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Non-nonstandard 
Analysis: Real 
Infinitcsimals 

~ n  athematics has had a troubled relationship with infinitesimals, a 

relationship that stretches back thousands of years. On the one 

,hand, infinitesimals make intuitive sense. They're easy to deal with 

algebraically. They make calculus a lot of fun. On the other hand, 

they seem imposs ib le  to  nail  down. They're  hard  to deal  
with intellectually.  They can  mask  a fundamenta l  lack  of  

unders tanding  of  analysis.  
There  was hope, when Abraham Robinson deve loped  

nons t anda rd  analysis  [R], that  intui t ion and r igor had  at  last  
j o ined  hands.  His work  indeed  gave infini tesimals a foun- 

da t ion  as  member s  of  the  se t  o f  hyperrea i  numbers .  But it  
was  an awkward  foundation,  dependen t  on the  Axiom of  
Choice. Unlike s tandard  number  systems,  there  is no 

canonica l  se t  of hyperrea l  numbers .  
There  is a way, however ,  of  construct ing inf ini tesimals  

natural ly.  Ironically, the  s eeds  can  be found in any calcu-  
lus b o o k  of  sufficient age. At  the  turn of  the  century,  it  was  
typical  of  texts  to def ine an infinitesimal as  a "variable 
whose  limit is zero" [C]. That  is the inspirat ion for  the  
p resen t  approach  to calculus.  Its infmitesimals  are  se- 

quences  tending to 0. 
I call  the system "non-nonstandard  analysis" to d raw at- 

tent ion to its misfit nature.  Having infinitesimals, it is not  

"standard." Nor is it "nonstandard," however ,  as this term 
now has  a well-def 'med meaning. In wha t  follows, we ma- 

nipulate sequences  of  real numbers.  We t rea t  them (mostly)  
as numbers .  We add them, sub t rac t  them, and put  them 
into functions.  They aren ' t  numbers, however .  Tr ichotomy 
fails, for example .  

The centra l  cons t ruc t ion  in this  ar t ic le  is a rediscovery.  
Its first d i scovere r  p robably  was D. Laugwitz. More on this 

later. 

Notat ion .  We denote  a sequence {an}nE ~ by a boldface 
a. We permi t  a s  to be undef ined for  fmitely many  n. The 
key idea  th roughout  is that  of  "from some point  on." An 
equation or  inequali ty involving sequences  will be in- 
te rpre ted  as  being true or false, depending  on whether  
the a s soc ia t ed  equation or  inequali ty involving the terms 
of  the sequences  is true or  false from some  poin t  on. 

For  example ,  

a > 2  
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s imply  m e a n s  "an > 2 f rom some  p o in t  on,"  tha t  is, that  

for some  k, n -> k impl ies  that  an > 2. We use  o rd inary  

le t ters  for real  n u m b e r s .  Note tha t  a real  n u m b e r  r can  

be  v i ewed  as  the  s e q u e n c e  a, wi th  an = r for all n.  

Equa t ions  a n d  inequal i t ies  involv ing  s e q u e n c e s  are inter-  

p re t ed  in the  s a m e  way; tha t  is, a + b = c m e a n s  an § b n  = 

Cn f rom s o m e  po in t  on,  an d  s in (a )  = b m e a n s  s in (an)  = bn 

f rom some  po in t  on.  Note tha t  f o r f ( a )  to be  defined,  it is 

on ly  nece s sa ry  tha t  f ( a n )  be  def ined  f rom s o m e  po in t  on. 

The s e q u e n c e  b: 0, 0, 0, 1, 2, 3, 4 , . . . ,  for example ,  does  

have  a reciprocal ,  I /b,  because ,  as  no ted ,  f ini te ly m a n y  

t e rms  of a s e q u e n c e  m a y  be  undef ined .  

If a s t a t e m e n t  P is t rue  f rom s o m e  po in t  on  an d  state- 

m e n t  Q is a lso t rue  f rom s o m e  po in t  on,  t h e n  "P and  Q" is 

t rue  f rom s o m e  po in t  on. This  fact a l lows  us  to do a lgebra  

on  sequences .  

Suppose,  for  example ,  we  have 

and  

Then,  

and  

a + 4 = 3 b  

c < 4 5 .  

an + 4 = 3bn, f rom s o m e  p o in t  on,  

Cn < 45, f rom some  p o in t  on.  

Because  the  two  are  t rue  toge ther  f rom s o m e  po in t  on, 

we  can  add  t h e m  to  get  

an + 4 + Cn < 3bn + 45, f rom s o m e  p o in t  on. 

In  o the r  words ,  

a + 4 + c < 3 b + 4 5 .  

What  we  are  doing,  wi th  this  cons t ruc t ion ,  is t ak ing  the  

equiva lence  c lasses  of  s eq u en ces  u n d e r  the  re la t ion  "equal- 

i ty f rom s o m e  po in t  on." To p r e s e n t  it in  tha t  way, how- 

ever, wou ld  en ta i l  excess ive  formal ism.  One  of  m y  pur-  

poses  is to d e m o n s t r a t e  tha t  there  is a fair ly s imple  

app roach  to in fmi tes imals ,  one  that  c an  r e a s o n a b l y  be  pre- 

s en t ed  to o rd ina ry  ca lcu lus  s tudents .  

Infinitely Small and Infinitely Close 

D e f i n i t i o n .  A s e q u e n c e  a is i n f i n i t e l y  sma l l  if  lal < d 
for  all pos i t ive  real  n u m b e r s  d. For  inf in i te ly  smal l  a, we 

wri te  a ~ 0. If  lal < r for some  real  r, we  say  a is f i n i t e  

or  bounded. A s e q u e n c e  a is i n f i n i t e s i m a l  if  a r 0 and  

a ~ 0 .  

These  def in i t ions  h ide  quantif iers .  W h e n  we say  that  a r 

0, we  are ac tua l ly  say ing  that  there  is a k s u c h  tha t  an r 0 

for all n --> k. Similarly,  this  defmi t ion  of  a ~ 0 is, in  real- 

ity, the  more  fami l ia r  a n d  compl i ca t ed  Ve > 0 3k, n ~ k 

lanl < e. 

P r o p o s i t i o n  1. Suppose  a,  b ~ 0. Then 

(1) a + b ~ 0. 

(2) a - b ~ 0. 

(3) I f  e is  f i n i t e ,  then  ac  ~ 0. 

(4) I f  Icl < lal, t hen  e ~ O. 

PROOF. Given any  posi t ive  d, we  k n o w  that  lal < d/2 and 

Ibt < d/2. Then,  la + b I -< lal + Ibl < d. T h i s p r o v e s  Par t  (1). 

Par t  (2) is p roved  similarly.  

F o r  Par t  (3), because  Icl < r for s o m e  real r, a n d  lal < 

d/r  for  all pos i t ive  d, we  have  lacl < d. 

F o r  Par t  (4), obse rve  tha t  because  lel < lal < d, Icl 

< d .  �9 

Note that  reals are finite, so that  any  result  conce rn ing  fi- 

ni te  sequences  applies to reals too. Par t  (3) of Propos i t ion  l,  

for example,  tells us  that  if a ~ 0, t hen  r a  ~ 0 for any  real  r. 

D e f i n i t i o n .  For  s equences  a a n d  b, we  say tha t  a a n d  b 

are i n f i n i t e l y  close, or  a ~ b, iff a - b ~ 0. 

P r o p o s i t i o n  2. I f  a ~- r a n d  b ~- s, then 

(1) a + b ~ r + s .  

(2) a -  b ~ r -  s. 

(3) ab  ~ rs.  

(4) If a -< s, t hen  r -< s. 

(5) a + b ~ r/s, i f  s r O. 

PROOF. Par t s  (1) and  (2) fo l low easi ly f rom P ropos i t i on  1. 

F o r  Par t  (3), no t e  tha t  ( a - r ) s ,  ( b - s ) r ,  and 

(a  - r ) ( b  - s) are all ~ 0. Adding these  gives us  a b  - rs ~ O. 

F o r  Par t  (4), if r > s, t h e n  we w o u l d  have b o t h  an  -< s 

f rom s o m e  p o n t  on  a n d  l a n -  r I < ( r -  s)/2 f rom s o m e  

po i n t  on,  wh i ch  is imposs ib le .  

In  v iew of  Part  (3), we  n e e d  only  show lfo ~ 1/s to 

es tabl ish  Part  (5). F r o m  s ~ b, we  get Is~21 ~ Ib/21 < Ibl, so  

by  Par t  (4), Is~21 -< Ibl. T h e n  I1/b - 1/s I = I(s - b) /bs  I -< 
(1/Is/21)(1/Isb]s- b I. By Propos i t ion  1, this is infini tesi-  

mal. �9 

This  is all we need  to get  s tar ted.  

Elementary Calculus 

D e f i n i t i o n  1. A func t ion  f i s  c o n t i n u o u s  at  x = r, r real,  

iff 

a ~ r i m p l i e s f ( a ) ~ f ( r ) .  

Equivalent ly ,  f is c o n t i n u o u s  at r if Ax  ~ 0 impl ies  

f ( r  + Ax)  - f ( r )  ~ O. 

We can  also d i scuss  c o n t i n u i t y  at a s equence  a, as  op- 

p o s e d  to a real  r, bu t  c o n t i n u i t y  on  a set  X c o r r e s p o n d s  to 

c o n t i n u i t y  at  all real  n u m b e r s  in  X. As in n o n s t a n d a r d  analy-  

sis, c o n t i n u i t y  at all po in t s  (real  n u m b e r s  and  s e q u e n c e s )  

in  a se t  X is equiva len t  to u n i f o r m  cont inui ty .  I will  p rove  

this  later.  
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P r o p o s i t i o n  3. The s u m ,  di f ference,  product ,  a n d  quo- 

t i en t  ( w h e n  the d i v i s o r  i s  n o n z e r o )  o f f u n c t i o n s  con t i n -  

u o u s  at  x = r are c o n t i n u o u s  at  x = r. 

This follows easily from Proposi t ion 2. 

D e f i n i t i o n  2. For a f u n c t i o n f a n d  a real r, we s a y f ' ( r )  = 

d iff for all infinitesimal Ax, 

f ( r  + Ax) - f ( r )  ~ d. 

Ax 

Here is what the computa t ion  looks like of the s tandard  

first example: f ( x )  = x 2. 

(x + Ax) 2 - x 2 x 2 - 2xAx + Ax 2 - x 2 

Ax Ax 
2xAx + AX 2 

Ax 
= 2x + Ax 

~ 2 X .  

P r o p o s i t i o n  4. I f  f is  d i f f e ren t iab le  at r, i t  i s  c o n t i n u o u s  

at  r. 

PROOF. Just  multiply 

f ( r  + A x )  - f ( r )  ~ d and A x  --~ O 
Ax 

to get 

f ( r  + Ax) - f ( r )  ~ 0. �9 

The proofs of the differentiation rules are simple. The 

product  rule is typical: 

P r o p o s i t i o n  5. I f  the f u n c t i o n  h i s  the p r o d u c t  o f  di f fer-  

en t iab le  f u n c t i o n s  f a n d  g, then  h i s  d i f f eren t iab le  a n d  

h '  = f ' g  + g'f.  

PROOF. Writing Af fo r f (x  + Ax) - f ( x )  and similarly for g 

and h, we have f (x  + Ax) = f (x)  + Af, so 

= h ( x  + Ax) - h ( x )  

= f ( x  + Ax)g(x + Ax) - f ( x ) g ( x )  
= (f(x) + Af)(g(x) + Ag) - f ( x ) g ( x ) .  

Thus, 

Ah if(x) + Af)(g(x) + Ag) - f ( x ) g ( x )  

Ax Ax 
_ f (x)Ag + g(x)Af  + AfAg 

Ax 

(x) Af  + A f A g  
= f(x)  Ax + g Ax Ax 

--~ f ( x )  �9 g ' ( x )  + g (x )  . f ' ( x )  + 0 �9 g ' ( x )  

= f ( x )  �9 g ' ( x )  + g (x )  . f ' ( x ) .  �9 

The proof of the Chain Rule, omitted or banished to the 

appendices  in virtually all texts today, is easy, bu t  we need 

to discuss subsequences.  

Def in i t ion  3. a is a subsequence  of b (writ ten a C b) if 

every term of a is a term of b; more precisely, if there is 

an increasing function, k : N ~ N such that a n = bk(n). 

P r o p o s i t i o n  6. L e t  a C b be g iven.  

(1) I f b  i s  i n f i n i t e s i m a l ,  then so is  a. 

(2) I f  b ~ r, then  a ~ r. 

(3) I f b  s a t i s f i e s  a g i ven  equa t ion  or  inequa l i t y ,  then so 

does a. 

The proof of this is routine. 

P r o p o s i t i o n  7. (The  Chain Rule ) .  I f  y = f i x )  and  z = 

g(y), then  d z / d x  = (dz /dy )  �9 (dy /dx) .  

PROOF. For Ax infinitesimal, dy /dx  ~ Ay/Ax, where Ay = 

f (x  + A x ) - f i x ) .  By Proposition 4, Ay ~ 0 ,  so seemingly 

A z / A y  --~ dz/dy,  where Az = g(y  + Ay) -- g(y).  But there is 

another way to write Az, since g(y + Ay) - g(y)  = g( f (x )  + 

Ay) - g( f ( x ) )  = g ( f ( x  + Ax)) - g( f (x ) ) ,  so dz/dx ~ Az/h,x. 

Putting this together, 

dz  Az Az Ay ~ dz  dy  

dx Ax Ay Ax d y  dx" 

The only difficulty with this is that Ay, while infinitely close 

to 0, may not  be infinitesimal because  it may equal 0 infi- 

nitely often. In that case, we can ' t  claim that dz /dy  .~ 

Az/Ay, because  the definition of derivative requires 

A y e  0. 

But then, let Ax* C Ax be the subsequence  such that 

the corresponding Ay* is a sequence entirely composed of 

O's. Then, d y / d x  ~ Ay*/Ax* = 0. And, because  Ay* = 0, the 

corresponding Az* = g(y  + A y * ) -  g ( y )  is also 0, so 

dz /dx  ~ Az*/Ax* = 0. Thus, once again, 

d z = d z .  d y.  �9 

d x  dy  dx  

For integration, we can use sequences  of step functions. 

Def in i t ion  4. A f u n c t i o n  s i s  a s tep  f u n c t i o n  on  an  in -  

terval, [a, b], i f  i t  i s  de f ined  on the i n t e rva l  a n d  changes  

value  on ly  a f i n i t e  n u m b e r  o f  t i m e s  over  the interval .  

Step funct ions are simply functions that  are piece-wise con- 

stant. A sequence of step functions, s, is a sequence where 

Sn is a step funct ion from some point  on. 

Def in i t ion  5. I f  s i s  a s tep f u n c t i o n  on  [a0, an] w i t h  s (x)  = 

ci on each sub in terva l ,  (ai, ai+l), i = 0 , . . . ,  n - 1, then 

n 1 

f ?  s ( x ) d x  ~ .  ci(ai+l - ai). 
0 i = 0  

Def in i t ion  6. F o r  a f u n c t i o n  f a n d  a n  in t e rva l  [p, q], 

f ;  f c~ = r 
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i f f  there are  s equences  o f  s tep f u n c t i o n s  d -<f-<  u on 

[p, q] w i t h  

s; s; d d x  ~ r ,~. u d x .  

As usual, d -< f - <  u s imply means  that  dn -< f - <  u,, on 
[p, q] from some  po in t  on, and fpq d dx  is the  sequence 

{fq dn dx}. 
The integral,  r, is unique, for if di, ui, and  ri  sat isfy the 

condi t ions above  for  i = 1, 2, then 

l; s; s; s; r l  ~ dl  dx  -< u2 dx  ~ r2 ~ d2 dx  ~ u 1 dx  ~ r l .  

The basic  t heo rems  on integrals  are  easi ly proved.  The fol- 

lowing is an example:  

Proposition 8. I f  f i s  in tegrable  over  [a, b] a n d  [b, c], then 

i t  i s  in tegrable  over  [a, c] and  

;a f; f d x =  f d x  + f dx.  

PROOF. Let dab , Uab , dbc, Ubc be the s tep-funct ions  witness-  
ing the integrabi l i ty  o f f  over  [a, b] and  [b, c]. Define d and 
u on [a, c] by  gluing together  the respect ive  lower  and up- 

pe r  functions.  Then, we certainly have 

d - < f - <  u 

and we also have 

fa f; d dx = dab d x  4- dbc d x  --~ 

;a f; Uab d x  q'- Ubc dX  -~ U dx .  �9 

hnall$is 
The outs tanding  p o w e r  of  Robinson 's  nons tanda rd  analy- 

sis is evident  in the  nons tandard  p roo f  of  theorems,  such 
as  the In te rmedia te  Value Theorem, and the integrabil i ty 
of  cont inuous  functions.  We can do that  here  too, and  the 
proofs  are s tar t l ingly similar. Our tool  will be the  non- 

nons tandard  equivalent  of  "every fmite nons t anda rd  num- 
ber  is infinitely c lose  to a real." The fol lowing is effectively 

the  Bolzano-Weie rs t rass  theorem. 

Proposition 9. I f  a i s  f i n i t e ,  then  f o r  s o m e  c C a and  

s o m e  real  r, c ~ r. 

PROOF. As a is finite, there  is some d such  tha t  la! < d. That 
means  there  are  only a finite number  of  poss ibi l i t ies  for the 
integer  par t  of  each  an. One of  these poss ibi l i t ies  must  oc- 
cur  an infinite number  of  times. Let k be  such tha t  for in- 

finitely many an, the  integer  par t  of  an is k. Let cl be the 
first term in a with integer  par t  k. 

Now of  the  infini tely many  {an} having integer  par t  k, 
there  are only 10 possibi l i t ies  (0, 1, 2 , . . . ,  9) for the first 
digit  af ter  the  dec imal  point.  One of those  possibi l i t ies  mus t  

occur  an infinite number  of  times. Let dl  be  such a digit. 
Let c2 be the  first  t e rm in a after  ct, which  begins  "k.dl." 

We cont inue in this way, finding d2 such that  infinitely 

many  te rms  begin "k .d ld2"  and  choosing c3 so tha t  i t  be- 
gins "k.dld2," and so on. When we  are  done, we have a sub- 

sequence  c C a, and a real  number ,  r = k.dld2dad4. .  �9 and 

by construct ion,  

Icl - r I < 1, 
Ic2 - r] < 0.1 

Ic3 - rI < 0.01 

Thus, for  any q > 0, Icn - r I < q f rom some po in t  on. That  

means  Ic - r I ~ O, or  c ~ r. �9 

Proposition 10 (Intermediate Value Theorem). I f f  i s  

c o n t i n u o u s  on  [p, q] a n d  f ( p )  -< s -< f (q ) ,  then  f o r  s o m e  

r E [p, q ] , f ( r )  = s. 

PROOF: I begin by cons t ruc t ing  two sequences  a and b i n  
the  interval  [p, q]. For  n = 1, let  a l  = P and bl = q. F o r  n 

in general ,  divide the interval  [p, q] by points  

p = X 0  ~ X l  ~ X 2  ~ "'" ~ X n  = q, 

equally spaced,  a d is tance  of  (q - p ) / n  apart.  As f(x0)  -< 
s <-f(Xn), there  must  be two ad jacent  points,  Xk and Xk+l 

such that  f(xk) -< s -<f(Xk+l).  Let an be the first point,  Xk, 

and let  bn be the second.  
We cer ta inly have f ( a )  - s --<fib). We also have a ~ b. 

By Propos i t ion  9, there  is a subsequence  c C a and a real  
r such  that  c ~ r. Let d C b be the cor responding  subse-  

quence of  b. By Propos i t ion  6, f ( c )  -< s -<f(d)  and  c ~ d. 
By continuity,  f ( c )  ~ f ( r )  ~ f ( d ) .  Now putt ing everything 

together ,  

f ( r )  ~ f ( c )  -< s -< f (d )  ~ f ( r ) .  

By Propos i t ion  2, Part  (4 ) , f ( r )  -< s -<f(r) ,  s o f ( r )  = s. �9 

Proposition 11 (Extreme Value Theorem). I f f  i s  con- 

t i n u o u s  on [p, q], then  f a t t a i n s  a m a x i m u m  on [p, q]. 

PROOF: I will define a single sequence  a in [p, q]. F o r  n, di- 
v ide  [p, q] as  in the prev ious  proof.  Let an be the division 

po in t  Xk for  whichf(Xk) is greatest .  Choose c C a and r so 
that  c ~ r. I claim t h a t f r e a c h e s  i ts max imum at x = r. To 
see  this, take  any s in [p, q]. F o r m  sequence b by  choos ing  

bn for  each  n to be the divis ion po in t  Xk neares t  to s. We 

have that  b ~ s, as ]bn -- SI < (q -- p) /n ,  so Ibn - sl < w 
f rom some  poin t  on for any posi t ive  w. We also have, by  

the  cons t ruc t ion  of a, t h a t f ( b )  -< f (a ) .  
Now, let  d be the subsequence  of  b cor responding  to e. 

As before,  f ( d )  -< f (c )  and  d ~ s. So, by  continuity,  f ( s )  

f ( d )  --<f(c) ~ f ( r ) .  It fol lows that  f ( s )  -<f(r) .  �9 

Proposition 12. I f  f i s  c o n t i n u o u s  on [p, q], t hen  f i s  in -  

tegrable on  [p, q]. 

PROOF. Fo r  any n, let In be the  s tep-funct ion formed by  par-  
t i t ioning [p, q] into n equal subintervals  and set t ing In(x)  
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on each  subinterval  to be  the  min imum value o f f  (guar- 

an teed  to exist  by  Propos i t ion  11). Similarly, define Un as 

the  m a x i m u m  value o f f .  We have that  I -<-f-< u. 
Because  f is bounded,  the  sequences  L = fq 1 dx  and 

U = fpq u dx  are bounded,  so  there  is a subsequence  l* C 

1 and real  r such that  the  cor respond ing  L* = f~ l* d x  ~ r. 
Let u* be  the  subsequence  of  u cor repsonding  to l*, and 
let, for each n, Ax~ be  the  length of  the cor respond ing  

subinterval .  I claim tha t  fq u* dx  ~ r and so fq f dx  = r. 
P r o o f  o f  c la im.  For  any n, we  can find the grea tes t  differ- 

ence,  Rn, be tween  In(x)  and Un(X) on [p, q], and  we  have 
that  

s;* s;" Un d x  -- In d x  <- Rn(q - p) .  

The difference,  Rn, can be r ep resen ted  as  If(Sn) - f ( tn) l ,  for  

some  Sn and tn with ISn - tn] <-- AXn. 

Then, 

s; s; u* d x  - l* d x  - S ( q  - p )  = ~f(s) - f ( t ) l ( q  - P).  

We would  like to say  that  as  is - tl -< A x  ~ O, then, by  con- 

tinuity, If(s) - f ( t ) l  ~ O, so 

s; s; u * d x -  l * d x ~ O  and l * d x ~ r .  
P 

But cont inui ty  requires  tha t  one of  s and t be  real. The 

p rope r ty  s ~ t ~ f ( s )  ~ f ( t )  is actual ly equivalent  to uni- 
form continuity.  We can easi ly  work  around this, however ,  
by finding a subsequence  s** C s and real  r, with s** -~ r 
and  using the cor responding  subsequences  u**, 1"*, and  
t** ~ r ~ s** to finish the proof.  �9 

H o w  Did  W e  Do It?. 
H o w  d i d  I a v o i d  t h e  A x i o m  o f  C h o i c e ?  I s imply asked 

less of  our  sequences  than one asks  of  numbers .  They aren ' t  
totally ordered ,  for example.  The sequences  0, 1, 0, t, . . .  

and 1, 0, 1, 0 , . . .  are  incomparable .  There  are  also zero di- 
visors. This doesn ' t  cause  any problems.  

Why  d i d n ' t  I n e e d  t h e  T r a n s f e r  P r i n c i p l e ?  The 
Transfer  Pr inciple  is a powerful  s c h e m a  of  nons tanda rd  

analysis  that  says  that  any s ta tement  (in a par t icular ly  rich, 
wel l -defmed language)  that  is t rue  abou t  the real  number  
sys tem is t rue  abou t  the hyperrea l  n u m b e r  sys tem and vice 

versa. We have here  a weak  form of  this, namely  that  all 
equations and  inequali t ies t rue about  reals  are  t rue about  
sequences.  We also have conjunct ions  of  these  (but  not  dis- 

junct ions) .  
In e l emen ta ry  calculus and analysis ,  the  Transfer  

Principle is u sed  chiefly to prove that  the  nons tandard  de- 
fmitions are  equivalent  to the s t anda rd  definitions. But, 

here, these  equivalences  are  easy. Here ' s  an example:  

D e f i n i t i o n  7. f is u n i f o r m l y  c o n t i n u o u s  on C i f f  

(Standard)  Ve > 0 38 > 0, Vx, y E C 

I x - Yl < ~ ~ If(x) - f(Y)t < ~. 
(Non-nons tandard)  Va, b E C, a = b ~ f ( a )  ~ f ( b ) .  

P r o p o s i t i o n  13. The s t a n d a r d  a n d  the n o n - n o n s t a n d a r d  

d e f i n i t i o n s  o f  u n i f o r m  c o n t i n u i t y  are  equ iva len t .  

PROOF. Suppose  the  non-nons tandard  defini t ion holds, and 
suppose  we  are  given an e for which  the re  is no sui table & 

Then, for  each  na tura l  number  n, choose  an and bn such 

that  la.n - bnI < 1/n, but  If(an) - f(bn)I  >- ~. Then, we have 
a -~ b, but  f ( a )  r f (b ) ,  a contradict ion.  

: IGURE ; 
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Suppose,  now, that  the s tandard  defini t ion holds,  and 
we are given a ~ b and d, a posi t ive real. By the s tandard  

definition, there  is a 6 such that  Vx, y Ix - y] < 8 ~ If(x) - 
f(y)] < d. Then, because  ]a~ - b~] < 8 from some poin t  on, 

If(an) -f(b,~)] < d from some point  on, and  so f ( a )  ~ f (b) .  

W h a t  h a p p e n e d  t o  t h e  A x i o m  o f  C o m p l e t e n e s s ?  I 

did use the  comple teness  of  the real  line, but  in a mos t  in- 
nocuous  and comprehens ib le  form: I s imply  a s sumed  that  

every infinite dec imal  cor responds  to a real  number.  1 
W h a t  h a p p e n e d  t o  a l l  t h e  q u a n t i f i e r s ?  In the case 

of  uniform continuity,  for example,  I went  f rom " r e  3 8 Vx, 
y . . . "  ( logicians call  this a II3 s ta tement )  to "Va, b , . . . "  (a 
II1 s ta tement) .  Some of the quantif iers a re  buried.  The 

s ta tement  "a ~ b" is, in reality, someth ing  like "Vr > 0 

lan - bnl < r f rom some point  on," or  "Vr > 0 3k Vn > k 
. . . .  " Essentially,  I s implify defini t ions by  coding up the 

mos t  difficult part .  
One can also ask, W h a t  is  n e x t ?  There  are  theorems 

of  analysis  where  nons tandard  proofs  are  awkward  or  do 
not  exist. In the  former  category is the  t heo rem that  the 

uniform limit  of  cont inuous  funct ions is continuous.  This 
is proved in [HK] by  taking a nons tandard  mode l  of  a non- 
s tandard  model .  It can be  done in the  p re sen t  sys tem by 
taking sequences  of  sequences.  Indeed,  by  closing under  

the opera t ion  of  "taking sequences,"  a great  deal  more  
analysis  can be  handled.  In [He], this  is pu r sued  to prove 
the Baire Category  Theorem, for which  no s imple non- 

s tandard  p r o o f  exists ,  and to develop measu re  theory.  

Pedagogy 
The non-noncons t ruc t ive  infmitesimals  p resen ted  here 

could improve  the teaching of  calculus. In bo th  "standard" 
and "reform" calculus  courses,  r igor has  been  a lmost  en- 
t irely omit ted.  Consequently,  s tudents  are  not  a sked  to 

prove theo rems  until  they have a fairly s t rong intuit ion for 
the subject  and  have met  infinite sequences.  This back- 
ground makes  non-nons tandard  analysis  very  at t ract ive 
for, say, an Advanced  Calculus course,  or  even Calculus 

III. 
For  those  wishing to remain  as "standard" as possible,  

one can still use  sequences.  The chief  ad jus tment  is to re- 
p lace  a ~ 0 with a --~ 0. The defini t ions and proofs  in this 
art icle are easi ly  converted.  This a p p r o a c h  is being used 

now in [CH]. 

Some History 
The Greeks  exp lo red  the ideas of  infmity and infinitesi- 

mals. On the whole,  they  re jected them. To Aristotle,  there  
was no abso lu te  infinity. Comple ted  infinite sets  such as 
the natural  number s  {1, 2, 3 , . . . } ,  did not  exist.  There could 
only be potent ia l  infinities; for example ,  for  every number,  

there  is ano ther  number  that  is larger, and so on. The dis- 
t inct ion is s imilar  to that  be tween  an infini tesimal  number  

and the p o w e r  to find ever  smal ler  numbers.  In a weak  
sense,  it is the difference be t we e n  inf 'mitesimals and  lim- 

its. Arch imedes  used inf ini tesimals  for intuit ion [A1], then  
verif ied his results  by proving them with (what  we would  

call  today)  limits [A2]. 
Calculus, as formula ted  in the  seventeenth  century,  was 

first  expres sed  in te rms of  infinitesimals.  As infini tesimals  

themse lves  were  not  well  unders tood,  there  were  criti- 
c i sms and misunders tandings .  On the whole, however ,  the 

doub t s  were  ove r shadowed  by  the outs tanding success  of 
the  theory  as deve loped  in the  eighteenth century.  

In the  nineteenth  century,  Cauchy, Weierstrass,  and  oth- 

ers  made  infini tesimals unnecessary .  Absolute  infinit ies 
were  rep laced  by limits, now r igorously defined. But lin- 

guist ic  habi ts  didn ' t  change.  Mathemat ic ians  and physic is ts  
con t inued  to talk in t e rms  of  infinitesimals.  Inf ini tesimals  
d idn ' t  d i sappear  from calculus  texts  for  over  100 years.  

Infini tesimals  began to r eappea r  in the twent ie th  cen- 
tury. The idea  of sequences  as  infinitesimals appea r s  in a 

r emarkab le  book,  The L i m i t s  o f  Science,  Out l ine  o f  Logic  
a n d  Methodology o f  Sc ience  by Leon Chwistek,  painter ,  
phi losopher ,  and mathemat ic ian  [Ch]. Publ ished in 1935, 

the  b o o k  is not  well  known  today  (it is in Polish). 
Chwis tek ' s  definit ions are  s imi lar  to those  p re sen ted  here, 
a l though there  are d i f ferences  and limitations.  His work  

fo reshadows  not  only non-nons tandard  analysis, but  non- 

s t andard  analysis. 
In [L1] and [L2], Laugwitz formula ted  the sys tem of  se- 

quences  descr ibed  in this  article,  but  with different  nota-  

tion. Laugwitz used his "~-Zahlen" to invest igate distr ibu- 
t ions and operators .  An ear l ier  pape r  by Schmieden  and 
Laugwitz [SL] used a more  pr imit ive sys tem with  the  idea  

of  just i fying the infmitesimals  of  Leibniz. Laugwitz 's  work  
was  not  carr ied  further, poss ib ly  because  the d iscovery  of  
nons tanda rd  analysis  made  real infini tesimals unglam- 

o r o u s .  

In 1960, Abraham Robinson constructed nons tandard  
mode l s  of  the real number  sys tem using mathemat ical  logic 

[R]. Robinson credits  the papers  of  Laugwitz and Schmieden 
with some inspiration for his work. Nons tandard  analysis  
requires  a substant ia l  inves tment  (mathemat ica l  logic and 
the Axiom of  Choice) but  pays  great  dividends.  Non- 

s t anda rd  analysis  has been  used  to d iscover  new theo rems  
of  analysis.  It has been  fruitfully appl ied  to measure  the- 
ory, Brownian  motion, and  economic  analysis, to name  jus t  
a few areas.  At tempts  to re form calculus  ins t ruct ion along 

infini tesimal  lines, however ,  did not  have much  success  
[HK], [K]. Robinson 's  b o o k  conta ins  an excel lent  h is tory  of  

infinitesimals.  
There are other sys tems of s tandard infmitesimals, 

Conway's  surreal numbers,  for example [Co]. There are  other  

systems for avoiding e's and fi's (see [Hi] for a recent  exam- 
ple). There may also be other  rediscoveries  of this system. 
The intended contribution of  the present  article is to place 
the structure in an algebra suitable for students of  calculus. 

1This unremarkable statement is accepted easily by students. It is not equivalent to Completeness, but is stronger, and yields the Archimedean Principle as well. 
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