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John Wheeler’s Universe
as Quantum Self-Excited Circuit




Our Universe as a Quantum Knot
Self-Excited Circuit




In the hefty book “Gravitation” by
Misner, Thorne and Wheeler
it is suggested that

Physics should be a manifestation of logic:
Pregeometry as a form of the calculus of
propositions.

This is proposed as an idea for an idea.
We read:
Logic
lcon
Diagrammatic Categories
Knots and Topology.




Theme of Spin Networks

Roger Penrose originally defined
SU(2) Spin Networks in a search for
a process background for spacetime.
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FIGURE 1. (a.) A spin network state with NV external lines based
on the invariant w; a spin network with only these N open lines.
The lines are labeled 1,2,...,N. Two of the spins k£ and [ are
identified. (b.) A particular example with two lines of k& and [ spin.
(c.) The exchange of a spin-1/2 “particle.” This “experiment”
helps determine the angle between the two lines.




Knot Logic

Linking As Mutuality




Self-Mutuality and Fundamental Triplicity

Trefoil as stable self-mutuality
in three loops about itself.




Patterned Integrity

The knot is structurally independent
of the substrate that carries it.

All information in the knot
occurs in its relationship with the ambient space.




Knot Sets

w Crossing
=z as Relationship
Self-
@ «=1af Membership
={ b}
& b & L Mutuality
OO b =1}




Architecture of Counting
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Knot Sets : Cancellation of Identicals




Knot Sets are Invariant under
Reidemeister Moves
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Russell Paradox (K)not.

A does not

belongs to A. belong to A.




Knots and Their Topology
Require
More
Structure




Three-Coloring a Knot Diagram

The Rules:
Either three colors at a crossing,

OR
one color at a crossing.
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Figure 14 - Coloring Under Type Two and Three Moves




Via the three-coloring
we have proved that the
trefoil knot cannot be undone
using Reidemeister moves.
This is the simplest proof known
that the trefoil knot is non-trivial.
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Bracket Polynomial Model for
Jones Polynomial
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Exercise: Prove that the trefoil knot is
topologically distinct from its mirror image.
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Hence we can achieve the invariance

-G

by taking B=A-1 and d=-A2 - A2, A miracle happens, and we are
granted invariance under the triangle move with no extra restrictions:
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The Jones Polynomial Vi (t).

VK() = fK(t-1/4) where fK(A) = (-A3)-W(K)<K>(A) where w(K) is the
sum of the crossing signs of the oriented link K, and <K> is the bracket
polynomial obtained by ignoring the orientation of K.




Quantum Mechanics in a Nutshell

0. A state of a physical system
corresponds to a unit vector |S> in a
complex vector space.

|. (measurement free) Physical processes
are modeled by unitary transformations
applied to the state vector: |S> ----- > U|S>

21f|5> =z |1> +z,[2> + ..+ zp [n>

in a2 measurement basis {|1>,|2>,...,|n>}, then
measurement of |S> yields |i> with

probability |z; [*2.




Qubit

A qubit is the quantum version of
a classical bit of information.

a|0> + b|l>

mMeasure

|0> 1>
prob = [a|/2 prob = |b|"2




10> 1>
0> 11> >

\\K<8>
1> 0>

Mach-Zender Interferometer

0> 1> 1> 10>




Quantum Entanglement and
Topological Entanglement

An example of Aravind [ 1] makes the possibility of such a connection even more tantalizing.
Aravind compares the Borromean rings (see figure 2) and the GHZ state

) = (181)]B2)|85) — o) |aa)|as)) / V2.
(000> - [I11>)/Sqrt(2)

5a

Is the Aravind analogy only
superficial?!




Compare
|000>+|1 1 1>
and
|100>+|010>+|001>.

In the second case, observation in
a given tensor factor yields an entangled
state with 50-50 probability.

WHAT SORT OF LINKWOULD THAT BE!?

In this way, we can make a case for
quantum knots and links.




1100>+|010>+|001> =
| 1>{|0>} + [0>{]10> + |01>}.

You can imagine a topological
state that is a superposition of
multiple link types.

N




Do we need Quantum Knots?

a|lK> + b|K'> @ - LQ

//

K: probability |a|?2 p (@
K’:probability |b|*2 \ Q_/

K K’

Observing a Quantum Knot

Definition. A quantum knot is a linear superposition of classical knots.

(or a linear superposition of representatives for knot types.)




Knots, Gauge Fields and Quantum Gravity

Let ©¥(A) be a function of a gauge field A. Let
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where the integral denotes your favorite notion of integrating over gauge fields (one chooses a heuristic, or
fixes the gauge to allow a measure theory that can work) and Hx(A) denotes the trace of the holonomy
of the gauge field taken around the specific embedding of the knot K in three dimensional space. This is
the loop transform of the function 1)(A) to a function ¥(K) of knotted loops in three dimensional space.
The loop transform is not necessarily invariant under topological moves, but this is sometimes the case.
We would like to, at least at the formal level, formulate an inverse transform to the loop transform. This

would take the form
S(A) = D (K Hr(A) = ¢( ) Hix(A)K))

KeK KeK

xyhere ¢(K) is a functional on knots and these sums would receive appropriate normalizations. Note that
?(A) = p(9n(A)) where Qx(A) is the quantum knot

0wl A) = 3 Hic(A)|K).

KeK

While it is impractical to consider integrating over all possible embeddings of a circle into three dimensional
space, it is mathematically possible to examine summations involving all knot types. In this way the notion
of quantum knot is inextricably tied to these questions about the loop transform. The loop transform is
of particular value in the quantum gravity theory of Ashtekar, Smolin and Rovelli.?!




Quantum knots and mosaics
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This observable is a quantum knot invariant
for 4x4 tile space. Knots have characteristic
invariants in nxn tile space.







phi>

Measurement
<M|

E>

1>
pst EPR pair

<M| = SUM Mij <ij|
[E> = SUM Eijj |ij>
Iphi>k = SUM |psi>i Mij Ejk
[phi> = (ME) |psi>

When ME = |dentity,
then |phi> = |psi>.

Teleportation is achieved
by choosing an orthonormal
meaurement basis where one member
inverts E, and the other members
are unitary rotations
away from the key inverting member.




Teleportation Topology - Bare Bones




Relations in the Temperley-Lieb Algebra
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The Temperley-Lieb Category
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Diagrammatics
Logic
Topology
Categories

PreGeometry as a Calculus of Propositions!?

We go back to Gottlob Frege and
Charles Sanders Pierce in search
of a structure deeper than
Boolean algebra.




Frege’s Begriffsschrift -- Conceptual Notation

1879
Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des

reinen Denkens
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Frege’s Conceptual Notation Decoded

o]

XY Y

a s

Negation is a 90 degree bend.

b
a ﬁ (a—b)=2b
a

Non-Associative
Operations
Indicated Through a
Category of Trees

ab




C.S. Peirce’s Sign of lllation +

Now write a + b for a OR b.

(a—>b) =a+b

Peirce wrote a:|-b =a+hbh

creating the pormanteau
sign of illation

—1




G. Spencer-Brown in
“Laws of Form”
used essentially the Peirce sign of illation
but writes

~ | instead of — 1}

and uses ab for
a OR b.

In Spencer-Brown, the mark | is regarded
as indicating either the act of crossing
the boundary of a distinction, or as the
“marked state” of a distinction.




marked

X |= state obtained
by crossing from X.

unmarked |= marked
— -

marked| = unmarked

= =

In Spencer-Brown there is a single “logical
particle”, the mark |




A single “logical particle”,

the mark .

The mark interacts with itself in two ways,
either producing nothing, or producing
itself.

=] =
1=




Digression:What is going on about 90 degrees and
negation!

Compare with tangle theory where a 90 degree turn
applied to x yields -1/x.
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And DeMorgan’s Law lives in a topological category.
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The Logical Particle is a Fibonacci Particle

* = unmarked state
P = marked state = |

NN NV

P i P

Letting PP denote P or * we write symbolically
PP=P + *
And P becomes the Golden Mean.




Interactions of P with itself
generate Fibonacci numbers.

PA2 =P +*
PA3=PP+*P=P+*+P=2P+*
PA4 = 3P + 2%

PAS = 5P + 3*

PA6 = 8P + 3*

PA7 = I3P + 8*




The Golden Rectangle: PP =P + |
P=1+1/P

P = (P-1)/I




Remarkably, this primitive Fibonacci particle
takes part in a braided tensor category
that generates a unitary representation of
the Artin braid group that is dense in
the unitary groups.

This representation can be used for
universal topological quantum computation
and for studying quantum algorithms that
compute Jones polynomials.




Braiding Anyons
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Non-Local Braiding is Induced
via Recoupling
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Fibonacci Process
P\ / P P\ / P

P K

The “particle” P interacts with P
to produce either P or *.
The particle * is neutral.




THE THREE STRAND BRAID GROUP CAN
ACT ON A SINGLE QUBIT SPACE.

The process space with three input P’s and one
output P has dimension two.
It is a candidate for a unitary
representation of the three strand braids.







Fibonacci Tree: I */\

?

Admissible Sequences
are the Paths from the Root




Double Stranded Iconics for Fibonacci Model
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;—:’C—? P Topology and
Temperley-Lieb
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Temperley-Lieb Relations Implicit in
Projector Structure
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Combination of
Penrose Spin Networks and
Knot Theory.

See “Temperley Lieb Recoupling Theory
and Invariants of Three-Manifolds” by
L. Kauffman and S. Lins, PUP, 1994.

Spin Networks and Anyonic Topological Computing

Louis H. Kauffman® and Samuel J. Lomonaco Jr.?

¢ Department of Mathematics, Statistics and Computer Science (m/c 249), 851 South Morgan
Street, University of Illinois at Chicago, Chicago, Illinois 60607-7045, USA
b Department of Computer Science and Electrical Engineering, University of Maryland
Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA

Recoupling Theory for Fibonacci Model is
Joint work with Sam Lomonaco.

quant-ph/0603131 and quant-ph/0606114




g-Deformed Spin Networks
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More Recoupling

a@ = a@ = Ay c d = ©(a,c,d) 6a
b

Ag




The 6-j Coefficients

¢ D)= ab.}

CdJ

— Z{a ; '}@(ab;)@(cd Da, ak
— { }G)(a b, k)G)(C d,k)

a b i
Tet[ ]Ak
{abi}= ¢ dk

¢ dk ®(a,b,k) ©(c,d, k)




Local Braiding

(a'+b'-c')/2

a b a b
ab
— }\'C \O/
C C
(a+b-c)/2
22 = (1)
X' = X(X+2)




Braiding, Naturality, Recoupling,
Pentagon and Hexagon --
Automatic Consequences of the
Construction
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Quantum Hall Effect

QDAY

Figure 1: A schematics of the experimental setup of the Hall effect. A current
driven throngh the conductor, drawn as a prism, leads to the emergence of
voltage in the perpendicular direction. This i= the Hall voltage, which Maxwell
erroneously predicted to be zero.




Fractional Quantum Hall Effect
(Cambridge Univ Website)

The fractional quantum Hall effect (FQHE) is a fascinating manifestation of simple collective behaviour
in a two-dimensional system of strongly interacting electrons. At particular magnetic fields, the electron
gas condenses into a remakable state with liquid-like properties. This state is very delicate, requiring
high quality material with a low carrier concentration, and extremely low temperatures. As in the integer
Quantum Hall Effect, a series of plateaux forms in the Hall resistance. Each particular values of magnetic
field corresponds to a filling factor (the ratio of electrons to magnetic flux quanta) nu=p/g, where p and g
are integers with no common factors). ¢ always turns out to be an odd number. The principal series of
such fractions are 1/3, 2/5, 3/7 etc, and 2/3, 3/5, 4/7, etc.

Integer and Fractional Quantum Hall Effects

20 —6d)
12 251
47 I
s 37
23 ]
= 4 =
g : 0z
o a3 =]
£ 10+ w 5
W 120
Az 1
1 Loy 1 . " 1 =11}
“'ll 5 10

L3 L i

There are two main theories of the FQHE:

« Fractionally-charged quasiparticles. This theory, proposed by Laughlin, hides the interactions
by constructing a set of quasiparticles with charge e'=elq, where the fraction is p/q as above.

« Composite Fermions. This theory was proposed by Jain, and Halperin, Lee and Read. In order to
hide the interactions, it attaches two (or, in general, an even number) flux quanta h/e to each
electron, forming integer-charged quasiparticles called Composite Fermions. The fractional states
are mapped to the Integer QHE. This makes electrons at a filling factor 1/3, for example, behave in
the same way as atfiling factor 1. A remarkable result is that filling factor 1/2 corresponds to zero
magnetic field. Experiments support this.
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NONABELIONS IN THE FRACTIONAL QUANTUM HALL EFFECT

Gregory MOORE
Department of Physics, Yale University, New Haven, CT 06511, USA

Nicholas READ
Departments of Applied Physics and Physics, Yale University, New Haven, CT 06520, USA

Received 31 May 1990
(Revised 5 December 1990)

Appiications of conformal field theory to the theory of fractional quantum Hall systems are
discussed. In particular, Laughlin’s wave function and its cousins are interpreted as conformal
blocks in certain rational conformal field theories. Using this point of view a hamiltonian is
constructed for electrons for which the ground state is known exactly and whose quasihole
excitations have nonabelian statistics; we term these objects “nonabelions”. It is argued that
universality classes of fractional quantum Hall systems can be characterized by the quantum
numbers and statistics of their excitations. The relation between the order parameter in the
fractional quantum Hall effect and the chiral algebra in rational conformal field theory is
stressed, and new order parameters for several states are given.

1. Introduction

The past few years have seen a great deal of interest in two-dimensional many
particle and (2 + 1)-dimensional field-theoretic systems from several motivations.
These include the fractional quantum Hall effect, high-temperature superconduc-
tivity and the anyon gas, conformal field theory in 1 + 1 dimensions and its relation
to 2+ 1 Chern-Simons—Witten (CSW) theories, knot invariants, exactly soluble
statistical mechanical models in 1+ 1 dimensions, and general investigations of
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Apparatus and methods for performing quantum computa-
tions are disclosed. Such apparatus and methods may
include identifying a first quantum state of a lattice having
a system of quasi-particles disposed thereon, moving the
quasi-particles within the lattice according to at least one
predefined rule, identifying a second quantum state of the
lattice after the quasi-particles have been moved, and deter-
mining a computational result based on the second quantum
state of the lattice. A topological quantum computer encodes
information in the configurations of different braids. The
computer physically weaves braids in the 2D+1 space-time
of the lattice, and uses this braiding to carry out calculations.
A pair of quasi-particles, such as non-abelian anyons, can be
moved around each other in a braid-like path. The quasi-
particles can be moved as a result of a magnetic or optical
field being applied to them, for example. When the pair of
quasi-particles are brought together, they may annihilate
each other or create a new anyon. A result is that an anyon
may be present or not, which can be thought of as a “one”
or “zero,” respectively. Such ones and zeros can be inter-
preted to provide information.







Fibonacci Model -- on the back of an envelope
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Remark on the U(2) Representation
(1) G
0 A b —a
66 D6 )
S=FRF =M+ withV = FUF.

a b o O a b a® ab
V =FUF = =0 <
b —a 0 O b —a ab b2

With these choices, we have

o a b B 1/5 1 —6-2
(%) (e )

real and unitary, and for the Temperley-Lieb algebra,

o 0 a? ab a b
U p— 3 V p— 5 p— .
0 0 ab b2 b b2




Redefining the Vertex -- the key to obtaining
Unitary Recoupling Transformations.

a b \/\/AaAbAC a b
c \Je(a.b.c) \Tc/




New Recoupling Formula




The Recoupling Matrix is
Real Unitary at Roots of
Unity.

(@2 Y)
o T

M[a,b,c,d]ij =




Theorem. Unitary Representations of the
Braid Group come from Temperley Lieb
Recoupling Theory at roots of unity.

A — 67277/27"

Sufficient to Produce Enough Unitary
Transformations for Quantum
Computing.




Quantum Computing Colored Jones Polynomials
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Computing the colored Jones polynomials at
roots of unity requires finding a single
diagonal element of a unitary matrix.

The best quantum algorithm we know
for this is the Hadamard test.
(See next slides.)

Aharanoy, Jones and Landau also use the
Hadamard test in their algorithm for the Jones
polynomial. Computation time for our
algorithm and theirs are the same --
polynomial time for numerical approximation of
the values of the invariant.




Witten-Reshetikhin-Turaev Invariants

WRT invariants of three manifolds
are obtained by special sums of
colored Jones polynomials.

Thus we also implicitly give algorithms for
computing WRT invariant.

What does this have to do with the
quantum field theory associated with
Witten’s approach!?

Is there a direct quantum algorithm for
the Witten functional integral?




Hadamard Test

|0>—— H @ H -
Measure
0>
lphi> U

[
H = [ C ]!Sqrt(E)

|0> occurs with probability
1/2 + Re[<phi|U|phi>]/2.
Imaginary part by same circuit with a phase shift of Pi/2.




Summary

The simple Fibonacci model is universal for
quantum computing. All quantum mechanical processes can
be simulated by this model.

The Fibonacci model is constructed from
the bracket model for the Jones polynomial.

The Fibonacci model is constructed by a logic that
goes beneath the Boolean stucture implicit in
a space of one qubit -- allowing the action of
the three-strand braids on the qubit space.




The Fibonacci model and its relatives
show that in principle quantum computing
can be accomplished with topological means.

The theory of the quantum Hall effect suggests
that non-abelian anyons can realize this dream.

Will the dream come to pass!
And for the mathematician -- what is the depth

of the role of the Artin braid group in the
structure of the unitary groups?







Returning to Frege




The Jacobi Identity

a b a b
b C
RN
aeb Y-aob 2 aeb 7~ (@sb)ec
b C b ¢
>< boC\
a SeC > (a.c).b a aO(bOC)
N N N

(aeb)ec - (aec)eb = ae(bec)
Hence
(aeb)eC + be(aec) = ae(bec).




Knots, Links and Lie Algebras
Vassiliev Invariants

XX
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WK = wik[+) - wiK]-) Skein Identity

Chord Diagram




Four-Term Relation From Topology
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Four Term Relation from Lie Algebra
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The Jacobi Identity

a b a b
b C
RN
aeb Y-aob 2 aeb 7~ (@sb)ec
b C b ¢
>< boC\
a SeC > (a.c).b a aO(bOC)
N N N

(aeb)ec - (aec)eb = ae(bec)
Hence
(aeb)eC + be(aec) = ae(bec).




Knot theory, logic and physics all fit
together in the categorical
diagrammatic setting.

The story goes on.




