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athematics has had a troubled relationship with infinitesimals, a

relationship that stretches back thousands of years. On the one

hand, infinitesimals make intuitive sense. They're easy to deal with

algebraically. They make calculus a lot of fun. On the other hand,

they seem impossible to nail down. They're hard to deal
with intellectually. They can mask a fundamental lack of
understanding of analysis.

There was hope, when Abraham Robinson developed
nonstandard analysis [R], that intuition and rigor had at last
joined hands. His work indeed gave infinitesimals a foun-
dation as members of the set of hyperreal numbers. But it
was an awkward foundation, dependent on the Axiom of
Choice. Unlike standard number systems, there is no
canonical set of hyperreal numbers.

There is a way, however, of constructing infinitesimals
naturally. Ironically, the seeds can be found in any calcu-
lus book of sufficient age. At the turn of the century, it was
typical of texts to define an infinitesimal as a “variable
whose limit is zero” [C]. That is the inspiration for the
present approach to calculus. Its infinitesimals are se-
quences tending to 0.

I call the system “non-nonstandard analysis” to draw at-
tention to its misfit nature. Having infinitesimals, it is not

“standard.” Nor is it “nonstandard,” however, as this term
now has a well-defined meaning. In what follows, we ma-
nipulate sequences of real numbers. We treat them (mostly)
as numbers. We add them, subtract them, and put them
into functions. They aren’t numbers, however. Trichotomy
fails, for example.

The central construction in this article is a rediscovery.
Its first discoverer probably was D. Laugwitz. More on this
later.

Notation. We denote a sequence {a,,},en by a boldface
a. We permit a,, to be undefined for finitely many ». The
key idea throughout is that of “from some point on.” An
equation or inequality involving sequences will be in-
terpreted as being true or false, depending on whether
the associated equation or inequality involving the terms
of the sequences is true or false from some point on.
For example,

a>2
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simply means “a,, > 2 from some point on,” that is, that
for some k, n = k implies that a,, > 2. We use ordinary
letters for real numbers. Note that a real number 7 can
be viewed as the sequence a, with a,, = r for all n.

Equations and inequalities involving sequences are inter-
preted in the same way; thatis,a + b = ¢ means a,, + b, =
¢, from some point on, and sin(a) = b means sin(a,) = b,
from some point on. Note that for f{(a) to be defined, it is
only necessary that f(a,) be defined from some point on.
The sequence b: 0, 0, 0, 1, 2, 3, 4, ..., for example, does
have a reciprocal, 1/b, because, as noted, finitely many
terms of a sequence may be undefined.

If a statement P is true from some point on and state-
ment @ is also true from some point on, then “P and Q" is
true from some point on. This fact allows us to do algebra
on sequences.

Suppose, for example, we have

a+4=3b
and
c < 45,
Then,
a, + 4 = 3b,, from some point on,
and

¢, < 45, from some point on.

Because the two are true together from some point on,
we can add them to get

a, +4 + ¢, < 3b, + 45, from some point on.
In other words,
a+4+c<3b+45.

What we are doing, with this construction, is taking the
equivalence classes of sequences under the relation “equal-
ity from some point on.” To present it in that way, how-
ever, would entail excessive formalism. One of my pur-
poses is to demonstrate that there is a fairly simple
approach to infinitesimals, one that can reasonably be pre-
sented to ordinary calculus students.

Infinitely Small and Infinitely Close

Definition. A sequence a is infinitely small if |a] < d
for all positive real numbers d. For infinitely small a, we
write a = 0. If \a| < r for some real 7, we say a is finite
or bounded. A sequence a is infinitesimal if a # 0 and
a=q.

These definitions hide quantifiers. When we say that a +
0, we are actually saying that there is a k such that a,, # 0
for all n = k. Similarly, this definition of a = 0 is, in real-
ity, the more familiar and complicated Ve > 0 3k, n = k =
la,| < e
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Proposition 1. Suppose a, b = 0. Then
o)) a+b=0

) a—b=0.

3) If ¢ is finite, then ac = (.

@ If te| < |al, then ¢ = 0.

Proor. Given any positive d, we know that |a| < d/2 and
|b] < d/2. Then, |a + b| < |a| + |b| < d. This proves Part (1).
Part (2) is proved similarly.

For Part (3), because |¢| < r for some real r, and |a] <
d/r for all positive d, we have |ac| < d.

For Part (4), observe that because |c| < |a| <d, |c|
<d. |

Note that reals are finite, so that any result concerning fi-
nite sequences applies to reals too. Part (3) of Proposition 1,

for example, tells us that if a = 0, then ra = 0 for any real 7.

Definition. For sequences a and b, we say that a and'b
are infinitely close, or a=b, iffa — b = (.

Proposition 2. [fa~r and b = s, then

)] atb=r+s.
2 a—b=r-—s.
3) ab = rs.

€)) Ifa<s, thenr=s.
(6))] a+b=1/s ifs#0.

Proor. Parts (1) and (2) follow easily from Proposition 1.

For Part (3), note that (a—1)s, (b—s)r, and
(a — r)(b — s) are all = (. Adding these gives us ab — 7s =~ (.

For Part (4), if r > s, then we would have both a,, = s
from some pont on and |a, — 7| < (r — $)/2 from some
point on, which is impossible.

In view of Part (3), we need only show 1/b = 1/s to
establish Part (5). From s =~ b, we get |s/2| = |[b/2| < |b), so
by Part (4), |s/2|=<|b|. Then [I/b— l/s|=|(s — b)/bs| =
(1/|s/2])(1/|sP)]s — b|. By Proposition 1, this is infinitesi-
mal. |

This is all we need to get started.

Elementary Calculus

Definition 1. A function fis continuous atx = r, rreal,
iff

a =~ r implies fla) = f(1).

Equivalently, f is continuous at r if Ax =~ 0 implies

Sfor+ Ax) - f(r) = 0.

We can also discuss continuity at a sequence a, as op-
posed to a real r, but continuity on a set X corresponds to
continuity at all real numbers in X. As in nonstandard analy-
sis, continuity at all points (real numbers and sequences)
in a set X is equivalent to uniform continuity. I will prove
this later.



Proposition 3. The sum, difference, product, and quo-
tient (when the divisor is nonzero) of functions contin-
uous at x = r are conlinuous at x = r.

This follows easily from Proposition 2.

Definition 2. For a function f and a real r, we say f'(r) =
d iff for all infinitesimal Ax,

Sflr + Ax) — f(r) ~d
Ax '

Here is what the computation looks like of the standard
first example: f{x) = x2.

(x+ Ax)® —a® 2% — 22Ax + Ax? — 22
Ax - Ax
_ 27Ax + Ax?
B Ax
=2x + Ax
= 2.

Proposition 4. If f is differentiable at , it is continuous
at r.

ProoF. Just multiply

f—————(T+Ax)—f(r)zd and Ax =0
Ax

to get
fir + Ax) — f(r) = 0. |

The proofs of the differentiation rules are simple. The
product rule is typical:

Proposition 5. If the function h is the product of differ-
entiable functions f and g, then h is differentiable and

h'=fg+gf

Proor. Writing Af for f(x + Ax) — f(x) and similarly for g
and h, we have f(x + Ax) = flx) + Af, so

Ah = h(x + AX) — h(x)

=flr + Ax)g(x + Ax) — flr)g(x)
= (f@) + Af)(g(x) + Ag) — flx)g(x).

Thus,
Ah _ (fx) + AD(@) + Ag) — flx)g(xr)
Ax Ax
_ fx)Ag + g@)Af + AfAg
Bl Ax

— 128 Af | AplE
=Syt gy -+ AL
=~ flx) - 9'(@) + 9@ - f'@) +0-g'()

= flx) - ¢'@) + g(@) - (). [ ]
The proof of the Chain Rule, omitted or banished to the

appendices in virtually all texts today, is easy, but we need
to discuss subsequences.

Definition 3. a is a subsequence of b (written a C b) if
every term of a is a term of b; more precisely, if there is
an increasing function, & : N = N such that a,, = by.

Proposition 6. Let a C b be given.

(1) If b is infinitesimal, then so is a.

) If b=r, then a~r.

(3) If b satisfies a given equation or inequality, then so
does a.

The proof of this is routine.

Proposition 7. (The Chain Rule). If y = flx) and z =
g(y), then dz/dx = (dz/dy) - (dy/dx).

Proor. For Ax infinitesimal, dy/dx =~ Ay/Ax, where Ay =
fle + Ax) — flx). By Proposition 4, Ay = 0, so seemingly
Az/Ay = dz/dy, where Az = g(y + Ay) — g(y). But there is
another way to write Az, since g(y + Ay) — g(y) = 9(flx) +
Ay) — 9(f(x)) = g(flx + AX)) — g(flx)), so dz/dx = Az/Ax.

Putting this together,
dz Az Az

dr Ax Ay Ax
The only difficulty with this is that Ay, while infinitely close
to 0, may not be infinitesimal because it may equal 0 infi-
nitely often. In that case, we can’t claim that dz/dy =~
Az/Ay, because the definition of derivative requires
Ay # 0.

But then, let Ax* C Ax be the subsequence such that
the corresponding Ay* is a sequence entirely composed of
0’s. Then, dy/dx = Ay*/Ax* = 0. And, because Ay* = 0, the
corresponding Az* = g(y + Ay*) —g(y) is also 0, so
dz/dx =~ Az*/Ax* = 0. Thus, once again,

de _dz dy =
dr dy dx’
For integration, we can use sequences of step functions.
Definition 4. A function s is a step function on an in-
terval, [a, b], if it is defined on the interval and changes
value only a finite number of times over the interval.
Step functions are simply functions that are piece-wise con-
stant. A sequence of step functions, s, is a sequence where

sy, is a step function from some point on.

Definition 5. If s is a step function on [ag, a,] with s(x) =
¢; on each subinterval, (a;, a;+1),1=0,...,n — 1, then

an n—1
J s(@)dx = Z ci(@i+1 — ap).
ag i=0
Definition 6. For a function f and an interval [p, q),

J:ﬂlx=r
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iff there are sequences of step functions d =f=u on
[p, q] with

q q
[ adw=r~ [ waz.
» »

As usual, d = f < u simply means that d,, = f= u, on
[p, q] from some point on, and ff, d dx is the sequence
{3 dy da).

The integral, r, is unique, for if d;, w;, and r; satisfy the
conditions above for ¢ = 1, 2, then

q q q q
lej dldeJ lleJ}szzj dzdeJ u; dx = 7.
v » P r

The basic theorems on integrals are easily proved. The fol-
lowing is an example:

Proposition 8. If f is integrable over [a, b] and [b, c], then
it is integrable over [a, c] and

C b c
Lfdx=J;fdx+Lfdx.

PrOOF. Let dgp, 1gp, dye, Uy, be the step-functions witness-
ing the integrability of f over [a, b] and [b, c]. Define d and
u on {a, ¢] by gluing together the respective lower and up-
per functions. Then, we certainly have

d=f=u

and we also have

Lcddx=f;dabdx+gdbcdxz

b C ¢

J’ u,zbdx-#f ubcdx=f udr. B

a b a
Analysis
The outstanding power of Robinson’s nonstandard analy-
sis is evident in the nonstandard proof of theorems, such
as the Intermediate Value Theorem, and the integrability
of continuous functions. We can do that here too, and the
proofs are startlingly similar. Our tool will be the non-
nonstandard equivalent of “every finite nonstandard num-
ber is infinitely close to a real.” The following is effectively
the Bolzano-Weierstrass theorem.

Proposition 9. If a is finite, then for some ¢ C a and
some real r,c = 7.

PROOF. As a is finite, there is some d such that |a| < d. That
means there are only a finite number of possibilities for the
integer part of each a,. One of these possibilities must oc-
cur an infinite number of times. Let k£ be such that for in-
finitely many a,,, the integer part of a., is k. Let ¢; be the
first term in a with integer part k.

Now of the infinitely many {a,} having integer part k,
there are only 10 possibilities (0, 1, 2, ..., 9) for the first
digit after the decimal point. One of those possibilities must
occur an infinite number of times. Let d; be such a digit.
Let ¢5 be the first term in a after ¢;, which begins “k.d;.”
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We continue in this way, finding dz such that infinitely
many terms begin “k.d;d>” and choosing ¢3 so that it be-
gins “k.dids,” and so on. When we are done, we have a sub-
sequence ¢ C a, and areal number, r = k.didodsdy . . ., and
by construction,

lcl - TI < 17
ICz - 7"] < 0.1

|C3 - T‘I <0.01

Thus, for any g > 0, \cn - rl < g from some point on. That
means |¢e — 7| =0, ore =7r. [ |

Proposition 10 (Intermediate Value Theorem). If f is
continuous on [p, q] and f(p) =< s < f(q), then for some

rElp, q), /0 =s.

Proor: I begin by constructing two sequences a and b in
the interval [p, q]. For n = 1, let a; = p and b; = q. For n
in general, divide the interval [p, q] by points

P=Fp<x1 <A< <Xy =4,

equally spaced, a distance of (g — p)/n apart. As flxg) =
$ = flx,), there must be two adjacent points, x; and x4+
such that flxy) < s = flzx+1)- Let a, be the first point, xy,
and let b, be the second.

We certainly have f{a) = s < f(b). We also have a = b.
By Proposition 9, there is a subsequence ¢ C a and a real
r such that ¢ = r. Let d C b be the corresponding subse-
quence of b. By Proposition 6, f{c) = s = f(d) and ¢ = d.
By continuity, f{¢) =~ f(r) = f{(d). Now putting everything
together,

Sir) = fle) = s = fld) = ).
By Proposition 2, Part (4), f(r) =s = f(r),soflr)=s. N

Proposition 11 (Extreme Value Theorem). If f is con-
tinuous on [p, ql, then f attains a maximum on [p, q].

Proor: I will define a single sequence a in [p, ¢]. For n, di-
vide [p, ¢] as in the previous proof. Let a,, be the division
point x;, for which f(x;) is greatest. Choose ¢ C a and r so
that ¢ =~ r. I claim that f reaches its maximum at x = r. To
see this, take any s in [p, ¢g]. Form sequence b by choosing
b,, for each n to be the division point x; nearest to s. We
have that b=s, as |b, — s| < (g —p)/n, so |b, —s|<w
from some point on for any positive w. We also have, by
the construction of a, that f(b) < f(a).

Now, let d be the subsequence of b corresponding to c.
As before, f{d) =< f(e) and d = s. So, by continuity, f(s) =
Ad) = fle) = f(r). It follows that f(s) = f(7). n

Proposition 12. If f is continuous on [p, ql, then fis in-
tegrable on [p, q).

Proor. For any n, let [, be the step-function formed by par-
titioning {p, ¢] into n equal subintervals and setting ,(x)



FIGURE 1

on each subinterval to be the minimum value of f (guar-
anteed to exist by Proposition 11). Similarly, define u,, as
the maximum value of f. We have that1 = f=u.

Because f is bounded, the sequences L = f7 1 dx and
U = [% u dx are bounded, so there is a subsequence 1* C
1 and real r such that the corresponding L* = [ I¥ dx ~ 7.
Let u* be the subsequence of u correpsonding to I*, and
let, for each n, Az, be the length of the corresponding
subinterval. I claim that [ u* dx =~ r and so [ fdx =1
Proof of claim. For any n, we can find the greatest differ-
ence, R, between {,,(x) and u,,(x) on [p, q], and we have
that

q * g e
f undx'—j lndeRn(q_p)-
» »

The difference, R, can be represented as | f(s,) — f(t,,)|, for
some s,, and &, with |s,, — t,| = Axy,.

Then,
q q
[p u* dy — jp I* dr < R(g — p) = |f(s) — f(t)|(a — p).

We would like to say that as |[s — t| = Ax = 0, then, by con-
tinuity, |f(8) — f(t)| = 0, so

[[wrdr-[1rar=~0 and [ taw=~r.
» p D

But continuity requires that one of s and t be real. The
property s = t = f{8) = f(t) is actually equivalent to uni-
form continuity. We can easily work around this, however,
by finding a subsequence s** C 8 and real r, with s** = r
and using the corresponding subsequences u**, I** and
t** = ¢ = §** to finish the proof. W

v

How Did We Do It?

How did I avoid the Axiom of Choice? I simply asked
less of our sequences than one asks of numbers. They aren’t
totaily ordered, for example. The sequences 0, 1, 0, 1, ...
and 1,0, 1, 0,... are incomparable. There are also zero di-
visors. This doesn’t cause any problems.

Why didn’t I need the Transfer Principle? The
Transfer Principle is a powerful schema of nonstandard
analysis that says that any statement (in a particularly rich,
well-defined language) that is true about the real number
system is true about the hyperreal number system and vice
versa. We have here a weak form of this, namely that all
equations and inequalities true about reals are true about
sequences. We also have conjunctions of these (but not dis-
junctions).

In elementary calculus and analysis, the Transfer
Principle is used chiefly to prove that the nonstandard de-
finitions are equivalent to the standard definitions. But,
here, these equivalences are easy. Here’s an example:

Definition 7. f is uniformly continuous on C iff

(Standard) Ve>036>0,Vxr,y€C
v -yl <& =|fx) —fWl<e
(Non-nonstandard) Va, b € C, a=b = f(a) = f(b).

Proposition 13. The standard and the non-nonstandard
definitions of uniform continuity are equivalent.

ProoF. Suppose the non-nonstandard definition holds, and
suppose we are given an e for which there is no suitable é.
Then, for each natural number n, choose a, and b, such
that |a, — by| < I/n, but |f(a,) — f(by)| = €. Then, we have
a = b, but f{a) # f(b), a contradiction.

FIGURE 2

v

f:H ""n.
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Suppose, now, that the standard definition holds, and
we are given a = b and d, a positive real. By the standard
definition, there is a 8 such that Vo, y v — 9| < § = |f(x) —
Sf(y)| < d. Then, because |a, — b,| < & from some point on,
[flan) — fby)| < d from some point on, and so fa) = f(b).

]

What happened to the Axiom of Completeness? I
did use the completeness of the real line, but in a most in-
nocuous and comprehensibie form: I simply assumed that
every infinite decimal corresponds to a real number.!

What happened to all the quantifiers? In the case
of uniform continuity, for example, I went from “Ve 36 Vu,
y ...” (logicians call this a I15 statement) to “Va, b,...” (a
IT; statement). Some of the quantifiers are buried. The
statement “a =~ b” is, in reality, something like “Vr >0
la, — by < r from some point on,” or “¥r >0 Ik Vr >k
...." Essentially, I simplify definitions by coding up the
most difficult part.

One can also ask, What is next? There are theorems
of analysis where nonstandard proofs are awkward or do
not exist. In the former category is the theorem that the
uniform limit of continuous functions is continuous. This
is proved in [HK] by taking a nonstandard model of a non-
standard model. It can be done in the present system by
taking sequences of sequences. Indeed, by closing under
the operation of “taking sequences,” a great deal more
analysis can be handled. In [He], this is pursued to prove
the Baire Category Theorem, for which no simple non-
standard proof exists, and to develop measure theory.

Pedagogy

The non-nonconstructive infinitesimals presented here
could improve the teaching of calculus. In both “standard”
and “reform” calculus courses, rigor has been almost en-
tirely omitted. Consequently, students are not asked to
prove theorems until they have a fairly strong intuition for
the subject and have met infinite sequences. This back-
ground makes non-nonstandard analysis very attractive
for, say, an Advanced Calculus course, or even Calculus
IIL.

For those wishing to remain as “standard” as possible,
one can still use sequences. The chief adjustment is to re-
place a = 0 with a — 0. The definitions and proofs in this
article are easily converted. This approach is being used
now in [CH].

Some History

The Greeks explored the ideas of infinity and infinitesi-
mals. On the whole, they rejected them. To Aristotle, there
was no absolute infinity. Completed infinite sets such as
the natural numbers {1, 2, 3, . . .}, did not exist. There could
only be potential infinities; for example, for every number,
there is another number that is larger, and so on. The dis-
tinction is similar to that between an infinitesimal number

and the power to find ever smaller numbers. In a weak
sense, it is the difference between infinitesimals and lim-
its. Archimedes used infinitesimals for intuition [A1], then
verified his results by proving them with (what we would
call today) limits [A2].

Calculus, as formulated in the seventeenth century, was
first expressed in terms of infinitesimals. As infinitesimals
themselves were not well understood, there were criti-
cisms and misunderstandings. On the whole, however, the
doubts were overshadowed by the outstanding success of
the theory as developed in the eighteenth century.

In the nineteenth century, Cauchy, Weierstrass, and oth-
ers made infinitesimals unnecessary. Absolute infinities
were replaced by limits, now rigorously defined. But lin-
guistic habits didn’t change. Mathematicians and physicists
continued to talk in terms of infinitesimals. Infinitesimals
didn’t disappear from calculus texts for over 100 years.

Infinitesimals began to reappear in the twentieth cen-
tury. The idea of sequences as infinitesimals appears in a
remarkable book, The Limits of Science, Outline of Logic
and Methodology of Science by Leon Chwistek, painter,
philosopher, and mathematician [Ch]. Published in 1935,
the book is not well known today (it is in Polish).
Chwistek’s definitions are similar to those presented here,
although there are differences and limitations. His work
foreshadows not only non-nonstandard analysis, but non-
standard analysis.

In [L1] and [L2], Laugwitz formulated the system of se-
quences described in this article, but with different nota-
tion. Laugwitz used his “Q)-Zahlen” to investigate distribu-
tions and operators. An earlier paper by Schmieden and
Laugwitz [SL] used a more primitive system with the idea
of justifying the infinitesimals of Leibniz. Laugwitz’s work
was not carried further, possibly because the discovery of
nonstandard analysis made 7real infinitesimals unglam-
orous.

In 1960, Abraham Robinson constructed nonstandard
models of the real number system using mathematical logic
[R]. Robinson credits the papers of Laugwitz and Schmieden
with some inspiration for his work. Nonstandard analysis
requires a substantial investment (mathematical logic and
the Axiom of Choice) but pays great dividends. Non-
standard analysis has been used to discover new theorems
of analysis. It has been fruitfully applied to measure the-
ory, Brownian motion, and economic analysis, to name just
a few areas. Attempts to reform calculus instruction along
infinitesimal lines, however, did not have much success
[HK], [K]. Robinson’s book contains an excellent history of
infinitesimals.

There are other systems of standard infinitesimals,
Conway’s surreal numbers, for example [Co]. There are other
systems for avoiding €'s and &'s (see [Hi] for a recent exam-
ple). There may also be other rediscoveries of this system.
The intended contribution of the present article is to place
the structure in an algebra suitable for students of calculus.

This unremarkable statement is accepted easily by students. It is not equivalent to Completeness, but is stronger, and vields the Archimedean Principle as well.
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TIME MACHINES

Time Travel in Physics, Metaphysics, and Science Fiction
Second Edition

from the Foreword to the Second
Edition, by Kip §. Thorne —

“It is now not enly the most
complete documentation of time
travel in science fiction, it is also
the most thorough review of
serious scientific literature on the
subject — a review that, remark-
ably is scientifically accurate and
at the same time largely accessi-
ble to a broad audience of non-
specialists.... Nahin's book, with
its complex tapestry of ideas and
possibilities, may well remain the
most readable and complete
treatise on time travel in science
and science fiction.”

Paul J. Nahin

This very accessible book covers a variety of topics including the
history of time travel in fiction; the fundamental scientific concepts
of time, space-time, and the fourth dimension; the speculations of
Einstein, Richard Feynman, Kurt Godel, and others; time travel
paradoxes, and much more. The new edition is substantially updated
throughout and contains a new glossary of important terms.
1999/628 PP,, 75 ILLUS./SOFTCOVER /$34.00
ISBN 0-387-98571-9

T. P. JORGENSEN, University of Nebraska, Lincoln

THE PHYSICS OF GOLF

Second Edition

This best-selling book is now available in a new edition that includes
a new chapter on putting, additional applications of physics to the
problems every player faces, a new technical appendix, and an
updated bibliography. This book is the only devoted exclusively to
explaining the science behind a successful golf game.

From reviews of the first edition:
“The heart of golfer Ted Jorgensen's delightful book lies in his
analysis of the swing of the golf club and how, armed with insights
from that analysis, you, he, and [ might all swing the club better and
play better golf.... first word or last, for anyone who has swung a golf
club, the book is fun to read.”

—PHYSICS TODAY (BOB ADAIR, AUTHOR OF PHYSICS OF BASEBALL)
“AlP MARCH 1999/APPROX. 176 PP, 25 ILLUS./SOFTCOVER/$24.95 (TENT.)
m ISBN 0-387-98691-X
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