CHAPTER IX

THE GALOIS THEORY OF
EQUATIONS

Suppose that there is given a cubic equation, say
x +ax+bx +c=o.

This equation will always have three roots, which will be

real or complex numbers, and which we will denote by «a,

B, v.

To find a, B, ¥ it is of course necessary to solve the equa-
tion, and this may not be an easy procedure, but there are
certain functions of the roots a, 8, ¥ which can be determined
easily without solving the equation.

If we are given a function of the roots, say o? 8, we can
in general form five other functions, e.g. a2y, B2q, B2y, y2 a,
73 B by taking a different arrangement of the roots a, B, y, i.e.
by operating on the function with a permutation interchanging
the roots, The six operations of the symmetric group give six
functions which are all distinct in this case.

It may happen that all the operations of the group leave
the function unchanged, as, e.g. when the function is (a +
B + y) or a B y. Such functions are called symmetric functions.
Any symmetric function of the roots can be expressed directly
in terms of the coefficients in the equation without solving
the equation.

Thus the equation

2 4+axt+bx+c=o0
must be exactly the same as the equation
(x —a) (x —B) (x —¥) =0,
and expanding the latter and comparing the coefficients of
the various powers of x,

a+,3 +7=_av
a,B +187+7a=bv
a8y=_60

65
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In terms of these any other symmetric function can be

expressed. Thus
Ad+p+yYP=(+8 ;*-7)21;-2(0‘/3 + By +ve)
=a? —2b.

Now it may happen that we can find a function of the
roots that is changed by some of the permutations but is left
unchanged by others. Then the permutations which leave it
unchanged will form a subgroup of the symmetric group, and
the function is said to delong to this subgroup.

Thus there is a subgroup of order two which contains the
identity and the interchange (a 8). Examples of functions
which belong to this subgroup are (a? + g82), (a + B), 7
ay + By

These functions of the roots cannot be expressed in terms
of the coefficients a, b, ¢, without solving the equation, but
they have the remarkable property that any one of them can
be expressed in terms of any other, with the aid of the co-
efficients.

Thus (e +B)=—a—y, ‘

(@ +8) =(a + B} — 20
=(a +y)* —2¢/y,
oy +py=—ay—y:

To express, say, yin terms of (a® + B?) is not so easy, but
can nevertheless be accomplished. Thus

P =a 4y — (o + ) =at —2b — (o + ),

and since Y¥+ay+by+c=o,
then y(P+b)=—ay*—q
so that y= —(ay® +)(y* + D).

This expresses y in terins of y2%, which in its turn has already
been expressed in terms of (a?® + £2).

Now there are three subgroups of the symmetric group,
each of order two, and of the same type as the one we are
considering. These are:

Gy 1, (a B);
Gs; I, (By);
35 I, (7 a)'

Any of these subgroups can be transformed into any

other by an operation of the symmetric group. They are
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called conjugate subgroups, and the set of three is a class of
conjugate subgroups.

The other subgroup of the symmetric group of order six
is the subgroup of order three consisting of the elements

G; I, (a:BY)v (aY:B)

This is different because there is no other subgroup con-
jugate to it. Every transform of G gives the same subgroup G,
and it is called a self conjugate subgroup.

An example of a function of the roots which belongs to
this subgroup is

(e —B)(a —7)(B —g) =alf + By +r%a —af? —

y2 —yal
The ratio of the order of the group to the order of the sub-
group is called the index of the subgroup.

We will now consider how the properties of these sub-
groups can be used in the solution of equations.

It is well known that, in general, the solution of an alge-
braic equation of degree greater than one involves irrational
numbers. Hence to find the solution, even of a quadratic,
some process must be employed which obtains an irrational
number. The simplest process which yields an irrational
number is the extraction of roots, that is the finding of the
square root, cube root or n-th root of a given number. We
say that an equation is solvable if by finding n-th roots of
numbers a certain number of times we can reach an expression
which satisfies the equation. It is well known that any quadratic
equation can be solved by the extraction of one square root.
Hence the quadratic equation is solvable.

Now if those functions of the roots of an equation which
correspond to a given group H are known, and the group H
has a subgroup G of index 7, then the functions which belong
to the group G can be obtained by solving an equation of
degree 7. Further, if G is a self conjugate subgroup of H and
r is a prime number, it can be shown that this equation can
be put in the form

=k,
and thus the step from the functions belonging to H to the
functions belonging to G can be made by the extraction of
one r-th root. Hence, if H is the symmetric group on n
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symbols, we can solve the n-th degree equation if we can finda
sequence of subgroups
H, G, Gy ..., Gf=I

ending in the group of order one which consists of the iden-
tity, such that each group is an invariant subgroup of the
preceding group, of prime index. Further, only when such a
sequence of subgroups can be obtained is the general n-th
degree equation solvable.

For the cubic equation such a sequence exists, for we can
take H as the symmetric group, then G as the invariant sub-
group of order 3, and finally the identity.

A function belonging to the group G is

D=(a—§)(a —7) G —7)—0‘2/3—%-,3“7 +yla —
— By —yal
Clearly D? is a symmetnc function. This can be expressed
in terms of 4, b, ¢ and is in fact
D? = —27c? — 4b° + a?b? + 18abc — 4a’c.

From this D is found by the extraction of the root, and since
a?B + Py +93a + apB? 4 By? 4 ya?is a symmetric func-
tion and hence is known, we can also find a2 8 + 82y + 9% q,
and all such functions as are unchanged when a, B8, y are
permuted cyclically.

It is now required to find, say, a? 8 by the extraction of a
cube root. The permutation S ‘which permutes a, 8, y cyclically,
satisfies S® == J. We therefore make it correspond to the
complex number w, which is a cube root of unity, @ = 4 (— 1
+iv/3

We) obtain thus from o2 8 by the operator (I + w S + «? S?%)
the quantity

Then

U=a?B+wply 4+ w?yla.

U8=a6ﬂ3 +'3078 +y°a3
+30aBy (B + By + 5 ad)
3w=aﬂy(aﬂﬁ*,;ﬁw + ')

These expressions all belong to the group G and can all
be evaluated. Further, since a8 belongs to the group of
order one, each of a, B, ¥ can be expressed in terms of it.

Now this method would be a very clumsy and laborious
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method to use in practice. Neat and concise methods like the
following are generally employed. For the general cubic
2 +ax® +bx +c=o0
replace (x + 4 @) by x to obtain a cubic in which the term
in x? is absent, say
X +px+qg=o.

Then if ¥ =y + 2 the equation can be written

YP+2 4393 +3)+p(y +2)+g=o0.
Further, suppose that y and # are restricted so that

3y3+p=o.
Then P+ =—yq
¥ 2 = — p¥27,

so that y® and 23 are the roots of
X A4gh—piayr =0

regarded as a quadratic equation in A. When %3 is found from
this by the extraction of a square root, then y can be found
from §® by the extraction of a cube root. Further 2 == — p/3y,
and the three roots of the cubic are

y+2 0y +oz oy tos
where w is the complex cube root of unity.

These two methods are, however, fundamentally the
same. The second is just a simplified and neat form of the
first, It applies only to the cubic, however, and has no appli-
cation to any other equation.

The first method, however, is perfectly general and can
be used to solve any solvable equation.,

For the quartic equation with roots a, B, ¥, 8, the appro-
priate group is the symmetric group on the four symbols
a, B, v, 8. The 24 operations of this group separate into
five classes which correspond to the partitions of 4. The
orders of the classes are as follows:

Class: (14), (x®2), (13), (4), (2°).
Order: 1, 6, 8 6, 3.

This symmetric group has a self-conjugate subgroup of
order 12, which consists of the classes (14), (13) and (2%). We
denote the symmetric group by H, and this group of order
12, which is called the alternating group, by G,.

The group G, has a self-conjugate subgroup of order 4,
which we denote by G,, which is composed of the elements
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from the classes (14) and (22), i.e. the elements I, (a B) (¥ 3),
(e ) (BS), (a8) (By). These elements are all self-conjugate
in G,, and hence there are self-conjugate subgroups of order 2,
e.g. G, consisting of I and (a 8) (y 9).

To solve a quartic equation with roots a, 8, y, 8 we obtain
first a function of the roots belonging to G,. The simplest of
such functions is
D=a8’327 +a3‘y28 +a382,3 +,83y2a +ﬁaa28 +'38827

+PPa?B PSP+ Bty + 5y E 4+ B a
—a3y2B —adly —ad Py — PPaly — B3 a —p3y?3
— 3 Ba — P8 —9y2a?d — 8392 _33’327 —8%a2p
=(a—B) (a—7) (@—8 (B=2) (B—3) (y—d.

Then D? is clearly a symmetric function and can be ex-
pressed in terms of the coefficients in the equation, and extrac-
tion of the square root gives the value of D.

Putting D = D; — D, where these represent respec-
tively the positive and negative terms, clearly D; + D, is a
symmetric function expressible in terms of the known co-
efficients and hence can be found D, and D,

The simplest function* belonging to the group G, is
(¢ B + y 8). This group is of index 3 in G, and the conjugate
expressions are (a y + B8), (a 8 + 8 y). Hence put

Z=(aB+y8) +alay+B5) +a(ad+fy)
w}ﬁere w is the complex cube root of unity 4 (— 1 + #4/3).
Then

B=rl3F +32aByd+w[D;+2aBy8Faf]

@®[Dy +2aBy82ap].
This can be expressed in terms of the symmetric functions
and D. Hence Z can be found by the extraction of a cube
root. From Z the values of (a8 + y38), (ay +B9), (¢ & +
B v) can be deduced.
To proceed to the group G, we put
w=af —yé.
Then w2 =(aB +y8) —4aByd is known, and the ex-
traction of a square root gives the value of w, from which a 8
may be determined. The function (a + B) belonging to the

* Strictly, this function belongs to a group of order 8 which is mentioned
below, and which includes Gz as a subgroup. The other 4 operations are
excluded, however, by the use of D.
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same subgroup as a 8 can be expressed in terms of a 8, and
the roots a and B are determined by solving the known
quadratic equatlon

8 —(a+pB) x+af=o0.

This shows that any quartic equation can be solved by the
extraction of roots. Once again, to use the above method as
described to solve a given numerical quartic equation would
prove awkward and cumbersome, but once it is known that
an equation is solvable it is comparatively straightforward to
devise a neater and more usable method.

In actual practice it is more convenient to proceed from
the symmetric group to the group of order 8 comprising

LR (3, (@5) 48) (o) (89)
(@) (By), (ayB9), (a3 B7).

This group is of index 3 in the symmetrlc group, but is
not self-conjugate, and gives rise to a cubic equation called
the auxiliary cubic. It is not of the form y® = ¢, since the sub-
group is not self-conjugate, but is quite a general cubic equa-
tion. It is solvable since every cubic is solvable.

The group of order 8 has the self-conjugate subgroup
consisting of 1, (a B), (v 3), (a B) (v 8). The transition to this
subgroup is equwalent to the factorization of the quartic into
two quadratics, from which the solution follows.

Thus if the quartic is

¥+ 4ax+6bx®+4dx +e=o,
this is put in the form
(x*+2 a x+y)'—[(44° +-2¢ —6b) x* +-(4ay —4d) x+y* —e]=o.

If y satisfies a certain cubic equation, the auxiliary cubic,
then the expression in the square bracket becomes an exact
square, so that the equation is of the form

(* + 2ax + ) — (px + g =
whence the factorization and solution follows.

Notice that y = 4 (a 8 + ¥ 8), which is a function of the
roots belonging to the above group of order 8.

The appropriate group for the general quintic or fifth
degree equation is the symmetric group of order 5! = 120.
This group has a self-conjugate subgroup of order 6o, the
alternating group. But it can be shown that this alternatmg
group has no invariant subgroup. Hence the procedure fails,



