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1 Introduction

This paper is an introduction to Khovanov homology.

We start with a quick introduction to the bracket polynomial, reformulating it and the Jones

polynomial so that the value of an unknotted loop is q+q−1.We then introduce enhanced states for

the bracket state sum so that, in terms of these enhanced states the bracket is a sum of monomials.

In Section 3, we point out that the shape of the collection of bracket states for a given diagram

is a cube and that this cube can be taken to be a category. It is an example of a cube category.

We show that functors from a cube category to a category of modules naturally have homology

theories associated with them. In Section 4 we show how to make a homology theory (Khovanov

homology) from the states of the bracket so that the enhanced states are the generators of the

chain complex. We show how a Frobenius algebra structure arises naturally from this adjacency

structure for the enhanced states. Finally we show that the resulting homology is an example of



homology related to a module functor on the cube category as described in Section 3.

In Section 5, we give a short exposition of Dror BarNatan’s tangle cobordism theory for Kho-

vanov homology. This theory replaces Khovanov homology by an abstract chain homotopy class

of a complex of surface cobordisms associated with the states of a knot or link diagram. Topolog-

ically equivalent links give rise to abstract chain complexes (special cobordism categories) that

are chain homotopy equivalent. We show how the 4Tu tubing relation of BarNatan is exactly

what is needed to show that these chain complexes are invariant under the second Reidemeister

move. This is the key ingredient in the full invariance under Reidemeister moves, and it shows

how one can reinvent the 4Tu relation by searching for that homotopy. Once one has the 4Tu
relation it is easy to see that it is equivalent to the tube-cutting relation that is satisfied by the

Frobenius algebra we have already discussed. In this way we obtain both the structure of the

abstract chain homotopy category, and the invariance of Khovanov homology under the Reide-

meister moves.

In Section 6 we show how the tube-cutting relation can be used to derive a class of Frobenius

algebras depending on a choice of parameter t in the base field. When t = 0 we have the original

Frobenius algebra for Khovanov homology. For t = 1 we have the Lee Algebra on which is

based the Rasmussen invariant. The derivation in this section of a class of Frobenius algebras

from the tube-cutting relation, shows that one can begin Khovanov homology with the abstract

categorical chain complex associated with the Cube Category of a link and from this data find the

Frobenius algebras that can produce the actual homology theories.

In Section 7 we give a short exposition of the Rasmussen invariant and its application to find-

ing the four-ball genus of torus knots.

In Section 8 we give a description of Khovanov homology as the homology of a simpli-

cial module by following our description of the cube category in this context. In Section 9

we discuss a quantum context for Khovanov homology that is obtained by building a Hilbert

space whose orthonormal basis is the set of enhanced states of a diagram K. Then there is a

unitary transformation UK of this Hilbert space so that the Jones polynomial JK is the trace of

UK : JK = Trace(UK). We discuss a generalization where the linear space of the Khovanov ho-

mology itself is taken to be the Hilbert space. In this case we can define a unitary transformation

U ′
K so that, for values of q and t on the unit circle, the Poincaré polynomial for the Khovanov ho-

mology is the trace of U ′
K . Section 10 is is a discussion,with selected references, of other forms of

link homology and categorification, including generalizations of Khovanov homology to virtual

knot theory.

It gives the author great pleasure to thank the members of the Quantum Topology Seminar

at the University of Illinois at Chicago for many useful conversations and to thank the Perimeter

Institute in Waterloo, Canada for their hospitality while an early version of this paper was being

completed. The present paper is an extension of the paper [24].
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2 Bracket Polynomial and Jones Polynomial

The bracket polynomial [20] model for the Jones polynomial [17, 18, 19, 58] is usually described

by the expansion

〈 〉 = A〈 〉+ A−1〈 〉

Here the small diagrams indicate parts of otherwise identical larger knot or link diagrams. The

two types of smoothing (local diagram with no crossing) in this formula are said to be of type A
(A above) and type B (A−1 above).

〈©〉 = −A2 −A−2

〈K©〉 = (−A2 − A−2)〈K〉

〈 〉 = (−A3)〈 〉

〈 〉 = (−A−3)〈 〉

One uses these equations to normalize the invariant and make a model of the Jones polynomial.

In the normalized version we define

fK(A) = (−A3)−wr(K)〈K〉/〈©〉

where the writhe wr(K) is the sum of the oriented crossing signs for a choice of orientation of

the link K. Since we shall not use oriented links in this paper, we refer the reader to [20] for

the details about the writhe. One then has that fK(A) is invariant under the Reidemeister moves

(again see [20]) and the original Jones polynomial VK(t) is given by the formula

VK(t) = fK(t
−1/4).

The Jones polynomial has been of great interest since its discovery in 1983 due to its relationships

with statistical mechanics, due to its ability to often detect the difference between a knot and its

mirror image and due to the many open problems and relationships of this invariant with other

aspects of low dimensional topology.

The State Summation. In order to obtain a closed formula for the bracket, we now describe it

as a state summation. Let K be any unoriented link diagram. Define a state, S, of K to be the

collection of planar loops resulting from a choice of smoothing for each crossing of K. There

are two choices (A and B) for smoothing a given crossing, and thus there are 2c(K) states of a

diagram with c(K) crossings. In a state we label each smoothing with A or A−1 according to

the convention indicated by the expansion formula for the bracket. These labels are the vertex

weights of the state. There are two evaluations related to a state. The first is the product of the

vertex weights, denoted 〈K|S〉. The second is the number of loops in the state S, denoted ||S||.
Define the state summation, 〈K〉, by the formula

〈K〉 =
∑

S

< K|S > δ||S||
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Figure 1: Reidemeister Moves

where δ = −A2 − A−2. This is the state expansion of the bracket. It is possible to rewrite this

expansion in other ways. For our purposes in this paper it is more convenient to think of the loop

evaluation as a sum of two loop evaluations, one giving −A2 and one giving −A−2. This can

be accomplished by letting each state curve carry an extra label of +1 or −1. We describe these

enhanced states below. But before we do this, it will be useful for the reader to examine Figure

2. In Figure 2 we show all the states for the right-handed trefoil knot, labelling the sites with A
or B where B denotes a smoothing that would receive A−1 in the state expansion.

Note that in the state enumeration in Figure 2 we have organized the states in tiers so that the

state that has only A-smoothings is at the top and the state that has only B-smoothings is at the

bottom.

Changing Variables. Letting c(K) denote the number of crossings in the diagram K, if we

replace 〈K〉 by A−c(K)〈K〉, and then replace A2 by −q−1, the bracket is then rewritten in the

following form:

〈 〉 = 〈 〉 − q〈 〉

with 〈©〉 = (q + q−1). It is useful to use this form of the bracket state sum for the sake of the

grading in the Khovanov homology (to be described below). We shall continue to refer to the

smoothings labeled q (or A−1 in the original bracket formulation) as B-smoothings.

We catalog here the resulting behaviour of this modified bracket under the Reidemeister

moves.

〈©〉 = q + q−1

〈K©〉 = (q + q−1)〈K〉

〈 〉 = q−1〈 〉

〈 〉 = −q2〈 〉

〈 〉 = −q〈 〉

4



〈 〉 = 〈 〉

It follows that if we define

JK = (−1)n−qn+−2n
−〈K〉,

where n− denotes the number of negative crossings in K and n+ denotes the number of positive

crossings in K, then JK is invariant under all three Reidemeister moves. Thus JK is a version of

the Jones polynomial taking the value q + q−1 on an unknotted circle.

Using Enhanced States. We now use the convention of enhanced states where an enhanced

state has a label of 1 or −1 on each of its component loops. We then regard the value of the loop

q+ q−1 as the sum of the value of a circle labeled with a 1 (the value is q) added to the value of a

circle labeled with an −1 (the value is q−1). We could have chosen the less neutral labels of +1
and X so that

q+1 ⇐⇒ +1 ⇐⇒ 1

and

q−1 ⇐⇒ −1 ⇐⇒ x,

since an algebra involving 1 and x naturally appears later in relation to Khovanov homology. It

does no harm to take this form of labeling from the beginning. The use of enhanced states for

formulating Khovanov homology was pointed out by Oleg Viro in [54].

Consider the form of the expansion of this version of the bracket polynonmial in enhanced

states. We have the formula as a sum over enhanced states s :

〈K〉 =
∑

s

(−1)i(s)qj(s)

where i(s) is the number ofB-type smoothings in s and j(s) = i(s)+λ(s), with λ(s) the number

of loops labeled 1 minus the number of loops labeled −1 in the enhanced state s.

One advantage of the expression of the bracket polynomial via enhanced states is that it is

now a sum of monomials. We shall make use of this property throughout the rest of the paper.

3 Khovanov Homology and the Cube Category

We are going to make a chain complex from the states of the bracket polynomial so that the

homology of this chain complex is a knot invariant. One way to see how such a homology theory

arises is to step back and note that the collection of states for a diagram K forms a category in

the shape of a cube. A functor from such a category to a category of modules gives rise to a

homology theory in a natural way, as we explain below.
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Figure 2: Bracket States and Khovanov Complex

Examine Figure 2 and Figure 3. In Figure 2 we show all the standard bracket states for the

trefoil knot with arrows between them whenever the state at the output of the arrow is obtained

from the state at the input of the arrow by a single smoothing of a site of type A to a site of type

B. The abstract structure of this collection of states is a category with objects of the form 〈ABA〉
where this symbol denotes one of the states in the state diagram of Figure 2. In Figure 3 we

illustrate this cube category (the states are arranged in the form of a cube) by replacing the states

in Figure 2 by symbols 〈XY Z〉 where each literal is either an A or a B. A typical generating

morphism in the 3-cube category is

〈ABA〉 −→ 〈BBA〉.

We formalize this way of looking at the bracket states as follows. Let S(K) denote a category

associated with the states of the bracket for a diagram K whose objects are the states, with sites

labeled A and B as in Figure 2. A morphism in this category is an arrow from a state with a given

number of A’s to a state with fewer A’s.

Let Dn = {A,B}n be the n-cube category whose objects are the n-sequences from the set {A,B}
and whose morphisms are arrows from sequences with greater numbers of A’s to sequences with

fewer numbers of A’s. Thus Dn is equivalent to the poset category of subsets of {1, 2, · · ·n}.
We make a functor R : Dn −→ S(K) for a diagram K with n crossings as follows. We map

sequences in the cube category to bracket states by choosing to label the crossings of the diagram

K from the set {1, 2, · · ·n}, and letting this functor take abstractA’s andB’s in the cube category
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Figure 3: Cube Category

to smoothings at those crossings of type A or type B. Thus each sequence in the cube category

is associated with a unique state of K when K has n crossings. By the same token, we define

a functor S : S(K) −→ Dn by associating a sequence to each state and morphisms between

sequences corresponding to the state smoothings. With these conventions, the two compositions

of these morphisms are the identity maps on their respective categories.

Let M be a pointed category with finite sums, and let F : Dn −→ M be a functor. In our

case M will be a category of modules and F will carry n-sequences to certain tensor powers

corresponding to the standard bracket states of a knot or link K. We postpone this construction

for a moment, and point out that there is a natural structure of chain complex associated with the

functor F . First note that each object in Dn has the form

X = 〈X0 · · ·Xn−1〉

where each Xi equals either A or B and we have morphisms

di : 〈X0 · · ·Xi · · ·Xn−1〉 −→ 〈X0 · · · X̄i · · ·Xn−1〉

whenever Xi = A and (by definition) X̄i = B. We then define

∂i = C(di) : C〈X0 · · ·Xi · · ·Xn−1〉 −→ C〈X0 · · · X̄i · · ·Xn−1〉

whenever di is defined. We then define the chain complexC by

Ck =
⊕

X

C〈X0 · · ·Xn−1〉

7



where each sequence X = 〈X0 · · ·Xn−1〉 has k B’s. With this we define

∂ : Ck −→ Ck+1

by the formula

∂x = Σn−1
i=0 (−1)c(X,i)∂i(x)

for x ∈ CX = C〈X0 · · ·Xn−1〉 and c(X, i) denotes the number of A’s in the sequence X that

precede Xi.

We want ∂2 = 0 and it is easy to see that this is equivalent to the condition that ∂i∂j = ∂j∂i
for i 6= j whenever these maps and compositions are defined. We can assume that the functor F
has this property, or we can build it in axiomatically by adding the corresponding relations to the

cube category in the form didj = djdi for i 6= j whenever these maps are defined. In the next

section we shall see that there is a natural way to define the maps in the state category so that this

condition holds. Once we axiomatize this commutation relation at the level of the state category

or the cube category, then the functor F will induce a chain complex and homology as above.

In this way, we see that a suitable functor from the cube category to a module category allows

us to define homology that is modeled on the “shape” of the cube. The set of bracket states forms

a natural functorial image of the cube category, and that makes it possible to define the Khovanov

chain complex. In terms of the bracket states, we will map each state loop to a specific module

V , and each state to a tensor power of V to the number of loops in the state. The details of this

construction are in the next section.

We use a specific construction for the Khovanov complex that is directly related to the en-

hanced states for the bracket polynomial, as we will see in the next section. In this construction

we will use the enhanced states, regarding each loop as labeled with either 1 or x for a module

V = k[x]/(x2) associated with the loop (where k = Z/2Z or k = Z.) Thus the two labelings

of the loop will corespond to the two generators of the module V. A state that is a collection of

loops will be associated with V ⊗r where r is the number of loops in the state. In this way we

will obtain a functor from the state category to a module category, and at the same time it will

happen that any single enhanced state will correspond to a generator of the chain complex. In the

next section we show how naturally this algebra appears in relation to the enhanced states. We

then return to the categorical point of view and see how, surface cobordisms of circles provide an

abstract category for the invariant.

4 Khovanov Homology

In this section, we describe Khovanov homology along the lines of [28, 3], and we tell the story

so that the gradings and the structure of the differential emerge in a natural way. This approach to

motivating the Khovanov homology uses elements of Khovanov’s original approach, Viro’s use of

enhanced states for the bracket polynomial [54], and Bar-Natan’s emphasis on tangle cobordisms

[2, 3]. We use similar considerations in our paper [34].
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Two key motivating ideas are involved in finding the Khovanov invariant. First of all, one

would like to categorify a link polynomial such as 〈K〉. There are many meanings to the term

categorify, but here the quest is to find a way to express the link polynomial as a graded Euler

characteristic 〈K〉 = χq〈H(K)〉 for some homology theory associated with 〈K〉.

We will use the bracket polynomial and its enhanced states as described in the previous sec-

tions of this paper. To see how the Khovanov grading arises, consider the form of the expansion

of this version of the bracket polynomial in enhanced states. We have the formula as a sum over

enhanced states s :
〈K〉 =

∑

s

(−1)i(s)qj(s)

where i(s) is the number of B-type smoothings in s, λ(s) is the number of loops in s labeled

1 minus the number of loops labeled X, and j(s) = i(s) + λ(s). This can be rewritten in the

following form:

〈K〉 =
∑

i ,j

(−1)iqjdim(Cij)

where we define Cij to be the linear span (over the complex numbers for the purpose of this paper,

but over the integers or the integers modulo two for other contexts) of the set of enhanced states

with i(s) = i and j(s) = j. Then the number of such states is the dimension dim(Cij).

We would like to have a bigraded complex composed of the Cij with a differential

∂ : Cij −→ Ci+1 j .

The differential should increase the homological grading i by 1 and preserve the quantum grading

j. Then we could write

〈K〉 =
∑

j

qj
∑

i

(−1)idim(Cij) =
∑

j

qjχ(C• j),

where χ(C• j) is the Euler characteristic of the subcomplex C• j for a fixed value of j.

This formula would constitute a categorification of the bracket polynomial. Below, we shall see

how the original Khovanov differential ∂ is uniquely determined by the restriction that j(∂s) =
j(s) for each enhanced state s. Since j is preserved by the differential, these subcomplexes C• j

have their own Euler characteristics and homology. We have

χ(H(C• j)) = χ(C• j)

where H(C• j) denotes the homology of the complex C• j . We can write

〈K〉 =
∑

j

qjχ(H(C• j)).

The last formula expresses the bracket polynomial as a graded Euler characteristic of a homology

theory associated with the enhanced states of the bracket state summation. This is the categorifi-

cation of the bracket polynomial. Khovanov proves that this homology theory is an invariant of

knots and links (via the Reidemeister moves of Figure 1), creating a new and stronger invariant

than the original Jones polynomial.
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We will construct the differential in this complex first for mod-2 coefficients. The differential

is based on regarding two states as adjacent if one differs from the other by a single smoothing

at some site. Thus if (s, τ) denotes a pair consisting in an enhanced state s and site τ of that

state with τ of type A, then we consider all enhanced states s′ obtained from s by smoothing at

τ and relabeling only those loops that are affected by the resmoothing. Call this set of enhanced

states S ′[s, τ ]. Then we shall define the partial differential ∂τ (s) as a sum over certain elements

in S ′[s, τ ], and the differential by the formula

∂(s) =
∑

τ

∂τ (s)

with the sum over all type A sites τ in s. It then remains to see what are the possibilities for ∂τ (s)
so that j(s) is preserved.

Note that if s′ ∈ S ′[s, τ ], then i(s′) = i(s) + 1. Thus

j(s′) = i(s′) + λ(s′) = 1 + i(s) + λ(s′).

From this we conclude that j(s) = j(s′) if and only if λ(s′) = λ(s)− 1. Recall that

λ(s) = [s : +]− [s : −]

where [s : +] is the number of loops in s labeled +1, [s : −] is the number of loops labeled −1
(same as labeled with x) and j(s) = i(s) + λ(s).

In the following proposition we assume that the partial derivatives ∂τ (s) are local in the sense

that the loops that are not affected by the resmoothing are not relabeled (just as we have indicated

in the previous paragraph). We also assume that the maps we define for partial differentials do not

vanish unless this is forced by the grading, and that coefficients of individual tensor products are

taken to be equal to 1. In other words, we see that if we take the “simplest” partial differentials

that leave j(s) invariant, then the differentials are determined by this condition. It is interesting

to see how this works. We shall see later in the paper that there are deeper and more elegant ways

to find the algebra indicated below.

Proposition. The partial differentials ∂τ (s) are determined (in the above sense) by the condition

that j(s′) = j(s) for all s′ involved in the action of the partial differential on the enhanced state s.
This form of the partial differential can be described by the following structures of multiplication

and comultiplication on the algebra V = k[x]/(x2) where k = Z/2Z for mod-2 coefficients, or

k = Z for integral coefficients.

1. The element 1 is a multiplicative unit and x2 = 0.

2. ∆(1) = 1⊗ x+ x⊗ 1 and ∆(x) = x⊗ x.

These rules describe the local relabeling process for loops in a state. Multiplication corresponds

to the case where two loops merge to a single loop, while comultiplication corresponds to the

case where one loop bifurcates into two loops.
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Proof. Using the above description of the differential, suppose that there are two loops at τ that

merge in the smoothing. If both loops are labeled 1 in s then the local contribution to λ(s) is 2.
Let s′ denote a smoothing in S[s, τ ]. In order for the local λ contribution to become 1, we see

that the merged loop must be labeled 1. Similarly if the two loops are labeled 1 and X, then the

merged loop must be labeled X so that the local contribution for λ goes from 0 to −1. Finally, if

the two loops are labeled X and X, then there is no label available for a single loop that will give

−3, so we define ∂ to be zero in this case. We can summarize the result by saying that there is a

multiplicative structure m such that m(1, 1) = 1, m(1, x) = m(x, 1) = x,m(x, x) = 0, and this

multiplication describes the structure of the partial differential when two loops merge. Since this

is the multiplicative structure of the algebra V = k[x]/(x2), we take this algebra as summarizing

the differential.

Now consider the case where s has a single loop at the site τ. Smoothing produces two loops.

If the single loop is labeled x, then we must label each of the two loops by x in order to make λ
decrease by 1. If the single loop is labeled 1, then we can label the two loops by x and 1 in either

order. In this second case we take the partial differential of s to be the sum of these two labeled

states. This structure can be described by taking a coproduct structure with ∆(x) = x ⊗ x and

∆(1) = 1⊗ x+ x⊗ 1. We now have the algebra V = k[x]/(x2) with product m : V ⊗ V −→ V
and coproduct ∆ : V −→ V ⊗ V, describing the differential completely. This completes the

proof. //

Partial differentials are defined on each enhanced state s and a site τ of type A in that state.

We consider states obtained from the given state by smoothing the given site τ . The result of

smoothing τ is to produce a new state s′ with one more site of type B than s. Forming s′ from s
we either amalgamate two loops to a single loop at τ , or we divide a loop at τ into two distinct

loops. In the case of amalgamation, the new state s acquires the label on the amalgamated circle

that is the product of the labels on the two circles that are its ancestors in s. This case of the

partial differential is described by the multiplication in the algebra. If one circle becomes two

circles, then we apply the coproduct. Thus if the circle is labeled X , then the resultant two circles

are each labeled X corresponding to ∆(x) = x⊗x. If the orginal circle is labeled 1 then we take

the partial boundary to be a sum of two enhanced states with labels 1 and x in one case, and labels

x and 1 in the other case, on the respective circles. This corresponds to ∆(1) = 1 ⊗ x + x ⊗ 1.
Modulo two, the boundary of an enhanced state is the sum, over all sites of type A in the state, of

the partial boundaries at these sites. It is not hard to verify directly that the square of the boundary

mapping is zero (this is the identity of mixed partials!) and that it behaves as advertised, keeping

j(s) constant. There is more to say about the nature of this construction with respect to Frobenius

algebras and tangle cobordisms. In Figures 4,5 and 6 we illustrate how the partial boundaries can

be conceptualized in terms of surface cobordisms. Figure 4 shows how the partial boundary

corresponds to a saddle point and illustrates the two cases of fusion and fission of circles. The

equality of mixed partials corresponds to topological equivalence of the corresponding surface

cobordisms, and to the relationships between Frobenius algebras [29] and the surface cobordism

category. In particular, in Figure 6 we show how in a key case of two sites (labeled 1 and 2 in

11



that Figure) the two orders of partial boundary are

∂2∂1 = (1⊗m) ◦ (∆⊗ 1)

and

∂1∂2 = ∆ ◦m.

In the Frobenius algebra V = k[x]/(x2) we have the identity

(1⊗m) ◦ (∆⊗ 1) = ∆ ◦m.

Thus the Frobenius algebra implies the identity of the mixed partials. Furthermore, in Figure

5 we see that this identity corresponds to the topological equivalence of cobordisms under an

exchange of saddle points.

In Figures 7 and 8 we show another aspect of this algebra. As Figure 7 illustrates, we can

consider cup (minimum) and cap (maximum) cobordisms that go between the empty set and a

single circle. With the categorical arrow going down the page, the cap is a mapping from the base

ring k to the module V and we denote this mapping by η : k −→ V . It is the unit for the algebra

V and is defined by η(1) = 1V , taking 1 in k to 1V in V. The cup is a mapping from V to k and

is denoted by ǫ : V −→ k. This is the counit. As Figure 7 illustrates, we need a basic identity

about the counit which reads

Σǫ(a1)a2 = a

for any a ∈ V where

∆(a) = Σa1 ⊗ a2.

The summation is over an appropriate set of elements in v⊗ V as in our specific formulas for the

algebra k[x]/(x2). Of course we also demand

Σa1ǫ(a2) = a

for any a ∈ V. With these formulas about the counit and unit in place, we see that cobordisms

will give equivalent algebra when one cancels a maximum or a minimum with a saddle point,

again as shown in Figure 7.

Note that for our algebra V = k[x]/(x2), it follows from the counit identies of the last para-

graph that

ǫ(1) = 0

and

ǫ(x) = 1.

In fact, Figure 8 shows a formula that holds in this special algebra. The formula reads

ǫ(ab) = ǫ(ax)ǫ(b) + ǫ(a)ǫ(bx)

for any a, b ∈ V. As the rest of Figure 8 shows, this identity means that a single tube in any

cobordism can be cut, replacing it by a cups and a caps in a linear combination of two terms. The

tube-cutting relation is shown in its most useful form at the bottom of Figure 8. In Figure 8, the

black dots are symbols standing for the special element x in the algebra.
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It is important to note that we have a nonsingular pairing

〈 | 〉 : V ⊗ V −→ k

defined by the equationn

〈a|b〉 = ǫ(ab).

One can define a Frobenius algebra by starting with the existence of a non-singular bilinear pair-

ing. In fact, a finite dimensional associative algebra with unit defined over a unital commutative

ring k is said to be a Frobenius algebra if it is equipped with a non-degenerate bilinear form

〈 | 〉 : V ⊗ V −→ k

such that

〈ab|c〉 = 〈a|bc〉

for all a, b, c in the algebra. The other mappings and the interpretation in terms of cobordisms

can all be constructed from this definition. See [29].

Remark on Grading and Invariance. In Section 2 we showed how the bracket, using the

variable q, behaves under Reidemeister moves. These formulas correspond to how the invariance

of the homology works in relation to the moves. We have that

JK = (−1)n−qn+−2n
−〈K〉,

where n− denotes the number of negative crossings in K and n+ denotes the number of posi-

tive crossings in K. J(K) is invariant under all three Reidemeister moves. The corresponding

formulas for Khonavov homology are as follows

JK = (−1)n−qn+−2n
−〈K〉 =

(−1)n−qn+−2n
−Σi,j(−1)iajdim(H i,j(K) =

Σi,j(−1)i+n+qj+n+−2n
−1dim(H i,j(K)) =

Σi,j(−1)iqjdim(H i−n
−
,j−n++2n

−(K)).

It is often more convenient to define the Poincaré polynomial for Khovanov homology via

PK(t, q) = Σi,jt
iqjdim(H i−n

−
,j−n++2n

−(K)).

The Poincaré polynomial is a two-variable polynomial invariant of knots and links, generalizing

the Jones polynomial. Each coefficient

dim(H i−n
−
,j−n++2n

−(K))

is an invariant of the knot, invariant under all three Reidemeister moves. In fact, the homology

groups

H i−n
−
,j−n++2n

−(K)

are knot invariants. The grading compensations show how the grading of the homology can

change from diagram to diagram for diagrams that represent the same knot.
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Figure 8: The Tube Cutting Relation

Remark on Integral Differentials. Choose an ordering for the crossings in the link diagram K
and denote them by 1, 2, · · ·n. Let s be any enhanced state of K and let ∂i(s) denote the chain

obtained from s by applying a partial boundary at the i-th site of s. If the i-th site is a smoothing

of type A−1, then ∂i(s) = 0. If the i-th site is a smoothing of type A, then ∂i(s) is given by the

rules discussed above (with the same signs). The compatibility conditions that we have discussed

show that partials commute in the sense that ∂i(∂j(s)) = ∂j(∂i(s)) for all i and j.One then defines

signed boundary formulas in the usual way of algebraic topology. One way to think of this regards

the complex as the analogue of a complex in de Rham cohomology. Let {dx1, dx2, · · · , dxn} be

a formal basis for a Grassmann algebra so that dxi ∧ dxj = −dxj ∧ dxi Starting with enhanced

states s in C0(K) (that is, states with all A-type smoothings) define formally, di(s) = ∂i(s)dxi
and regard di(s) as identical with ∂i(s) as we have previously regarded it in C1(K). In general,

given an enhanced state s in Ck(K) with B-smoothings at locations i1 < i2 < · · · < ik, we

represent this chain as s dxi1 ∧ · · · ∧ dxik and define

∂(s dxi1 ∧ · · · ∧ dxik) =
n∑

j=1

∂j(s) dxj ∧ dxi1 ∧ · · · ∧ dxik ,

just as in a de Rham complex. The Grassmann algebra automatically computes the correct signs

in the chain complex, and this boundary formula gives the original boundary formula when we

take coefficients modulo two. Note, that in this formalism, partial differentials ∂i of enhanced

states with a B-smoothing at the site i are zero due to the fact that dxi ∧ dxi = 0 in the Grass-
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mann algebra. There is more to discuss about the use of Grassmann algebra in this context. For

example, this approach clarifies parts of the construction in [35].

It of interest to examine this analogy between the Khovanov (co)homology and de Rham

cohomology. In that analogy the enhanced states correspond to the differentiable functions on a

manifold. The Khovanov complexCk(K) is generated by elements of the form s dxi1∧· · ·∧dxik
where the enhanced state s has B-smoothings at exactly the sites i1, · · · , ik. If we were to follow

the analogy with de Rham cohomology literally, we would define a new complex DR(K) where

DRk(K) is generated by elements s dxi1 ∧ · · · ∧ dxik where s is any enhanced state of the link

K. The partial boundaries are defined in the same way as before and the global boundary formula

is just as we have written it above. This gives a new chain complex associated with the link K.
Whether its homology contains new topological information about the link K will be the subject

of a subsequent paper.

In the case of de Rham cohomology, we can also look for compatible unitary transformations.

Let M be a differentiable manifold and C(M) denote the DeRham complex of M over the com-

plex numbers. Then for a differential form of the type f(x)ω in local coordinates x1, · · · , xn and

ω a wedge product of a subset of dx1 · · ·dxn, we have

d(fω) =
n∑

i=1

(∂f/∂xi)dxi ∧ ω.

Here d is the differential for the DeRham complex. Then C(M) has as basis the set of |f(x)ω〉
where ω = dxi1 ∧ · · · ∧ dxik with i1 < · · · < ik. We could achieve Ud + dU = 0 if U is a

very simple unitary operator (e.g. multiplication by phases that do not depend on the coordinates

xi) but in general it will be an interesting problem to determine all unitary operators U with this

property.

A further remark on de Rham cohomology. There is another relation with the de Rham com-

plex: In [47] it was observed that Khovanov homology is related to Hochschild homology and

Hochschild homology is thought to be an algebraic version of de Rham chain complex (cyclic

cohomology corresponds to de Rham cohomology), compare [51].

5 The Cube Category and the Tangle Cobordism Structure of

Khovanov Homology

We can now connect the constructions of the last section with the homology construction via the

cube category. Here it will be convenient to think of the state category S(K) as a cube category

with extra structure. Thus we will denote the bracket states by sequences of A’s and B’s as

in Figures 2 and 3. And we shall regard the maps such as d2 : 〈AABA〉 −→ 〈ABBA〉 as

corresponding to re-smoothings of bracket states that either join or separate state loops. We take
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V = k[x]/(x2) with the coproduct structure as given in the previous section. The maps from

m : V ⊗ V −→ V and ∆ : V −→ V ⊗ V allow us to define the images of the resmoothing maps

di under a functor F : S(K) −→ M where M is the category generated by V by taking tensor

powers of V and direct sums of these tensor powers. It then follows that the homology we have

described in the previous section is exactly the homology associated with this functor.

The material in the previous section also suggests a modification of the state category S(K).
Instead of taking the maps in this category to be simply the abstract arrows generated by ele-

mentary re-smoothings of states from A to B, we can regard each such smoothing as a surface

cobordism from the set of circles comprising the domain state to the set of circles comprising the

codomain state. With this, in mind, two such cobordisms represent equivalent morphisms when-

ever the corresponding surfaces are homeomorphic relative to their boundaries. Call this category

CobS(K). We then easily generalize the observations of the previous section, particularly Fig-

ures 4, 5 and 6, to see that we have the desired commuting relations didj = djdi (for i 6= j) in

CobS(K) so that any functor from CobS(K) to a module category will have a well-defined chain

complex and associated homology. This applies, in particular to the functor we have constructed,

using the Frobenius algebra V = k[x]/(x2).

In [3] BarNatan takes the approach using surface cobordisms a step further by making a

categorical analog of the chain complex. For this purpose we let CobS(K) become an additive

category. Maps between specific objects X and Y added formally and the set Maps(X, Y ) is

a module over the integers. More generally, let C be an additive category. In order to create

the analog of a chain complex, let Mat(C) denote the Matrix Category of C whose objects are

n-tuples (vectors) of objects of C (n can be any natural number) and whose morphisms are in the

form of a matrix m = (mij) of morphisms in C where we write

m : O −→ O′

and

mij : Oi −→ O′
j

for

O = (O1, · · · , On),

O′ = (O′
1, · · · , O

′
m).

Here Oi and O′
j are objects in C while O and O′ are objects in Mat(C). Composition of mor-

phisms in Mat(C) follows the pattern of matrix multiplication. If

n : O′ −→ O′′

then

n ◦m : O −→ O′′

and

(n ◦m)i,j = Σkni,k ◦mk,j

where the compositions in the summation occur in the category C.
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We then define the category of complexes over C, denoted Kom(Mat(C)) to consist of se-

quences of objects of Mat(C) and maps between them so that consecutively composed maps are

equal to zero.

· · · −→ Ok −→ Ok+1 −→ Ok+2 −→ · · · .

Here we let ∂k : O
k −→ O′k+1 denote the differential in the complex and we assme that ∂k+1∂k =

0. A morphism between complexes O∗ and O′∗ consists in a family of maps fk : Ok −→ O′k

such that ∂′kfk = fk+1∂k. Such morphisms will be called chain maps.

At this abstract level, we cannot calculate homology since kernels and cokernels are not

available, but we can define the homotopy type of a complex in Kom(Mat(C)). We say that two

chain maps f : O −→ O′ and g : O −→ O′ are homotopic if there is a sequence of mappings

Hk : O
k −→ Ok−1 such that

f − g = H∂ + ∂H.

Specifically, this means that

fk − gk = Hk+1∂k + ∂k+1Hk.

Note that if φ = H∂ + ∂H, then

∂φ = ∂H∂ = φ∂.

Thus any such φ is a chain map. We call two complexes O and O′ homotopy equivalent if there

are chain maps F : O −→ O′ and G : O′ −→ O such that both FG and GF are homotopic to the

identity map of O and O′ respectively. The homotopy type of a complex is an abstract substitute

for the homology since, in an abelian category (where one can compute homology) homology is

an invariant of homotopy type.

We are now in a position to work with the category Kom(Mat(CobS(K))) where K is a link

diagram. The question is, what extra equivalence relation on the category CobS(K) will ensure

that the homotopy types in Kom(Mat(CobS(K))) will be invariant under Reidemeister moves

on the diagram K.

BarNatan [3] gives an elegant answer to this question. His answer is illustrated in Figure 9

where we show the 4Tu Relation, the Sphere Relation and the Torus Relation. The key relation

is the the 4Tu relation. The 4Tu relation serves a number of purposes, including being a basic

homotopy in the category Kom(Mat(CobS(K))).

The 4Tu relation can be described as follows: There are four local bits of surface, call them

S1, S2, S3, S4. Let Ci,j denote this configuration with a tube connecting Si and Sj . Then in the

cobordism category we take the identity

C1,2 + C3,4 = C1,3 + C2,4.

It is a good exercise for the reader to show that the 4Tu relation follows from the tube cutting

relation of Figure 8. In fact Figures 15 gives a schematic for the four-term relation, where arrows
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correspond to tubes attached to surfaces and arcs correspond to surfaces.

Figure 16 shows how the tube-cutting relation is a consequence of the 4Tu relation, when it

is assumed that the chain homotopy theory occurs over a ring where 2 is an invertible element.

Without this assumption, we cannot perform the trick, indicated in Figure 16, of packing up a

punctured torus (divided by 2) as a “dot”. This dot will later be interpreted (in the next section)

as an element in an algebra. If 2 is not invertible then there is no translation of the 4Tu relation

to at tube–cutting relation and the chain- homotopy theory will be different. For the remainder of

this paper, we assume that 2 is invertible. Figure 17 shows a derivation of the 4Tu relation from

the tube cutting relation.

Note that the Sphere and Torus relations assert that the 2–sphere has value 0 and that the torus

has value 2, just as we have seen by using the Frobenius algebra in Figure 7.

To illustrate how things work once we factor by these relations, we show in Figures 10 and

11 how one sees parts the homotopy equivalance of the complexes for a diagram before and after

the second Reidemeister move. In Figure 10 we show the complexes and indicate chain maps F
and G between them and homotopies in the complex for the diagram before it is simplified by the

Reidemeister move. In Figures 11 and 12 we show some of the cobordism compositions of the

maps in this complex. In Figure 13 we show these maps and their compositions in the form of a

four-term identity that verifies the needed chain-homotopy for the equivalence of the complexes

before and after the Reidemeister move. Figure 14 shows the same pattern as Figure 13, but is

designed to make it clear that this identity is indeed exactly the 4Tu relation! Thus the 4Tu
relation is the key to the chain-homotopy invariance of the Khovanov Complex under the Second

Reidemeister move.

As shown in Figure 13, each of the terms in the relation is factored into mappings involving

F1, G1 and the homotopies H1 and H2 and the boundary mappings in the complex. Study of

Figure 13 will convince the reader that the complexes before and after the second Reidemeister

move are homotopy equivalent. A number of details are left to the reader. For example, note

that in Figure 10 we have indicated the categorical chain complexes Z and W by showing only

how they differ locally near the change corresponding to a Reidemeister two move. We give,

via Figures 10 and 11, chain maps F : W −→ Z and G : Z −→ W. These maps consist

in a particular cobordism on one part of the complex and an identity map on the other part of

the complex. We have specifically labeled parts of these mappings by F1 and by G1. Using the

implicit definitions of F1 andG1 given in Figure 11, the reader will easily see thatG1F1 = 0 since

this composition includes a 2-sphere. From this it follows that GF is the identity mapping on the

complex W. We also leave to the reader to check that the mappings F and G commute with the

boundary mappings so that they are mappings of complexes. The part of the homotopy indicated

shows that FG is homotopic to the identity (up to sign) and so shows that the complexes Z and

W are homotopy equivalent. One needs the value of the torus equal to 2 for homotopy invariance

under the first Reidemeister move. Invariance under the third Reidemeister move can be deduced
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Figure 10: Complexes for Second Reidemeister Move

from invariance under the second Reidemeister move and a description of the (abstract) chain

complex C( ) as the mapping cone of C( ) −→ C( ) in a direct generalization of the original

argument that shows that the bracket polynomial is invariant under the third Reidemeister move

as a consequence of its invariance under the second Reidemeister move. This is the main part of

the full derivation of homotopy equivalences corresponding to all three Reidemeister moves that

is given in [3].
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Figure 11: Cobordism Compositions for Second Reidemeister Move

6 Frobenius Algebras Implied by the Tube-Cutting Relation

In this section we will assume that there is a Frobenius algebra A that is a ring with identity ele-

ment 1 and has an element x that commutes with 1 and and that 1 and x are linearly independent

over the ring k. We assume that 2 is an invertible element in the ring k. We further assume that

the dot in the tube-cutting relation stands for the element x. And we assume that the tube-cutting

relation is satisfied. As we have seen in Figure 8, this means that

a = ǫ(ax)1 + ǫ(a)x

for all a in the algebra A. Thus we shall refer to this equation as the algebraic tube-cutting rela-

tion. At this point we will not make any further assumptions. As we shall see, these assumptions

are sufficient for us to derive a generalization of the Frobenius algebra that works successfully

to produce Khovanov Homology. In this way, we see that the Bar-Natan cobordism picture for

the Khovanov invaraiant provides a diagrammatic/topological background from which the basic

algebra for the homology can be derived. In another form of exposition, we could have started

with only cobordisms and the notion of an abstract complex. Then the particularities of the alge-

bra would be seen as a consequence of the general chain homotopy theory.

The approach described above is implicit in Bar–Natan [3] and it has been carried out in
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Figure 15: Schematic Four-Tube Relation

detail by Naot [32]. In our work below, we shall restrict ourselves to the consequences of the

tube–cutting relation. Over a general ring, one gets a universal Frobenius algebra k[x]/(x2−hx)
with the comultiplication given by 1 −→ 1⊗x+ x⊗ 1−h1⊗ 1 and x −→ x⊗ x. This was also

worked out by Naot.

Using the algebraic tube-cutting relation, we can write

x = ǫ(x2)1 + ǫ(x)x

and

1 = ǫ(x)1 + ǫ(1)x.

By linear independence, we conclude that

ǫ(x) = 1, ǫ(x2) = 0

and

ǫ(1) = 0.

Furthermore

x2 = ǫ(x3)1 + ǫ(x2)x,

whence

x2 = ǫ(x3)1 = t1
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Figure 17: Tube-Cutting Relation Implies Four-Tube Relation

where t ∈ k. Now look at the coproduct in A. In Figure 18 we have shown how to expand the

cobordism for the coproduct into a sum of terms involving x, x2 and the unit and the counit. As

Figures 19 illustrates, this implies that

∆(1) = 1⊗ x+ x⊗ 1

and

∆(x) = t(1⊗ 1) + x⊗ x.

These equations define a more general Frobenius algebra that can still be used to define a homol-

ogy theory for knots and links that is invariant under the Reidemeister moves. Here is a summary

of what we have just done.

We have produced a Frobenius algebra A = k[x]/(x2 − t1) with t an arbitrary element of the

base ring k, and

x2 = t1,

∆(1) = 1⊗ x+ x⊗ 1,

∆(x) = t(x⊗ x) + 1⊗ 1,

ǫ(x) = 1,

ǫ(1) = 0.

For any value of t this algebra satisfies the tube-cutting relation, and so will yield a homology

theory that is invariant under the Reidemeister moves. With t = 0 we obtain the original Frobe-

nius algebra for Khovanov Homology that we have studied in this paper. For t = 1 we obtain the
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Figure 19: Coproducts of 1 and x Via Tube-Cutting Relation

Lee Homology that will appear in the next section of this paper.

7 Other Frobenius Algebras and Rasmussen’s Theorem

Lee [31] makes another homological invariant of knots and links by using a different Frobenius

algebra. She takes the algebra A = k[x]/(x2 − 1) with

x2 = 1,

∆(1) = 1⊗ x+ x⊗ 1,

∆(x) = x⊗ x+ 1⊗ 1,

ǫ(x) = 1,

ǫ(1) = 0.
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This gives a link homology theory that is distinct from Khovanov homology. In this theory, the

quantum grading j is not preseved, but we do have that

j(∂(α)) ≥ j(α)

for each chain α in the complex. This means that one can use j to filter the chain complex for

the Lee homology. The result is a spectral sequence that starts from Khovanov homology and

converges to Lee homology.

Lee homology is simple. One has that the dimension of the Lee homology is equal to 2comp(L)

where comp(L) denotes the number of components of the link L. Up to homotopy, Lee’s ho-

mology has a vanishing differential, and the complex behaves well under link concondance. In

his paper [4] Dror BarNatan remarks “In a beautiful article Eun Soo Lee introduced a second

differential on the Khovanov complex of a knot (or link) and showed that the resulting (double)

complex has non-interesting homology. This is a very interesting result.” Rasmussen [50] uses

Lee’s result to define invariants of links that give lower bounds for the four-ball genus, and deter-

mine it for torus knots. This gives an (elementary) proof of a conjecture of Milnor that had been

previously shown using gauge theory by Kronheimer and Mrowka [30].

Rasmussen’s result uses the Lee spectral sequence. We have the quantum (j) grading for a di-

agramK and the fact that for Lee’s algebra j(∂(s)) ≥ j(s). Rasmussen uses a normalized version

of this grading denoted by g(s). Then one makes a filtration F kC∗(K) = {v ∈ C∗(K)|g(v) ≥ k}
and given α ∈ Lee∗(K) define

S(α) := max{g(v)|[v] = α}

smin(K) := min{S(α)|α ∈ Lee∗(K), α 6= 0}

smax(K) := max{S(α)|α ∈ Lee∗(K), α 6= 0}

and

s(K) := (1/2)(smin(K) + smax(K)).

This last average of smin and smax is the Rasmussen invariant.

We now enter the following sequence of facts:

1. s(K) ∈ Z.

2. s(K) is additive under connected sum.

3. If K∗ denotes the mirror image of the diagram K, then

s(K∗) = −s(K).
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4. If K is a positive knot diagram (all positive crossings), then

s(K) = −r + n+ 1

where r denotes the number of loops in the canonical oriented smoothing (this is the same

as the number of Seifert circuits in the diagram K) and n denotes the number of crossings

in K.

5. For a torus knot Ka,b of type (a, b), s(Ka,b) = (a− 1)(b− 1).

6. |s(K)| ≤ 2g∗(K) where g∗(K) is the least genus spanning surface for K in the four ball.

7. g∗(Ka,b) = (a− 1)(b− 1)/2. This is Milnor’s conjecture.

This completes a very skeletal sketch of the construction and use of Rasmussen’s invariant.

8 The Simplicial Structure of Khovanov Homology

Let S denote the set of (standard) bracket states for a link diagram K. One way to describe the

Khovanov complex is to associate to each state loop λ a module V isomorphic to the algebra

k[x]/(x2) with coproduct as we have described in the previous sections. The generators 1 and

x of this algebra can then be regarded as the two possible enhancements of the loop λ. In the

same vein we associate to a state S the tensor product of copies of V , one copy for each loop

in the state. The local boundaries are defined exactly as before, and the Khovanov complex is

the direct sum of the modules associated with the states of the link diagram. We will use this

point of view in the present section, and we shall describe Khovanov homology in terms of the

n-cube category and an associated simplicial object. The purpose of this section is to move

towards, albeit in an abstract manner, a description of Khovanov homology as the homology of a

topological space whose homotopy type is an invariant of the knot of the underlying knot or link.

We do not accomplish this aim, but the constructions given herein may move toward that goal.

An intermediate possibility would be to replace the Khovanov homology by an abstract space or

simplicial object whose generalized homotopy type was an invariant of the knot or link.

Let Dn = {A,B}n be the n-cube category whose objects are the n-sequences from the

set {A,B} and whose morphisms are arrows from sequences with greater numbers of A’s to

sequences with fewer numbers of A’s. Thus Dn is equivalent to the poset category of subsets of

{1, 2, · · ·n}. Let M be a pointed category with finite sums, and let F : Dn −→ M be a functor.

In our case M is a category of modules (as described above) and F carries n-sequences to certain

tensor powers corresponding to the standard bracket states of a knot or linkK.We map sequences

to states by choosing to label the crossings of the diagramK from the set {1, 2, · · ·n}, and letting

the functor take abstractA’s andB’s in the cube category to smoothings at those crossings of type

A or typeB. Thus each sequence in the cube category is associated with a unique state ofK when

K has n crossings. Nevertheless, we shall describe the construction more generally.
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For the functor F we first construct a semisimplicial object C(F ) over M, where a semisim-

plicial object is a simplicial object without degeneracies. This means that it has partial boundaries

analogous to the partial boundaries that we have discussed before but none of the degeneracy

maps that are common to simplicial theory (see [52] Chapter 1). For k ≥ 0 we set

C(F )k = ⊕v∈Dn

k
F(v)

where Dn
k denotes those sequences in the cube category with k A’s. Note that we are indexing

dually to the upper indexing in the Khovanov homology sections of this paper where we counted

the number of B’s in the states.

We introduce face operators (partial boundaries in our previous terminology)

di : C(F )k −→ C(F )k−1

for 0 ≤ i ≤ k with k ≥ 1 as follows: di is trivial for i = 0 and otherwise di acts on F(v) by

the map F(v) −→ F(v′) where v′ is the sequence resulting from replacing the i-th A by B. The

operators di satisfy the usual face relations of simplicial theory:

didj = dj−1di

for i < j.

We now expand C(F ) to a simplicial object S(F ) over M by applying freely degeneracies to

the F(v)’s. Thus

S(F )m = ⊕v∈Dn

k
,k+t=m si1 · · · sitF(v)

wherem > i1 > · · · > it ≥ 0 and these degeneracy operators are applied freely modulo the usual

(axiomatic) relations among themselves and with the face operators. Then S(F ) has degeneracies

via formal application of degeneracy operators to these forms, and has face operators extending

those of C(F). It is at this point we should remark that in our knot theoretic construction there is

only at this point an opportunity for formal extension of degeneracy operators above the number

of crossings in the given knot or link diagram since to make specific degeneracies would involve

the creation of new diagrammatic sites. There is a natural construction of this sort and it can be

used to give a simpicial homotopy type for Khovanov homology. See [14].

When the functor F : Dn −→ M goes to an abelian category M, as in our knot theoretic

case, we can recover the homology groups via

H⋆NS(F) ∼= H⋆C(F)

where NS(F) is the normalized chain complex of S(F). This completes the abstract simplicial

description of this homology.
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9 Quantum Comments

States of a quantum system are represented by unit vectors in a Hilbert space. Quantum pro-

cesses are unitary transformations applied to these state vectors. In an appropriate basis for the

HIlbert space, each basis vector represesents a possible measurement. If |ψ〉 is a unit vector, then,

upon measurement, one of the basis vectors will appear with probability, the absolute square of

its coefficient in |ψ〉. One can, in principle, find the trace of a given unitary transformation by

instantiating it in a certain quantum system and making repeated measurements on that system.

Such a scheme, in the abstract, is called a quantum algorithm, and in the concrete is called a

quantum computer. One well-known quantum algorithm for determining the trace of a unitary

matrix is called the “Hadamard Test” [53].

In [25] we consider the Jones polynomial and Khovanov homology in a quantum context. In

this section we give a sketch of these ideas. Recall from Section 2 that we have the following

formula for the Jones polynomial.

JK = (−1)n−qn+−2n
−〈K〉.

Using the enhanced states formulation of Section 2, we form a Hilbert space H(K) with or-

thonormal basis the set of enhanced states of K. For the Hilbert space we denote a basis element

by |s〉 where s is an enhanced state of the diagram K. Now using q as in Section 2, let q be any

point on the unit circle in the complex plane. Define UK : H(K) −→ H(K) by the formula

UK |s〉 = (−1)i(s)+n
−qj(s)+n+−2n

−|s〉.

Then UK defines a unitary transformation of the Hilbert space and we have that

JK = Trace(UK).

The Hadamard Test applied to this unitary transformation gives a quantum algorithm for the

Jones polynomial. This is not the most efficient quantum algorithm for the Jones polynomial.

Unitary braid group representions can do better [26, 27, 1]. But this algorithm has the conceptual

advantage of being directly related to Khonavov homology. In particular, let C i,j be the subspace

of H(K) with basis the set of enhanced states |s〉 with i(s) = i and j(s) = j. Then H(K) is the

direct sum of these subspaces and we see that H(K) is identical with the Khovanov complex for

K with coefficients in the complex numbers. Furthermore, letting ∂ : H(K) −→ H(K) be the

boundary mapping that we have defined for the Khovanov complex, we have

∂ ◦ UK + UK ◦ ∂ = 0.

Thus UK induces a mapping on the Khovanov homology of K. As a linear space, the Khovanov

homology of K,

Homology(H(K)) = Kernel(∂)/Image(∂)

is also a Hilbert space on which UK acts and for which the trace yields the Jones polynomial.
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If we are given more information about the Khovanov homology as a space, for example if

we are given a basis for H i−n
−
,j−n++2n

−(K) for each i and j, then we can extend U to act on

H i−n
−
,j−n++2n

−(K) as an eigenspace with eigenvalue tiqj where q and t are chosen unit complex

numbers. Then we have an extended U ′
K with

U ′
K |α〉 = tiqj|α〉

for each α ∈ H i−n
−
,j−n++2n

−(K). With this extension we have that the trace of U ′
K recovers a

specialization of the Poincaré polynomial (Section 4) for the Khovanov homology.

Trace(U ′
K) = Σi,jt

iqjdim(H i−n
−
,j−n++2n

−(K)) = PK(t, q).

Thus, in principle, we formulate a quantum algorithm for specializations of the Poincarè polyno-

mial for Khovanov homolgy.

Placing Khovanov homology in an appropriate quantum mechanical, quantum information

theoretic, or quantum field theory context is a fundamental question that has been considered

by a number of people, including Sergei Gukov [15, 16] and Edward Witten [58, 59, 60]. The

constructions discussed here are elementary in nature but we would like to know how they inter-

face with other points of view. In particular, if one thinks of the states in the state expansion of

the bracket polynomial as analogs of the states of a physical system such as the Potts model in

statistical mechanics, then the loop configuration of a given state corresponds to a decomposition

of the underlying graph of the statistical mechanics model into regions of constant spin (where

spin designates the local variable in the model). Working with a boundary operator, as we did

with the Khovanov chain complex, means taking into account adjacency relations among these

types of physical states.

10 Discussion

The subject of Khovanov homology is part of the larger subject of categorification in general and

other link homologies in particular. The term categorification was coined by Crane and Frenkel

in their paper [9] speculating on the possibility for invariants of four-manifolds via a categorical

generalization of Hopf algebras where all structures are moved up one categorical level. Just such

a shift is seen in the Khovanov homology where loops that were once scalars become modules

and the original Jones polynomial is seen as a graded Euler characteristic of a homology theory.

There is now a complex literature on categorifications of quantum groups (aka Hopf algebras)

and relationships of this new form of representation theory with the construction of link homol-

ogy. For this we refer the reader to the following references [7, 8, 38, 39, 40, 49, 55, 56, 57]. It

is possible that the vision of Crane and Frenkel for the construction of invariants of four dimen-

sional manifolds will come true.
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Homotopy and spatial homology theories have been constructed that realize Khovanov ho-

mology functorially as homotopy of spectra and homology of spaces. See [11, 13, 12].

Other link homology theories are worth mentioning. In [41, 42, 43] Khovnaov and Rozan-

sky construct a link homology theory for specializations of the Homflypt polynomial. Their

theory extends integrally to a Khovanov homology theory for virtual knots, but no calculations

are known at this writing. Khovanov homology does extend integrally to virtual knot theory as

shown by Manturov in [35]. The relationship of the Manturov construction to that of Khovanov

and Rozansky is not known at this time. In [34] Dye, Kauffman and Maturov show how to modify

mod-2 Khovanov homology to categorify the arrow polynomial for virtual knots. This leads to

many new calculations and examples [36, 37]. In [10] H. Dye, A. Kaestner and L. H. Kauffman,

use a version of Manturov’s construction and generalize the Rasmussen invariant to virtual knots

and links. They determine the virtual four-ball genus for positive virtual knots.

In [44, 45] Manolescu, Ozsváth, Szabó, Sarkar and Thurston construct combinatorial link ho-

mology based on Floer homology that categorifies the Alexander polynomial. Their techniques

are quite different from those explained here for Khovanov homology. The combinatorial defi-

nition should be compared with that of Khovanov homology, but it has a flavor that is different,

probably due to the fact that it categorifies a determinant that calculates the Alexander polyno-

mial. This Knot Floer Homology theory is very powerful and can detect the three-dimensional

genus of a knot (the least genus of an orientable spanning surface for the knot in three dimen-

sional space). Caprau in [5] has a useful version of the tangle cobordism approach to Khovanov

homology and Clark, Morisson and Walker [6] have an oriented tangle cobordism theory that

is used to sort out the functoriality of Khovanov homology for knot cobordisms. There is an-

other significant variant of Khovanov homology termed odd Khovanov homology [46]. Attempts

to find other global interpretations of Khovanov homology have led to very significant lines of

research [7, 8, 49], and attempts to find general constructions for link homology corresponding

to the quantum link invariants coming from quantum groups have led to research such as that of

Webster [56, 57] where we now have theories for such constructions that use the categorifications

of quantum groups for classical Lie algebras.

There have been three applications of Khovanov homology that are particularly worth men-

tioning. One, we have discussed in Section 6, is Rasmussen’s use of Khovanov homology [50]

to determine the slice genus of torus knots without using gauge theory. Another is the proof

by Kronheimer and Mrowka [30] that Khovanov homology detects the unknot. The work of

Kronheimer and Mrowka interrelates Khovanov homology with their theory of knot instanton

homology and allows them to apply their gauge theoretic results to obtain this striking result. A

proof that Khovanov homolgy detects the unknot by purely combinatorial topological means is

unknown at this writing. By the same token, it is still unknown whether the Jones polynomial

detects classical knots. Finally, we mention the work of Shumakovitch [48] where, by calculat-

ing Khovanov homology, he shows many examples of knots that are topologically slice but are

not slice in the differentiable category. Here Khovanov homology circumvents a previous use of
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gauge theory but the result still depends on deep results of Freedman showing that classical knots

of Alexander polynomial 1 are topologically slice.
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