
(opiat) commutative” (Berezin) integration:

Berezin Integral.
θ = single Grassmann variable.

Definition.
∫
dθ 1 = 0∫
dθ θ = 1

θdθ = −dθ θ
θ2 = 0

F (θ) = a+ bθ =⇒
∫
dθ F (θ) = bdF/dθ.

9???
10???
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Let c1, . . . , cl; c1, . . . , cl be distinct anticommuting Grassmann variables. Thus

(ci)2 = (ci)2 = 0

cicj = −cjci, cicj = −cjci, cicj = −cjci,
M = l × l matrix with entries in a commutative ring.

ct = (c1, . . . , cl)

ct = (c1, . . . , cl)

Then:

Det(M) = (−1)l(l+1)/2

∫
d−→c d−→c ectMc

Exercise.

∫
dc1 dc2 dc1 dc2 e

(
c1 c1

)


a b
c d







c1
c1





∫
dc1 dc2 dc1 dc2 [ac1c1 + bc1c2 + cc2c1 + dc2c2]

2
/
2

∫
(adc1c1c2c2 + bcc1c2c2c1 + dac2c2c1c1 + cbc2c1c1c2)/2

= ad− bc = Det(M).

Thus Z can be written as ∝ ? ? ? ? ?

Z ∝

∫

RN

dNx

∫

Rl

dlφ

∫
dlcdlc e

i[kL+Fa(−→x )φa+ca
(

∂Fa

∂Tb

)
cb]

=

∫
eiLt0t

Remark. Another way to work with Det: A : V → V , Â : Λ∗V → Λ∗V (Λ∗V =
Exterior algebra on V )

S : Λ∗V → Λ∗, S|ΛkV (x) = (−λ)kx
=⇒ Det(A− λI) = tr(SÂ).

17. Gauge Fixing Chern—Simous Action

A) Fröhlich and King — Axial Gauge (Light—Cone Gauge)
Let (x0, x1, x2) denote point in 3-space.
Think of x2 = t as “time”.
Light-cone coordinates

x+ = x1 + x2 = x1 + t

x− = x1 − x2 = x1 − t.
For gauge connection A, A± = A1 ±A2.

Ai =

r∑

a=1

Aa
i Ta/

√
2

where {Ta}ra=1 orthonormal set of generators of Lie algebra of gauge group G =
SU(N), s. t. tr(TaTb) = −δab. (These are Fröhlich and King conventions.)



154 3. IV. VASSILIEV INVARIANTS AND WITTEN’S FUNCTIONAL INTEGRAL

Light-cone gauge: Aa
− = 0 for a = 1, . . . , r ∗

A(x)a=(x)dx
+ + a−(x)dx

− + a0(x)dt

CS(A) =
1

4π

∫
tr(a ∧ da+ 2

3
a ∧ a ∧ a) with a− = 0 .

=
1

4π

∫
tr(a ∧ da).

a ∧ da = (a+ dx
+ + a0 dt)

∧ (∂−a+ dx
− ∧ dx+∂0a+ dt ∧ dx+∂+a0 dx+ ∧ dt∂−a0 dx− ∧ dt)

= (a+ dx
+ + a0 dt)

∧ (∂−a+ dx
− ∧ dx+(∂0a+ − ∂+a0)dt ∧ dx+ + ∂−a0 dx

− ∧ dt)
= a+∂−a0 dx

+ ∧ dx− ∧ dt+ a0∂−a+ dt ∧ dx− ∧ dx+

a ∧ da = (a+∂−a0 − a0∂−a+)dx+ ∧ dx− ∧ dt

CS(A) =
1

4π

∫
tr(a+∂−a0 − a0∂−a+)dx+ ∧ dx− ∧ dt

CS(A) =
1

2π

∫
tr(a+∂−a0)dx

+ ∧ dx− ∧ dt

a+∂−a0 − a0∂−a+ =
(
−a0∂− a+∂−

)(a+
a0

)

=
(
a+ a0

)( 0 ∂−
−∂− 0

)(
a+
a0

)
.

Let

L− =

(
0 ∂−
−∂− 0

)
, L+ =

(
0 ∂+
−∂+ 0

)

l−L+ =

(
0 ∂−
−∂− 0

)(
0 ∂+
−∂+ 0

)(
0 −∂−∂+

−∂−∂+ 0

)

∂−∂+ = � =
∂2

∂x−∂x+
=

∂2

∂x21
− ∂2

∂x22

for x− = (x1 − x2)/sqrt2, x+ = (x1 + x2)/
√
2

We want

∂ −D(x− y) = δ(x− y)
So

D = ∂+(∂−∂+)
−1 = ∂+(�

−1).

Claim.

�
−1(x) = lim

ε→0

1

(2π)3

∫
ei(k0x

0+k1x
1+k2x

2)

k22 − k21 + iε
d3k

= δ(x0) a distribution in (x1, x2).

∗F =
∑

aa
−
Ta

∂Fa

∂Tb

= aa
−
δab

So Ghost determinant is diagonal. Absorb into the measure.



17. GAUGE FIXING CHERN—SIMOUS ACTION 155

We return to the claim in a moment. Note that

CS(A) =
1

2π

∫
tr(a+∂−a0)dx

+ ∧ dx− ∧ dt.

This means that we only need to consider the operator ∂− and its inverse. Fur-
thermore, the only non-zero 2-pt function is 〈a+a0〉. Fröhlich and King claim the
following result:

〈aj+(x)ak0(y)〉 = 2λδjk sign(x− − y−)δ(x+ − y+)δ(x0 − y0)

+
2λ

iπ
δjkP

(
1

x+ − y+
)
δ(x0 − y0) (λ a constant)

We will get around this complexity by using x1 + ix2.
.........:

g(k) =
1√
2π

∞∫

−∞

f(x)e−ikxdx

Fourier transform of f . =⇒ f(x) = 1√
2π

∞∫
−∞

g(x)e−ikxdx.

δ(t− t−1) =
1

2π

∞∫

−∞

dk)e−ik(t−t′)

Fourier representation of delta function.

Example. Solve (
d2

dt2
+ w2

)
G(t− t′) = −δ(t− t′).

Solution. Write δ(t− t′) as above and

G(t− t′) =
∫

dk√
2π
e−ik(t−t′)G(k)

=⇒ 1√
2π

(−k2 + w2)G(k) = − 1

2π

=⇒ G(k) =
1√
2π

1

k2 − w2

G(t− t′) = 1

2π

∫
dk

e−ik(t−t′)

k2 − w2

Can rewrite contour

−w
w

Im k

Re k
≈

−w + iδ

w − iδ

Im k

Re k

GF (k) = lim
ε→+0

1√
2π

1

k2 + w2 + iε

= lim
δ→+0

1√
2π

(
1

k + w − iδ

)(
1

k − w + iδ

)
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And one can use this mode of analysis to penetrate King and Fröhlich.

We take a different tack:

∂+∂− = ∂21 − ∂22 .
Replace x2 by ix2 =⇒

∂+∂− 7→ ∂21 + ∂22 = ∇2.

z = x1 + ix2

Claim. ∇2 ln(z) = 2πδ(z)

z = reiθ

ln(z) = ln(r) + iθ

∇2 =
1

r1
∂

∂r

(
r1
∂

∂r

)
+

1

r2
∂2

∂θ2
2-dimensional Laplasian

∇ ln(r) = −→r /r
∇ ln(r) · −→rr =

−→r −→r
r2 = 1

∂ ln(z)

∂r
= 1/r =⇒ ∇2 ln(z) = 0 for z 6= 0.

∫

Bε

∇2 ln(z)dz =

∫

Sε

∇ ln(z)dz = 2π.

For the record:

x = r cos θ, y = r sin θ

Jac =

(
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

)
=

(
cos θ −r sin θ
sin θ r cos θ

)

| Jac | = r

−1

Jac =

(
∂r
∂x

∂r
∂y

∂θ
∂x

∂θ
∂y

)
=

1

r

(
r cos θ r sin θ
− sin θ cos θ

)

=⇒ ∂
∂x = cos(θ) ∂

∂r −
sin(θ)

r
∂
∂θ

∂
∂y = sin(θ) ∂

∂r + cos(θ)
r

∂
∂θ

=⇒ ∂2

∂x2
+

∂2

∂x2
=

1

r

∂

∂r

(
r
∂

∂r

)
1

r2
∂2

∂θ2

A± = A1 ±A2

x+ = (x1 + x2)/2, x− = (x1 − x2)/2,

A(x) = A+ dx
+ +A− dx

− +A0 dx
0

Check : (A1 +A2)(dx
1 + dx2)/2+ (A1−A2)(dx

1 − dx2)/2+A0 dx
0 = A1 dx

1 +
A2 dx

2 +A0 dx
0
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Replace x2 by ix2.

∂+ =
1

2
(∂1 + ∂2)

∂− =
1

2
(∂1 − ∂2)

 

∂+ =
1

2
(∂1 − i∂2)

∂− =
1

2
(∂1 + i∂2)

z = x1 + ix2

∂

∂z
=
∂x1
∂z

∂

∂x1
+
∂x2
∂z

∂

∂x2
z = x1 + ix2

z = x1 − ix2

}
x1 = (z + z)/2

x2 = (z − z)/2
∂x1
∂z

=
1

2
,

∂x2
∂z

=
1

2i





=⇒ ∂+ =
∂

∂z

In the axial gauge,

CS(A) =
1

2π

∫
tr(A+∂−A0)dx

+ ∧ dx− ∧ dx0

∂+(∂−∂+)
−1 = ∂−1

− = ∂+
1

2π
ln(z) =

1

2πz
.

The upshot of this is (Letting α = A+(z, t), α = A−(z, t) ≡ 0, t = x0):

〈αa(t, z)αb(s, w)〉 = 0

〈Aa
0(t, z)A

b
0(s, w)〉 = 0

〈αa(t, z)Ab
0(s, w)〉 = 4λ

δabδ(t− s)
z − w λ a constant

G ∗ J(z) =
∫
dwG(z − w)J(w)

〈J(z), G ∗ J(z)〉 =
∫

tr
(
J(z)

∫
dw J(w)

z − w
)
dz

=

∫∫
tr

(
J(z)J(w)

z − w

)
dzdw
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We want to apply these correlation functions to the Wilson loop calculations
and get corresponding information about the knot and link invariants.

ZK =

∫
DAe−

1
2 〈A,LA〉WK(A) =

∫
DAe−

1
2 〈A,LA〉 ∏

x∈K

(1+
1√
k
A(x))

=
∑

n

1

kn/2

∫∫∫

K1<...<Kn

∫
DAA(x1) . . . A(xn)e

− 1
2 〈A,LA〉

=
∑

n

1

kn/2

∫∫∫

K1<...<Kn

〈A(x1) . . . A(xn)〉

= (Wick Expression)
∑

n

1

kn/2

∑

pairs

∫∫∫

K1<...<Kn

〈A(x1)A(x2)〉 . . . 〈A(xn−1)A(xn)〉

Now think about structure of the pairs and the structure of the Wilson loops.
In axial gauge, equation for parallel transport along a curve σ(t) = (t, z(t)) is

(letting 0 6 t 6 1, u(0) = 1CN )

du(t) =

(
1

2
α dz +A0 dt

)
u(t)

where α depends only on flds
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New variables:

l(t) =

t∫

0

α(s, z(s))dz(s)

m(t) =

t∫

0

A0(s, z(s))dz(s)

du(t) =

(
1

2
dl(t) + dm(t)

)
u(t).





Curves
σi(t) = (t, zi(t)), i = 1, . . . , n

φn(t) = 〈u1 ⊗ . . .⊗ un(t)〉

dφn(t) =

n∑

i=1

〈u1(t)⊗ . . .⊗ dui(t)⊗ . . .⊗ un(t)〉

+
∑

16i6j6n

〈u1(t)⊗ . . .⊗ dui(t)⊗ . . .⊗ duj(t)⊗ . . .⊗ un(t)〉

=

n∑

i=1

〈I ⊗ . . .⊗
(
1

2
dli(t) + dmi(t)

)
⊗ . . .⊗ I〉φn(t)

+
∑

16i6j6n

〈I ⊗ . . .⊗
(
1

2
dli(t) + dmi(t)

)
⊗ . . .

⊗
(
1

2
dlj(t) + dmj(t)

)
⊗ . . .⊗ I〉φn(t)

〈lai (t)mb
j(t)〉4λδab

t∫

0

t∫

0

dzi(s)ds
′ δ(s− s′)

zi(s)− zi(s′)

4λδab
t∫

0

z′i(s)
zi(s)− zj(s)

〈dlai (t)dmb
j(t)〉 = 4λδab

z′i(t)
zi(t)− zj(t)

dt
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〈dlai (t)⊗ dmb
j(t)〉 = 2λ

z′i
zi − zj

r∑

a=0

Ta ⊗ Tadt

Ωij =

r∑

a=1

I ⊗ . . .⊗ Ta ⊗ . . .⊗ Ta ⊗ . . .⊗ I

dφn = λ
∑

16j6j6n

z′i − z′j
zi − zj

Ωijφn dt

dφn
dt

= λ
∑

16j6j6n

z′i − z′j
zi − zj

Ωijφn

Now lets step back and look at the structure of this evolution.

X = Xn = {(z1, . . . , zn) ∈ Cn | zi 6= zj if i 6= j}

Path B : [0, 1]→ Xn is exactly an n-stranded braid.

Dn = diagrams of form
. . .

An = Dn/(4− termrelations)
Ωn = An valued connection on X via

Ωij =

i j

. . . . . . . . .

ωij = d ln(zi − zj) =
dzi − dzj
zi − zj

Ωn =
∑

16i6j6n

Ωijωij

Flatness =⇒ transport is independent of homotopy type of the path B =⇒
get representation of π1(Xn) ∼= Bn = Artin Braid Group

Lemma. Ωn is flat.

Proof. dΩ =
∑

Ωijd
2 ln(zi − zj) = 0. So we need to show ωn ∧ Ωn = 0.

Ωn ∧ Ωn =
∑

16i6j6n
16k6l6n

ΩijΩklωij ∧ ωkl.
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Look at

W =
∑

i<j, k<l
{i,j,k,l}={1,2,3}

ΩijΩklωij ∧ ωkl ( 1 2 , 1 3 , 2 3 )

= ω12 ∧ ω23 + ω23 ∧ ω12

+ ω13 ∧ ω23 + ω23 ∧ ω13

+ ω12 ∧ ω13 + ω13 ∧ ω12

=


 −


ω12 ∧ ω23

+


 −


ω23 ∧ ω13

+


 −


ω23 ∧ ω13
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But four term relation in [Ω12,Ω23] + [Ω12,Ω13] = 0

− + − = 0

↔ −

+ − = 0

W =


 − +

− + −




× (ω12 ∧ ω23ω23 ∧ ω13ω13 ∧ ω12) = 0

�

To see this more clearly:

↔

↔

↔
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and

(STU) − =

Therefore

W =









(ω12 ∧ ω23 + ω23 ∧ ω13 + ω13 ∧ ω12)

ω12 ∧ ω23 + ω23 ∧ ω13 + ω13 ∧ ω12 =

(
dz1 − dz2
z1 − z2

)(
dz2 − dz3
z2 − z3

)(
z1 − z3
z1 − z3

)

+

(
dz2 − dz3
z2 − z3

)(
dz1 − dz3
z1 − z3

)(
z1 − z2
z1 − z2

)

+

(
dz1 − dz3
z1 − z3

)(
dz1 − dz2
z1 − z2

)(
z2 − z3
z2 − z3

)

= ((z1 − z3)− (z1 − z2)− (z2 − z3))dz1 ∧ dz2
+ . . . = 0
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18. The Kontsevich Integral

(See e. g. “The Fundamental Theorem of Vassiliev Invariants” by Bar-Natan
and Stoimorow12)

tmin

tmax

a

b

Here m = 3

Z [a,b]
m (K) =

1

(2πi)m

∫

a<t1<...<tm<b

∑

P={(zi,z′
i)|i=1,...,m}

(−1)#P↓D[a,b]
p

m∧

i=1

d(zi − z′i)
zi − z′i





[a, b] ⊂ [tmin, tmax]
P = a set of m admissible pairings.

D
[a,b]
P = Chord (algebra) diagram evaluation for pairings P .

P ↓= # of points (zi, ti) or (z
′
i, ti) were K is decreasing out.

For suffiently large interval [a, b], we write Zm(K) since this will capture the whole
knot or link. Note that Zm(K) is a generalization of the 1

(
√
k)m·2 = 1

km term from

the Wilson loop in the gauge theory case. i. e.∫
DAe

ik
4πLCSWK(A) ∝

∑

m

1

km
Zm(K).

We will return to this point after discussing the Kontsevich Integral. The factor
(−1)#P↓ seems to make a difference in th two methods.

The Z
[a,b]
m (K) are called Kontsevich Integrals.

Of course, we now want to worry about how well-defined is Z
[a,b]
m (K). In

particular, what about

or

as these chords have zi − z′i small? If we use chord diagram evaluations that are
zero on isolated chords there is no problem. Otherwise we need to look. Similarly
for

as these chords approach one another.
We will return to these issues.

12????
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Certainly, by flatness, Zm(K) is invariant under horizontal deformations of K
in horizontal slices with no critical points∗.

Needle deformations :

→ →

→ →

The verification can be reduced to 3 lines, as before: e. g.

1 2 3

.

Let









= − etc.

∗However, this last is based on using a generalization of the connections Ωn to connec-
tions Ωn,n with underlying algebra gen by diagrams with 2n arrows, first n up, second n down.
Then

Ωn,n =
∑

16i6j62n

SiSjΩijωij

where

Si =

{

+1 i 6 n

−1 i > n
.

The claim is that the connection Ωn,n is flat.
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Then

W ′ =








ω12 ∧ ω23(−1)3 +








ω23 ∧ ω13(−1)3

+








ω13 ∧ ω12(−1)2

=








ω12 ∧ ω23(−1) +








ω23 ∧ ω13(−1)3

+








ω13 ∧ ω12(−1)2

This Lemma for Ωn,n explains the use of the signs (−1)#P↓ in the Kontsevich

integral. It remains to discuss singularities. For we get out by using DP

that vanishes on isolated chords.

For
zi

zi+1

z′i
it is claimed that the integration domain for z + i+ 1

is as small as zi − z′i and this smallness cancels the singularity coming from the
denominator for the (zi, z

′
i) chord.

Remark.

√
1−t2

t
1

eiθ=zz′=ei(π−θ)

θθ

W = z − z′ = eiθ + e−iθ

W = 2 cos(θ) = 2
√
1− t2

dW = 2(−2t)(1− t2)−1/2

dW

W
=
−4t dt
1− t2 =

2d(1− t2)
1− t2 = 2

dS

S
.

Thus the singularity for
zi

zi+1

z′i
is
∫

dS
S logarithmic.
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Lemma. Suppose K and K ′ differ only in that K has a needle of width ε, then
for some fixed norm on the algebra of chord diagrams A, ‖Zm(K)− zm(K ′)‖ ∼ ε.

Proof. Consider vertical needle

ε

.

Contributions to Z(K)−Z(K ′) come from pairings that pair at least one pair of

strands on the needle. For
zi

zi+1

z′i
we get ∅ via isolated chord conditions.

Otherwise we have

+ ∼ ε

since these contribute opposite signs via (−1)#P↓. (This is when the strands are
not paired together.)

If the strands are paired together, then it must be in the round part of the
needle at the top, otherwise dzi − dz′i = 0. Thus we have

i1
ik
i




K pairings of the two strands in the rounded part.

δa = |zja − z′ja| =⇒ the integral in this case is bounded by a constant multiple of

∫ ε

0

dδ1
δ1

∫ δ1

0

dδ2
δ2

. . .

∫ δk−1

0

dδk
δk

∫ z′
ik

zik

dzi − dz′i
zi − z′i

∼ ε

�

However, we have nothing that lets us change the number of critical points.
i. e. Chto eto za znak?

.

This is handled via a correction factor.

Let stand for .

Z( ) = + (higher order terms)

( — unknot diagram.) So series for Z( ) is invertible.

Definition. K ⊂ C× R with c critical points. (c ≡ 0 ( mod 2) in all cases.)
Then define

Z̃(K) =
Z(K)

(Z( ))c/2
.

Theorem. Z̃(K) is invariant under arbitrary deformations of the knot K.
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Proof. Want to show that

.

does not alter value of Z̃. Let Kh, Ks be identical knots apart from small region
where Kh has hump and Ks is straight. Want to show Z(Ks)Z( ) = Z(Kh).
Move hump in Kh so it is very far away from rest of knot (so can ignore pairings

from hump to rest of knot). (N. B. you need see that is allowed.

More “needle” arg.) Thus Z(Kh) factors via pairings which pair things on “main”
part of knot and pairings that pair strands of hump. But

Z( ) = Z( ) = Z( ) = Z( ).

�

Theorem. Z̃(K) ∈ AR (i. e. diags with real coefficients)

Proof. Rotate K by 180◦ around real axis to jet K ′ =⇒ Z(K ′) = Z(K) and

Z( ′) = Z( ). But K ′ ≈ K so Z̃(K) = Z̃(K). �

Remark. Le and Murakami have shown that Z̃(K) has rational coefficients.

19. Return to Wilson Loop

ZK =

∫
DAe−

1
2 〈A,LA〉∑

m

1

km

∫

K1<...<Km

A(x1) . . . A(x2m)

=
∑

m

1

km

∫

K1<...<K2m

∑

P={(xi,x′
i)|i=1,...,m}

(xi < x′i in ordering)

xi x′
i

xi = (zi, t)
x′i = (z′i, t

′)

〈A(xi)A(x′i)〉 = 〈Aa
k(xi)A

b
l (x

′
i)〉TaTb dxkdxl.

We re-write in complexified axial gauge coordinates. Then only contribution is

〈Aa
+(z, t)A

b
0(z

′, t′)〉 =
(
4λδabδ(t− t′)

z − z′
)

So

〈A(xi)A(x′i)〉 = 〈Aa
+(xi)A

a
0(x

′
i)〉TaTadx+ ∧ dt

+ 〈Aa
0(xi)A

a
+(x

′
i)〉TaTadt ∧ dx+

dx+ ≡ dx1 + idx2 = dz, dtδ(t) = 1
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So

〈A(xi)A(x′i)〉 =
dz − dz′
z − z′ i i′

We get

ZK ∝
∑

m

1

km

∫

K1<...<Km

∑

P

DP

m∧

i=1

(
dzi − dz′i
zi − z′i

)

This is a Wilson Loop ordering version of the Kontsevich integral.
Question. Is the Wilson loop ordered integral

∫

K1<...<Kn

∑

P

DP

m∧

i=1

(
dz − dz′i
zi − z′i

)

the “same” as the Kontsevich integral?

We shall look at this!

The answer is : They are the same!

Just note

x x′





:
dzδ(t− t′)dt′

z
,
δ(t− t′)dtdz′

z′

If you switch one line, both of these terms change sign!
Thus our Wilson Loop Integrals become the Kontcevich Integrals with respect

to a global time direction.
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