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Abstract 

This paper studies invariants of 3-manifolds derived from finite dimensional Hopf algebras. 
The invariants are based on right integrals for the Hopf algebras. In fact, it is shown that the 
defining property of the right integral is an algebraic translation of a necessary condition for 
invariance under handle slides in the Kirby calculus. The resulting class of invariants is distinct 
from the class of Witten-Reshetikhin-Turaev invariants. 

1991 Math. Subj. Class.: 18A10, 18D10,22E70, 57M25, 57NlO 

1. Introduction 

The purpose of this paper is to indicate a method of defining invariants of 
3-manifolds intrinsically in terms of right integrals on certain Hopf algebras. We call 
such an invariant a Hennings invariant [6], as Hennings was the first person to point 
out that invariants could be defined in this way. The work reported in this paper 
appears more fully in joint work of the author and David Radford [ll]. 

The present paper contains a significant innovation that goes beyond our previous 
work [ 111. We had previously verified the invariance of our functional for 3-manifolds 
by using the restricted Kirby move, a special case of handling sliding. In fact, the 
argument is most transparent when done in general! Here, we shall see that the 
notions of right integral and invariance under handle sliding are actually translations 
of each other between algebraic and geometrical categories. These matters are ex- 
plained in Section 3. 

Hennings invariants were originally defined using oriented links. It is not necessary 
to use invariants that are dependent on link orientation to define 3-manifold invari- 
ants via surgery and Kirby calculus. For that reason the invariants discussed in this 
paper are formulated for unoriented links. This results in a simplification and 
conceptual clarification of the relationship of Hopf algebras and link invariants. The 
practical benefit is a simplified algorithmic structure for the calculation or reasoning 
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about the invariants. Further reference to invariants of 3-manifolds in this paper will, 
unless otherwise specijied, be to this version of the Hennings invariant for unoriented 

links. 
We show in [l l] that invariants defined in terms of right integrals, as considered in 

this paper, are distinct from the invariants of Reshetikhin and Turaev [23, 241. We 
show that our invariant is non-trivial for the quantum group U,(sl,)’ when 4 is an 
fourth root of unity. The Reshetikhin-Turaev invariant is trivial at this quantum 
group and root of unity. The non-triviality of our invariant is exhibited by showing 
that it distinguishes all the Lens spaces L(n, 1) from one another. This proves that 
there is non-trivial topological information in the non-semisimplicity of U,(sl,)‘. 

The paper is organized as follows. Section 1 recalls Hopf algebras, quasi-triangular 
Hopf algebras and ribbon Hopf algebras. Section 2 discusses the conceptual setting of 
the invariant. This involves a summation over labellings of the link diagram by 
elements of the Hopf algebra. We work in a category that allows immersed diagrams 
so that the special grouplike element in the Hopf algebra and the ribbon element in 
the Hopf algebra both have diagrammatic interpretations. A trace function on the 
Hopf algebra that is invariant under the antipode is shown to yield a link invariant. In 
Section 3 we show that traces of the kind discussed in Section 2 are constructed from 
right integrals in many cases and that under suitable conditions these traces yield 
invariants of the 3-manifolds obtained by surgery on the links. Section 4 sketches the 
application to U,(sl,)‘. 

1. Algebra 

Recall that a Hopf algebra A [25] is a bialgebra over a commutative ring k that has 
associative multiplication, coassociative comultiplication and is equipped with 
a counit, a unit and an antipode. The ring k is usually taken to be a field. 

A is an algebra with multiplication m: A @A --f A. The associative law for m is 
expressed by the equation m(m@ 1) = m(1 Q m) where 1 denotes the identity map 
on A. 

A is a bialgebra with coproduct A : A + A @ A. The coproduct is a map of algebras. 
A is coassociative. Coassociativity of A is expressed by the equation 
(A @ 1)A = (10 A) A where 1 denotes the identity map on A. 

The unit is a mapping from k to A taking 1 in k to 1 in A, and thereby defining an 
action of k on A. It will be convenient to just identify the units in k and in A, and to 
ignore the name of the map that gives the unit. 

The counit is an algebra mapping from A to k denoted by E : A + k. The following 
formulas for the counit dualize the structure inherent in the unit: (EO 1)A = 
1 = (18 E)A. Here the 1 denotes the identity map on A. 

It is convenient to write formally A(x) = CxC1,@ xC2) E A@ A to indicate the 
decomposition of the coproduct of x into a use of first and second factors in the 
two-fold tensor product of A with itself. We shall further adopt the summation 
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convention that CxC1,@ xC2) can be abbreviated to just xo,@ x(~~ Thus we shall write 

d(x) = X(l)@ X(Z). 

The antipode is a mapping s : A + A satisfying the equations m( 10 s)d (x) = E(x)l, 
and m(s@ l)d(x) = E(x)l, and m(s@ l)d(x) = E(x)1 where 1 on the right-hand side 
of these equations denotes the unit of k as identified with the unit of A. It is 
a consequence of this definition that s(xy) = s(y)s(x) for all x and y in A. 

A quasitriangular Hopfalgebra A [4] is a Hopf algebra with an element p E A @ A 
satisfying the following equations: 

(1) pd = d’p where d’ is the composition of A with the map on A @ A that switches 
the two factors. 

(2) PlZP13 = (10 d)P, P13P23 = (A 0 UP. 

These conditions imply that p has an inverse, and that 

p-1 = (10 s-‘)p = (SO 1)p. 

It follows easily from the axioms 
the Yang-Baxter equation 

of the quasitriangular Hopf algebra that p satisfies 

P12P13P23 = P23P13P12- 

A less obvious fact about quasi-triangular Hopf algebras is that there exists an 
element u such that u is invertible and s’(x) = UXU-’ for all x in A. In fact, we may 

take u = Cs(e’)e where p = CeQQ e’. 
An element G in a Hopf algebra is said to be grouplike if d(G) = GO G and 

E(G) = 1 (from which it follows that G is invertible and s(G) = G-i). A quasi- 
triangular Hopf algebra is said to be a ribbon Hopf algebra [ 10,231 if there exists 
a grouplike element G such that (with u as in the previous paragraph) u = G- ‘U is in 
the centre of A and s(u) = G-luG- ‘. We call G a special grouplike element of A. 

Since u = G- ‘U is central, ux = XV for all x in A. Therefore G-%x = xGL ‘u, 
whence s2(x) = uxu- ’ = GxG- ‘. Thus s2(x) = GxG- i for all x in A. Similarly, 
s(u) = s(G-‘u) = s(u)s(G-I) = G-luG_lG = G-‘u = u. Thus the square of the an- 
tipode is represented as conjugation by the special grouplike element in a ribbon Hopf 
algebra, and the central element u = G-‘u is invariant under the antipode. 

2. Diagrammatic geometry and the trace 

A function tr : A + k from the Hopf algebra to the base ring k is said to be a trace if 

tr(xy) = tr(yx), tr(s(x)) = tr(x) 

for all x and ye A. In this section we describe how a trace function on a ribbon Hopf 
algebra yields an invariant, TR(K), of regular isotopy of knots and links [7,8]. 

The link diagram is arranged with respect to a vertical direction so that the 
crossings form the two types indicated below, and so that other than the crossings the 
only critical points of the height function are maxima and minima. Each crossing is 
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decorated with elements of the Hopf algebra as shown below. (Here p = Ce@ e’ is the 
Yang-Baxter element in A @ A, and s denotes the antipode.) 

It is implicit in this formalism that there is a summation over all the pairs e,e’ for 
each Yang-Baxter element. 

Hopf algebra elements may be moved across maxima or minima at the expense of 
application of the antipode. That is, if a Hopf algebra element is moved across 
a maximum or minimum, then it is replaced by the application of the antipode to that 
element if the motion is anti-clockwise. If the motion is clockwise, then the inverse of 
the antipode is applied to the element. See the diagram below. 

l& = (Jw 

The link diagram is subject to deformations that generate regular isotopy [9]. Since 
the diagram is presented with respect to a choice of vertical direction (discriminating 
the maxima, minima and crossing types), regular isotopy is generated by a set of 
moves that include the cancellation of adjacent pairs of maxima and minima and the 
switching of an arc across a maximum or minimum. The full set of moves is shown in 
Fig. 1. We have labelled these moves as follows: 

=. cancellation of maxima and minima, 
II. cancellation of opposite crossings, 
III. braiding, 
IV. switching, 
IV’. twist of crossings. 
IV’ is equivalent to IV in the presence of the cancellation of maxima and minima. 

These moves generate regular isotopy for diagrams arranged with respect to a vertical 
direction. 
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Fig. 1 

Remark. The symbol N is used to denote the replacement of one figure by an 
equivalent figure. We shall sometimes use an equals sign ( = ) to perform the same 
purpose. The symbol +B or ~-r will be used to indicate a correspondence. For 
example, a link diagram corresponds to the diagram obtained from it by decoration 
with elements of the Hopf algebra. 

An invariant of regular isotopy must remain unchanged by the moves shown in 
Fig. 1. The simplest move is the cancellation of a pair consisting of a maximum and 
a minimum. 

This paper cancellation gives a reformulation of the slide rule for the antipode: The 
antipode is accomplished by “composition with a maximum and a minimum”. 
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I 

= 

t 

x + 

s(x) 
s(x) 

Note also that once the crossings of a link diagram have been labelled with elements 
of the Hopf algebra, the resulting diagram is depicted as a labelled immersion of 
a curve or curves in the plane. This is quite natural since the translation from algebraic 
braiding element to knot-theoretic braiding element is accomplished via the composi- 
tion with a transposition, and the simplest diagrammatic representation of a transpo- 
sition is the crossing of two arcs in the plane. 

These immersions can be deformed up to regular homotopy that respects the given 
vertical direction. In other words, one can perform the projected forms of the moves of 
Fig. 1. If algebra is present on the lines then the following extra move is added (sliding 
an external line past 

V. slide rule 

X Y x 
an algebra element). 

x Y X 
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Since algebra elements are configured with respect to the vertical direction, we do 
not allow the cancellation of a maximum and a minimum that have an algebra 
element between them. This allows the representation of the antipode as described 
above. 

It is now easy to check the twist relation (IV’) for crossings: 

With these conventions, the square of the antipode is equivalently diagrammed as 
a “composition with two curls” as shown below: 

These curls are identified with the special grouplike elements G and G- ’ in the Hopf 
algebra. 

Thus the diagram for 
s’(x) = GxG- ‘. 

the square of the antipode represents directly the formula 
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Along a vertical line, algebra elements combine by multiplication. 

a6 

The product in the Hopf algebra corresponds to the multiplication of single strand 
tangles. (A single strand tangle is a bit of link diagram with two free ends arranged 
with respect to the vertical so that one end is down and the other end is up. Tangles 
are multiplied by attaching the down end of one tangle to the top end of the other.) 

T 

R+ S 

= 

The coproduct A : A + A @ A in the Hopf algebra corresponds to a mapping on 

tangles A : T (‘) + Tc2) from single strand tangles to double strand tangles obtained by 
forming the parallel (two strand) cable of the given tangle. The tangles in question can 
be immersions. For example, we see that the formula A(G) = G@ G corresponds to 
the regular isotopy shown below. 

AG=A 

In this way knots on a line can be resolved into algebra elements. For example the 
twist shown below is equivalent to the ribbon element u. Note how the factorization of 
u into a product of G- ’ and u = Cs(e’)e is related to the slide convention for the 
antipode (In the diagrammatic calculation shown below we use the fact that 

(s@ S)P = PJ 
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Note that s(a) = v corresponds to the identification shown below. 

When this identification is added to regular isotopy, the twists catalogue only the fram- 
ing, and the equivalence relation on the link diagrams is equivalent to ambient isotopy of 
framed links. We call this equivalence relation on link diagrams ribbon equivalence. 

Finally, returning to the diagrammatic coproduct we see the interpretation of the 
following formula of Drinfeld 

u 

f’ f P21P12 (NW). 

e 
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In general, if T is a single strand tangle, and F(T) is the corresponding element in the 
Hopf algebra A that is determined by our correspondence, then F(A(T)) = A(F(T)) 
where the first A is the diagrammatic coproduct and the second A is the algebraic 
coproduct. This fact follows from the axioms for a quasi-triangular Hopf algebra in 
conjunction with our diagrammatic conventions. 

Definition and computation of TR(K). Suppose that tr : A + k is a trace function. That 
is, tr is a linear function satisfying 

1. tr(xy) = tr(yx), 
2. tr(s(x)) = tr(x). 

To define the trace TR(K) for a knot diagram K, slide all of the algebra into one 
vertical portion of the diagram. Amalgamate this algebraic expression according to 
the rule for multiplying algebra elements on the diagram, as we have done above. Call 
this localized algebra element w. It is a sum of products, and can be formally 
represented as a product where it is understood that there is a sum over all pairs of the 
type e,e’. 

Let d be the Whitney degree of the flat diagram for K that is obtained by traversing 
K upward from the vertical portion where the algebra has been concentrated. The 
Whitney degree is the total turn of the tangent vector to the curve as one traverses it in 
the given direction. For example: 

0 d=l 

Define TR(K) by the formula TR(K) = tr(wGd). Note that w is itself a summation over 
all the pairs x,x’ corresponding to Yang-Baxter elements on the diagram. TR(K) 
dejnes a regular isotopy invariant of unoriented knots. (The proof is primarily a matter 
of checking that TR(K) is independent of the place where we concentrate the algebra. 
This reduces to checking the independence in the case where the concentration is 
moved around a maximum or a minimum. See Example 2 below; and for a complete 
proof see [8, Theorem 5.11). 

In order to define an invariant of unoriented links, concentrate the algebra for each 
component of the link, and define 

TR(K) = tr(wr Gdl) tr(wZGd2) tr(w3Gd3) . . . tr(w,Gdn), 

where the labels 1,2, . . . , n refer to the components of the link, and the implicit 
summation is the sum over all the pairs X,X’ in these words. The elements wl, . . . , w, 

are the algebra concentrations for each link component, and the degrees dl, . . . ,d, are 
the Whitney degrees of the components of the link. 

Example 1. This example points out how the TR(K) is invariant under algebra slides: 
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Q f tr(s(x)G), (3x f tr(xG-l) 

tr(s(x)G) = tr(s(s(x)G)) = tr(G-‘s2(x)) = tr(G-‘GxG-‘) = tr(xG-‘). 

Example 2. Here is the form of calculation for a link. 

f 

TR(L) = c tr(f’eG-l)tr(fe’G). 

If p = C xi@ Yip then TR(L) = C 1 tr(YjxiG-‘)tr(xjYiG). 
i=l i=l j=i 

This is how the regular isotopy invariant of the link would look as a specific sum of 
traces of algebra elements. 

3. Invariants of 3-manifolds 

The structure we have built so far can be used to construct invariants of 3-manifolds 
presented in terms of surgery on framed links. We sketch here our technique that 
simplifies an approach to 3-manifold invariants of Mark Hennings [6]. In fact the 
approach sketched here also simplifies our own previous method as explained in [l 11. 

Recall that an element A of the dual algebra A* is said to be a right integral if 
A(x)1 = m(il@ l)@(x)) for all x in A. For a unimodular [15, 191 finite dimensional 
ribbon Hopf algebra A there is a right integral A satisfying the following properties for 
all x and Y in A: 

(0) 1 is unique up to scalar multiplication when k is a field. 

(1) 4xy) = 4s2(y)x). 
(2) A(gx) = A@(x)) where g = G*, G the special grouplike element for the ribbon 

element u = G- ’ u. 

Given the existence of this 1, define a functional tr:A + k by the formula 
tr(x) = I. Note that, since s’(G) = G, we have that A(Gx) = A(s’(G)x) = I(xG). 
Thus tr(x) = A(Gx) = A(xG). 

Theorem. With tr dejined as above, 
(1) tr(xy) = tr(yx)for all x,y in A. 
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(2) t@(x)) = tr(x)fir all x in A. 

(3) Cm(W) l)(&- ‘))lu = A(u-‘)u where v = G-‘u is the ribbon element. 

Proof. The proof is a direct consequence of the properties (1) and (2) of 
1. Thus tr (xy) = R(Gxy) = l(s2 (y)Gx ) = L(GyG- ’ Gx) = A(Gyx) = tr (yx), 
and tr (s(x)) = n(Gs(x)) = n(gG-‘s(x)) = n(s(G-‘s(x))) = n(s2(x)s(G-‘)) 
= L(s2(x)G) = L(GxG-‘G) = ;1(Gx) = tr(x). Finally, [m(tr 8 l)(d (u- ‘))]u 
= G-‘[m(l.G@ G)(d(u-‘))]u = [m(n@ l)(d(Gu-‘))]G-‘u = 1(Gu-‘)G-‘u = 
n(u- ‘)v. This completes the proof. 0 

The upshot of this theorem is that for a unimodular finite dimensional Hopf algebra 
there is a natural trace defined via the existent right integral. Remarkably, this trace is 
just designed to behave well with respect to handle sliding. Handle sliding is the basic 
transformation on framed links that leaves the corresponding 3-manifold obtained by 
amed surgery unchanged. See [13]. This means that a suitably normalized version of 
this trace on framed links gives an invariant of 3-manifolds. For a link K, we let 
TR(K) denote the functional on links, as described in the previous section, defined via 
tr (above). 

A proper normalization of TR(K) gives an invariant of the 3-manifold obtained by 
framed surgery on K. More precisely, (assuming that n(u) and J(v-‘) are non-zero) let 

INV(K) = ([~(~)~(Y-~)]-~(~)‘~[,Q)/~(u-~)]-~(~)’~}TR(K) 

where c(K) denotes the number of components of K, and s(K) denotes the signature of 
the matrix of linking numbers of the components of K (with framing numbers on the 
diagonal), then INV(K) is an invariant of the 3-manifold obtained by doing framed 
surgery on K in the blackboard framing. This is our reconstruction of Hennings 
invariant [6] in an intrinsically unoriented context. 

3.1. Handle sliding 

The rest of this section is devoted to a discussion of the relationship between handle 
sliding and the trace function that we have defined on the Hopf algebra in terms of the 
right integral 1. This provides the reasoning behind the construction of the 3-manifold 
invariant. We begin with a quick review of the Kirby calculus [13]. 

In Section 2 we discussed ribbon equivalence of link diagrams. Recall that this is the 
equivalence relation generated by regular isotopy (Reidemeister moves II and III) plus the 
equivalence of curls shown below (preserving writhe but changing the Whitney degree). 
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In these terms, Kirby calculus adds two more operations on link diagrams. These 
are 

1. handle sliding, 
2. blowing up and blowing down. 

In handle sliding, we are given two link components A and B with A and B sharing 
parallel segments as shown below. 

Then A is replaced by A’ = A# B* where B* is a parallel copy of B and # denotes 
the connected sum of A and B* along the parallel segment. See the illustration below. 

=A#B* 

Note that B* is one of the components of A(B) where we have defined A(K) to be the 
parallel cabling of K for any single component object K. 

Blowing up and blowing down constitute the addition or removal from the link 
diagram of isolated singly twisted components as shown below. 
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Thus we can summarize the Kirby moves symbolically by the diagrams shown below: 

1. ->c- + ~(--, 

Each diagram in a ribbon equivalence class gives a specific 3-manifold upon surgery 
on the corresponding link. (The writhe of the diagram determines the framing for the 
surgery). Kirby’s theorem states that two such 3-manifolds are homeomorphic if and 
only if the corresponding links can be transformed into one another by a combination 
of ribbon equivalence, handle sliding and blowing up and down. 

In order for an invariant of ribbon equivalence of links to be an invariant of 
3-manifolds it is sufficient that it be unchanged under handle sliding and that it behave 
in a controlled way under blowing up and down. We now look at both of these issues 
for the trace function defined in this section. 

In the case of handle sliding, we can assume that the algebra on the lines is already 
concentrated as illustrated below for the position just before the slide. In this 
illustration we have a component that we wish to slide with its algebra concentrated 
as the symbol y, and we have a closed loop with algebra concentrated as x. Thus the 
invariant will compute the closed loop part as tr(xG- ‘) = ,4(xG-‘G) = L(x). We can 
indicate the computation for the whole situation by the formula tr(xG-‘)y = n(x)y 
where the y will come under the aegis of yet another trace function dependent upon 
the rest of the diagram. 

After the slide, we see that, by functionality, x has been replaced by 
A(x) = 1 xfl)@ xt2). As we illustrate in the diagrams below, this leads to the evalu- 
ation of the new closed loop as I(xo,) ad the handle slide has multiplied y by the 
algebra xt2) so that the new trace evaluates to the formula 

Hence, for handle sliding invariance, it is sufficient to have the equality 

WclY = C4X,l,h2,Y. 

Since I is a right integral, we know that 

4x11 = ~4X(l,)X(2,. 

This implies the desired equality, and hence the invariance of our trace under handle 
sliding! (see Fig. 2). 
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3(b Y x 

tr(xG-‘)y = J_(x)y 

> 
slide 

~WIG-‘hy = ~CGGY 

pLTzz--1 
Fig. 2 

For blowing up and blowing down, it is easy to see that the two l-framed loops 
evaluate as A(u) and A@-‘) respectively. The formula 

INV(K) = { [A(u)A(u- ‘)]-“K”2[A(u)/~(~-1)]-u(K)‘2} TR(K) 

then gives the correctly normalized invariant of 3-manifolds. 
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4. U&l,) 

The purpose of this section is to set up part of the general calculations for U,(slz)‘, 
and to sketch the calculation of the special case of the evaluation of the right integral 
on powers of the ribbon element u in the case n = 8. This will give us the result that the 
invariant INV(K) is distinct from the Witten-Reshetikhin-Turaev invariant at this 
root of unity. Complete details are found in [ll]. 

Recall the algebraic structure of U,(sl,)‘. 
Let t be a primitive nth root of unity, q = t2, m = order(t4). Assume m # 1 (that is 

n # 1,2,4). The algebra has generators and relations as given below. 

ae = qea, af = q-‘fa, a” = 1, em = 0 =f”, 

[e,f] = ef-fe = (a2 - a-‘)/(4 - q-l). 

The Yang-Baxter element is given by the formula below [14,20]. 

m-1 

R = c c CW u”-i(u-u)-v(q _ q-‘)U)/(n(~),!)]f”aiQ e”amu. 

v=O i,ueZ/nZ 

The coproduct is described by the formulas 

Aa=a@a, 

Ax=xQa-‘+aQx, x=e,J: 

The counit is determined by the formulas 

E(e) = E(j) = 0 and E(a) = 1. 

It follows from the definition of the antipode s that for x = e or f; 0 = 
E(x)1 = m(s@ l)A(x) = s(x)a-’ + s(a)x = s(x)a-’ + a-lx. (s(a) = a-l since A(a) 
= a@ a.). 

This means s(x) = - a - ’ xa, whence 

s(e)= -q4-‘e and s(f)= -4J: 

The special grouplike element is G = ae2. The special element u such that 
s’(x) = UXU- ’ for all x, is given by the formula u = Cs(R(‘))R(‘). The next lemma 
gives a specific formula for u. 

Lemma 1. u = Czii &jEz,nz [(t j(i-H-i2--3v(q-l _ q~)/(n(u),l)]ajeUf”_ 

Proof. See Ill]. •! 
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4.1. Change of basis 

We now make the following change of basis. Replace e by - (q - q- ‘)e. Then 

ae = qea, af = q-‘fa, a* = 1, e” = 0 = f”, [f, e] = a2 - a-‘. 

Note that in the basis the formula for u becomes 

m-1 
u = 1 1 [(tj(i--V)-i2- 3”)/(n(u)q!)]aje”f”. 

v=O i,jsZ/nZ 

4.2. Right integral 

A right integral 1 for A = U,(slJ is described as follows. Consider the linear basis 
for A given by the set (aiejfk10 s i I n, 0 <j, k c m}. Then n(w) for w EA is the 
coefficient of a2(“‘- ‘)em- ‘f m-1 in a writing of w in this basis. We can write 
1 = a2(m- ljem- 1 j’“-’ where the bar over the expression denotes the characteristic 
function of this element of the algebra A. That this formula gives the right integral can 
be verified by direct calculation [21]. 

4.3. Orthogonal idempotents 

Let Ai = (l/n) xjEZ/nZ t’jaj. Then AiAj = A$ij where 6ij is the Kronecker delta and 
1 = A, + A, + ... + A,_,. Thus {A,,A, ,... , A,_ 1 } form a set of orthogonal idem- 
potents for the group algebra k[G] where G = (a) = Z/nZ. 

From the relation 

c tik = 

n ifk=O 

0 if k # 0 
for k E Z/nZ, 

jsZinZ 

we have the following lemma. 

Lemma 2. a = &Z,,,Z t -iAi. 

Proof. See [l 11. q 

Hence 

ITI- 

u = “z. iegnz jegnz C(t-i’-3”Y((~)q91 Vi-“‘ajlnl e”f” 

= yzl (i~&(t-iz-3”/(~)~!)Ai-~)eYf 
Lemma 3. u = c(CFL,’ [(t-3”-VZ)/(v)q!]a2veu’) where c = CisZ,nZt-i2Ai. 
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Proof. See [l 11. 0 

4.4. The special case n = 8 

Let n = 8. Then m = 2, q = ,/ - 1 and the algebraic relations for UJsl(2)) are 

t* = 1, q = t2, ae = qea, af= q-lfa, a8 = 1, e2 = 0 =f2, [f; e] = a2 - ae2. 

Note that by the previous calculation, 

t4 = ~(1 + tC4a2ef) = ~(1 - a”ef) 

with c given as in Lemma 3. Recall that il = a2(‘“-‘)e”-‘j”-’ is a right integral for 

U,(s12)‘. Thus, when it = 8, the right integral is 1 = a’ef: 

Lemma 4. Let X = - a2ef: Then u = c(1 + X) and 

X2 = (a4 - 1)X = - 2(& odd Ai)X. 

Proof. See [l 11. Cl 

The special grouplike element in this case is G = a-‘. Thus the ribbon element is 
v = G-‘u = a2u. Thus v = a2c(l + X). To evaluate A(v“), let H = (a) be the cyclic 
group generated by a. Note that vk = co + clX, where q~k[H]. 

Lemma 5. Writing cl = &z/sz , a.Ai, with CliE k, A(u”) = ( - l/8) Ciez/szai. 

Proof. See [l 11. 0 

Lemma 6. Let n = 8 and let 1 be the right integral and v be the ribbon element for 
U,(s1(2))’ as described above. Then A(v”) = - k/2. 

Proof. See [ll]. 0 

Corollary. The value ofthe 3-manifold invariant INV(L(kl))for n = 8 is given by the 

formula INV(L(k, 1)) = n kfor k # 0. 

Proof. The surgery datum for L(k, 1) is an unknotted loop with k curls. Hence the 
unnormalized invariant is given by the formula TR(vkG-‘) = 
I1(GukG-‘) = il(vkG-i G) = ,?(v”) = - k/2. The normalized invariant is given by the 
formula 

INVL(k, 1)) = [A(v)A(v- ‘)I -c(K)‘2 [A(v)/A(v- ‘)I -“‘K”2TR(K). 
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Here c(K) = 1 and a(K) = 1 if k > 0, a(K) = - 1 if k < 0 since the link has one 
component, and the linking matrix is (k). We know that A(v) = - l/2 and 
A(u- ‘) = l/2. Therefore 

INV(L(k, 1)) = [(l/2)( - l/2)]- l”/( - l/2)1 ’ ‘( - k/2) 

= ( - 22)1’2( - l)( - k/2) = ( - 1)“2k. 

This completes the proof. 0 

Remark. This finishes our verification that the invariant INV is definitely different 
from the WRT invariant in the case n = 8, where WRT is trivial. During the 
preparation of our paper [ 1 l] it came to our attention that similar results have ben 
independently obtained by Tomotada Ohtsuki [ 181. He finds that invariants defined 
for U,(sl,)’ in a manner equivalent to ours necessarily vanish for 3-manifolds that are 
not rational homology spheres, and he performs calculations similar to ours for Lens 
spaces. 

It should also be mentioned that a formalism similar to ours (without the use of 
right integrals) appears in the paper [22] by Reshetikhin, and that new approaches to 
these ideas can be found in the papers [12,17]. 
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