
CLASSIFYING FINITE SUBGROUPS OF SO3

HANNAH MARK

Abstract. The goal of this paper is to prove that all finite subgroups of SO3

are isomorphic to either a cyclic group, a dihedral group, or the rotational

symmetry group of a regular solid. We begin by building up a set of defini-
tions pertaining to groups, particularly permutation groups and matrix groups.

Armed with these definitions and with the orbit-stabilizer and counting theo-

rems, we will tackle the proof of the classification.
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Introduction

This paper will prove that all finite subgroups of SO3 are isomorphic to either a
cyclic group, a dihedral group, or the rotational symmetry group of a regular solid.
In order to get to this result we will need a number of definitions, as well as some
ancillary results. We will start by defining the most basic concepts of group theory,
including groups, subgroups, and isomorphisms. With these definitions in hand we
will move on to definitions of conjugacy and cosets which will prove useful later on.
All of the definitions are drawn from [1] and [3]. Then we will discuss permutation
groups such as dihedral groups, which are one of the types of groups that feature in
our main result. The next section, on the platonic solids, also pertains directly to
that result: the section discusses the isomorphisms between symmteric groups and
the rotational symmetry groups of the solids. A section on matrix groups follows,
where we introduce special orthogonal groups, alongside other matrix groups. We
next discuss group actions, orbits, and stabilizers. These concepts and definitions
allow us to prove the orbit-stabilizer and counting theorems, which we will use
extensively in the proof of the main result. Finally, the last section goes through
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2 HANNAH MARK

two proofs: first, that of a less powerful classification of finite subgroups of O2,
and then that of our main result, the classification of finite subgroups of SO3.
Exposition on types of groups and the ancillary theorems is drawn from [1], and
the proofs in the last section are also based on [1], with some explication adapted
from [2].

1. Basic Group Theory

In order to classify anything, we have to know just what that thing is. To
classify a finite subgroup, we must define what a subgroup is, and, before that, a
group. These definitions constitute the essential mathematical framework in which
our proof will reside. Therefore, we will begin by defining some central concepts of
group theory.

Definition 1.1. A group is a set G together with a multiplication on G which
satisfies the following:

(1) The multiplication is associative, i.e. for all x, y, z in G, (xy)z = x(yz).
(2) There is an element e in G, called the identity, such that for every x in G,

xe = x = ex.
(3) For each element x in G, there exists an element x−1 in G, called the inverse

of x, such that x−1x = e = xx−1.

Definition 1.2. The order of a finite group is the number of elements in the
group. An infinite group has infinite order. If x is an element of a group, then the
order of x is the smallest positive number n such that xn = e, if such an n exists.
If no such n exists, then x is said to have infinite order.

Once we know what a group is and how many elements its set contains, we need
a way to figure out when two groups have the same structure. This leads us to the
following definition:

Definition 1.3. Two groups G and G′ are isomorphic if there is a bijection φ
from G to G′ such that φ(xy) = φ(x)φ(y) for all x, y in G. We call the map φ an
isomorphism.

Note that the following are true of isomorphisms:

(1) An isomorphism φ : G −→ G′ is a bijection; therefore, G and G′ must be
of the same order.

(2) φ maps the identity in G to the identity in G′, and inverses to inverses.
(3) If φ : G −→ G′ is an isomorphism, and H is a subgroup of G, then φ(H) is

a subgroup of G′.
(4) An isomorphism preserves the order of each element.

Given a group G, we can define a subgroup of G. Subgroups are more than just
subsets of the set of G, since subgroups preserve the group’s product.

Definition 1.4. A subgroup of a group G is a subset of G which forms a group
under the product of G.

By the definition of a subgroup, it is clear that every subgroup must contain, at
the very minimum, the identity element. Therefore, there is no “empty subgroup.”
The next definition shows us one way in which a subgroup can be constructed:
using a generating element.
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Definition 1.5. The subgroup generated by a subset X of G is the smallest
subgroup of G that contains X. If the subgroup fills out all of G, then we say X is
a set of generators for G. If there is an element x in G that generates all of G,
then we call G a cyclic group.

2. Conjugacy and Cosets

This next section deals with some ways in which group elements can interact.
They may seem a bit tangential, but we will need these concepts to understand
theorems which we will use in our classification proof.

Definition 2.1. Let x, y be elements of a group G. We say that x is conjugate to
y if gxg−1 = y for some g in G. The collection of elements conjugate to an element
x is called the conjugacy class of x.

For a fixed element g of the group G the function

G −→ G, x 7−→ gxg−1

is an isomorphism called conjugation by g.
We can see that conjugation by an element g of a group G is an isomorphism

since it is invertible and preserves a product. Invertibility is obvious, and we have
the simple calculation g(xy)g−1 = (gxg−1)(gyg−1) to show that the product is
preserved.

Definition 2.2. Let G be a group and H a subgroup of G. The set gH = {gh | h ∈
H} for some given element g of G is called the left coset of H determined by g.
We can define, similarly, a right coset Hg = {hg | h ∈ H}

3. Permutation Groups

Building on these definitions, we narrow our focus to some of the types of groups
that will figure in our classification: dihedral groups, symmetric groups, and alter-
nating groups.

Definition 3.1. A dihedral group is a non-commutative group of the symmetries
of a polygon, i.e. a group of the rotational and reflectional symmetries of a given
polygon. We denote the dihedral group of an n-gon by Dn, and we write its elements
as products of rotational symmetries r and reflectional symmetries s. A rotation r
is, specifically, a rotation of the plane by 2π

n , and s is any reflection.

It is helpful to consider a simple example of a dihedral group, D3. This group
corresponds to the group of rotational symmetries of a triangular plate. We can
rotate this plate about an axis through its center, perpendicular to the plane of the
plate, or we can reflect it in a line that passes through a vertex of the plate and
the midpoint of the opposite edge. With a little thought, we can see that D3 has
order 6.



4 HANNAH MARK

Figure 1. Axes of a triangular plate.

The dihedral group of an n-gon has order 2n: n rotational symmetries and
n reflectional symmetries. It is easy to see that an n-gon will have n possible
rotations about the axis perpendicular to its center (including the identity). For
reflectional symmetries, if n is odd, then each axis of symmetry connects a vertex
with the midpoint of its opposite side, giving n axes for the n vertices. If n is even,
then there are n/2 axes of symmetry connecting pairs of vertices, and n/2 axes
connecting midpoints of pairs of sides.

Definition 3.2. A permutation of some set X is a bijection from X to itself. The
collection of all permutations of a set X forms a group SX under the composition
of functions. When X is the set of the first n positive integers, we have a group
Sn, which is called the symmetric group of degree n.

Since Sn is the collection of permutations of n elements, it is easy to see that
there will be n! elements in the set of Sn.

Definition 3.3. A permutation written as (a1, a2, . . . , ak) inside a single pair of
brackets is called a cyclic permutation. The notation indicates that the permu-
tation sends a1 to a2, a2 to a3, etc., and finally, ak to a1.

Cycles are sometimes referred to in terms of their length: a three-cycle would
have three elements; an n-cycle, n elements. A two-cycle, which exchanges only
two elements, is called a transposition. Every n-cycle can be written as a product
of transpositions. While there can be several different ways to write an n-cycle as
a product of transpositions, if the given cycle can be written as a product of an
even number of transpositions, it cannot be expressed with an odd number, and
vice versa.

Symmetric groups and permutations are extremely useful. For example, we can
express a dihedral group, sayD3 again, as a subgroup of a symmetric group of degree
3 by labelling the vertices of our triangular plate and seeing where each element of
D3 moves the various vertices. A rotation by 2π

3 about the axis perpendicular to
the center of the plate would correspond to a permutation cycle (1, 2, 3).
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Figure 2. Rotation by 2π
3

.

Definition 3.4. An element of Sn which can be expressed as the product of an
even number of transpositions is called an even permutation, and the rest are,
naturally, odd permutations.

We now state, without proof, a proposition about an important subgroup of Sn,
called the Alternating Group.

Proposition 3.5. The even permutations in Sn form a subgroup of order n!/2
called the alternating group An of degree n.

Proof. See [1], p. 29. �

4. The Platonic Solids

The five platonic solids are the only regular convex polyhedra–that is, they are
the only convex polyhedra that are made up of congruent regular polygons with
the same number of faces meeting at each vertex. Although they may not seem to
fit in with the content presented thus far in this paper, they are in fact very much
connected to group theory in general, and to symmetry groups in particular. As
we aim to show in our final proof, the rotational symmetry groups of the solids are
isomorphic to finite subgroups of SO3. More specifially, their rotational symmetry
groups are isomorphic to particular symmetry groups.

The five platonic solids are: the tetrahedron, the cube, the octahedron, the
dodecahedron, and the icosahedron.

Figure 3. The five platonic solids.

The rotational symmetry groups of the solids are isomorphic to symmetry groups
as follows:
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solid: isomorphic to:
tetrahedron A4

cube S4

octahedron S4

dodecahedron A5

icosahedron A5

Note that the rotational symmetry groups of the cube and octahedron, and
the icosahedron and dodecahedron, are isomorphic to the same symmetry groups.
This is because they are what are called dual solids, meaning that one can be
constructed from the other by connecting vertices placed at the centers of the
faces of its dual. That is, dual solids are pairs of solids with faces and vertices
interchanged.

Figure 4. An octahedron can be drawn by connecting the centers of
the faces of a cube.

The cube and the octahedron are dual solids, and thus they have the same
amount of symmetry; the dodecahedron and the icosahedron are also dual. The
tetrahedron is self-dual.

5. Matrix Groups

Matrix groups provide a useful way of representing the rotational symmetries we
want to classify. In order to use these groups in our proof, we must first define the
basic terminology of matrix groups.

The set of all n × n matrices with real-number entries forms a group under
matrix multiplication. Each matrix A in this group determines an invertible linear
transformation fA : Rn −→ Rn defined by fA(x) = Ax for all vectors x in Rn. The
product matrix AB determines the composite linear transformation fAB .

Definition 5.1. We call the group of n × n invertible matrices with real number
entries the General Linear Group, GLn(R).

Definition 5.2. An n × n matrix A over R is orthogonal if AtA is the identity
matrix.

The collection of all n× n orthogonal matrices is a subgroup of GLn called the
Orthogonal Group, On. The elements of On which have determinant equal to
+1 form a subgroup of On called the Special Orthogonal Group, SOn.
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If A is an element of On, the corresponding linear transformation fA preserves
distance and orthogonality. We can see this by taking two elements x and y in Rn,
applying fA, and taking a scalar product of fA(x) and fA(y).

〈fA(x), fA(y)〉 = 〈AtAx, y〉 = 〈x, y〉
Since the length of x in Rn is equal to

√
x · x, taking the scalar product of fA(x)

with itself shows us that fA preserves the length of x.
A 2 × 2 orthogonal matrix represents either a rotation of the plane about the

origin, or a reflection in a straight line through the origin. Such a matrix is in SO2

precisely when it represents a rotation. This may sound far-fetched, but we can
intuit where the idea comes from by considering a matrix A in O2. The columns of
A are orthogonal, and let’s say that they are unit vectors. Now we are working on
the unit circle, and our matrix for a rotation counterclockwise through θ is:

A =

[
cos θ − sin θ
sin θ cos θ

]
Trigonometric identities tell us that this matrix has a determinant of +1 for any

angle θ.
If we keep looking at the unit circle and take the orthogonal columns of a matrix

B to be, once again, unit vectors, we find that a reflection matrix across a line
through the origin at angle θ/2 is:

B =

[
cos θ sin θ
sin θ − cos θ

]
and this matrix obviously has a determinant of −1.

Similarly, each matrix in SO3 represents a rotation of R3 about an axis which
passes through the origin.

6. Actions, Orbits, and Stabilizers

Groups become even more interesting when we consider the ways in which they
“act” on other mathematical objects. A group action, a way in which a group
interacts with a set, can help us to understand both the group and the set it acts
on in new ways. In this section, we deal with group actions and some concepts that
follow. The definitions and the theorems in this section are integral to our classifi-
cation proof, as they include the orbit-stabilizer and counting theorems, which we
will use extensively.

Definition 6.1. An action of a group G on a set X is a homomorphism from G
to SX . That is, we can define a homomorphism φ : G −→ SX where for each g in
G, φ(g) gives us a permutation of the points of our set X. Written another way, an
action of a group G on a set X is a map from G×X to X satisfying the following
conditions:

(1) For all g1, g2 ∈ G, x ∈ X, (g1 · g2)(x) = g1(g2(x))
(2) For all x ∈ X, 1 · x = x.

Definition 6.2. Given an action G on a set X and a point x in X, the set of all
images g(x) for all g in G is called the orbit of x, and is written G(x). That is,
G(x) = {g(x) | g ∈ G}.

Our dihedral group of a triangular plate provides a very simple example of these
concepts. The group D3 consists of rotations and reflections which, as we noted
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previously, can be represented by permutations of the numbers 1, 2, 3 by numbering
the vertices of the triangular plate. Thus, the group D3 acts on the set of the
numbered vertices {1, 2, 3}. Since each vertex can switch places with either of the
other two, the action has only one orbit.

Definition 6.3. For a point x in our set X, the elements of G which leave x fixed
form a subgroup of G called the stabilizer of x, Gx. That is, for a fixed x in X,
Gx = {g ∈ G | g(x) = x}.

The stabilizer of any vertex of our triangular plate will contain two elements:
the identity, and rotation by π about the axis through the given vertex and the
midpoint of the opposite side.

Figure 5. A rotation stabilizing 1.

The rotation shown in the figure above would be in the stabilizer of the vertex
labelled 1.

We state the following without proof, as it will be used briefly in the proof of
the counting theorem.

Proposition 6.4. Points in the same orbit have conjugate stabilizers.

Proof. See [1], p. 94. �

Our example of D3 can help to clarify this proposition. Consider that all three
vertices of the triangle are in one orbit. If we look at the reflection in the picture
above, and call that reflection s, we can conjugate s by a rotation r which we define,
in the left-hand triangle, as the permutation (1, 2, 3). It is easy to see that s fixes
1, and rsr−1 fixes 2.

7. Important Theorems

These theorems are justly called important; they feature prominently in the
classification proof, as well as being interesting results in their own right. They
show us the connections between a group action, its orbits, and the stabilizers of
the elements of the set that is acted upon.

Theorem 7.1. The Orbit-Stabilizer Theorem: Let X be a set, and G a group
acting on X. For each x in X, the correspondence g(x) → gGx is a bijection
between G(x) and the set of left cosets of Gx in G.

Proof. We want to show that the correspondence g(x) → gGx is bijective. It is
clear that this correspondence is surjective: For any x in X, every gGx obviously
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corresponds to one g(x) as g runs through G. In order to show that it is injective,
let us consider g and g′ in G. If gGx = g′Gx, then we can say that gh1 = g′h2 for
some h1, h2 in Gx. Then, setting h2h

−1
1 = h, we get that g = g′h for h in Gx. But

this means that
g(x) = g′h(x) = g′(h(x)) = g′(x)

since h is in Gx (i.e. h(x) = x). Thus we see that if gGx = g′Gx, then g(x) = g′(x),
proving that the correspondence is also injective, and therefore bijective. �

Corollary 7.2. If G is finite, the size of each orbit is a divisor of the order of G.

Proof. By the Orbit-Stabilizer theorem, we know that the size of the orbit of x is
equal to |G|/|Gx|, so we have:

|G(x)||Gx| = |G|
�

Theorem 7.3. The Counting Theorem: Let G be a finite group acting on a set
X, and write Xg = {x | gx = x}; that is, the set of x in X that are left fixed by a
given element g of G. The number of distinct orbits is:

1

|G|
∑
g∈G
|Xg|.

In other words, the number of distinct orbits is the average number of points left
fixed by an element of G.

Proof. We have the group action G × X −→ X which maps (g, x) 7−→ g(x), and
we will start by counting the pairs (g, x) where g(x) = x. By our definition of Xg,
that number is the sum:

(7.4)
∑
g∈G
|Xg|.

This sum counts pairs by summing the number of elements x of X that are left
fixed by g in G as g runs through G. Since we define the stabilizer Gx as the set of
all elements g in G that fix a given x, we can rewrite equation 7.4 as

(7.5)
∑
x∈X
|Gx|

where we count the same pairs by summing all stabilizing elements g in G over
X. Let us call the number of distinct orbits of our action k, and these orbits
X1, X2, . . . Xk. Since these distinct orbits together make up our set X, we can
rewrite equation 7.5 as

(7.6)

k∑
i=1

∑
x∈Xi

|Gx|

We know from proposition 6.4 that points in the same orbit have conjugate sta-
bilizers, and thus we know that the stabilizers of points in the same orbit are the
same size. So, given any element x1 in Xi, we have:∑

x∈Xi

|Gx| = |Xi||Gx1
| = |G(x1)||Gx1

| = |G|
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by the Orbit-Stabilizer theorem. We can then see that combining all of these
equations gives ∑

x∈X
|Gx| = k|G| =

∑
g∈G
|Xg|

And so, dividing through by |G| gives us our desired formula:

(7.7) k =
1

|G|
∑
g∈G
|Xg|

�

8. Classifying Finite Subgroups of SO3

The special orthogonal group SO3 can be identified with the group of rotations
of R3 about a fixed origin. If we take an object and orient it appropriately at the
origin, its rotational symmetry group will be isomorphic to a subgroup of SO3.
We will show that there are only three possibilities for these subgroups, provided
they are finite: cyclic groups, dihedral groups, and rotational symmetry groups of
regular solids. All three of these possibilities do, in fact, occur.

First, we will prove a related but less complex result about finite subgroups of
O2.

Theorem 8.1. A finite subgroup of O2 is either cyclic or dihedral.

Proof. Let G be a nontrivial subgroup of O2. We have two cases to consider: G
can be a subgroup of SO2 as well as O2, or it can have some elements in O2−SO2.

First, suppose that G is a subgroup of SO2. As we stated earlier with our
definitions of orthogonal and special orthogonal groups, a 2× 2 orthogonal matrix
is in SO2 precisely when it represents a rotation of the plane about the origin.
Thus, we know that in this case every element of G represents a rotation of the
plane.

Take Aθ to be the matrix in G which represents a counterclockwise rotation
through θ about the origin, with 0 ≤ θ < 2π. Choose Aφ in G so that φ is positive
and as small as possible. Now, we can use the division theorem to write θ = kφ+ψ
for some positive integer k and with 0 ≤ ψ < φ. This gives us:

Aθ = Akφ+ψ = (Aφ)kAψ

which can be rearranged to
Aψ = (Aφ)−kAθ.

Since Aθ and Aφ are both in G, this means that Aψ will also be in G. We chose φ
to be the smallest positive rotation in G, but ψ is less than φ, so ψ must be zero in
order to avoid contradiction. Therefore, Aφ generates G, meaning that in this case
G is cyclic.

Next we address the other case, where G is not completely contained in SO2.
Set H = G∩SO2. Then H is a subgroup of G, and by the first case H will be cyclic
since it is entirely contained in SO2. Choose a generator A for H, and an element
B which is in G but not in H. B is therefore in O2 and not SO2, and represents
a reflection. Thus, we have that B2 = I. If A = I, then G contains only I and B
and is a cyclic group of order 2. Otherwise, A has order n ≥ 2, and the elements
of G are:

I, A, . . . , An−1, B,AB, . . . , An−1B
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with B2 = I, An = I, and BA = A−1B. We know that these are all the elements of
G because the set includes all combinations of A and B where neither is raised to a
power greater than its order. If we take A to correspond to rotational symmetry r
and B to correspond to reflectional symmetry s, we have an isomorphism between
G and the dihedral group of an n-gon Dn. �

Now we can move on to the big theorem: classifying all of the finite subgroups
of SO3.

Theorem 8.2. A finite subgroup of SO3 is isomorphic either to a cyclic group, a
dihedral group, or the rotational symmetry group of one of the regular solids.

Proof. We will proceed in stages. First, we will show that a finite subgroup G of
SO3 acts on the set of poles fixed by the rotations in G. We will then use the
counting theorem to show that the action must have either 2 or 3 distinct orbits.
From the two-orbit case we will get cyclic groups, and from the three-orbit case
we will get four subcases leading to dihedral groups and the rotational symmetry
groups of the regular solids.

Let G be a finite subgroup of SO3. Each element in G (except for the identity)
represents a rotation in R3 about an axis through the origin. We notice that each
axis defined by an element of G will intersect the unit sphere at two points. For an
element g in G, call those two points the poles of g in G. Stated another way, the
poles are the only points on the unit sphere that are left-fixed by a given element.

Figure 6. The two poles of an element g. [1] p. 105.

It would be nice if G defined a group action on some set–this would allow us to
gather more information about these poles and about the group G. Luckily, there
is such a set: let X be the set of poles of elements in G − {e}. We will show that
G acts on X.

Take an element x in X and two elements g, h in G. Let x be a pole of the
rotation h. Then we have:

(ghg−1)g(x) = g(h(x)) = g(x)

This means that g(x) is left-fixed by ghg−1, and so by definition g(x) is an element
of X. Thus, we have found an action G×X −→ X, showing that G acts on X.

To proceed with the proof, we will apply the counting theoreom to this action
to restrict the possibilites for the sizes of X and the orbits of G.

First, we need to find some basic limitations on the points in X. Using the
counting theorem, the orbit-stabilizer theorem and some alegbraic manipulation we
can discover constraints on X which allow us to reduce our classification problem
to a small number of cases.
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Let N be the number of distinct orbits of our action. Choose one pole from each
orbit, and call these poles x1, . . . , xN . Every element g in G− {e} fixes two poles,
and the identity fixes them all. The counting theorem tells us that the number of
distinct orbits of an action is equal to the average number of points fixed by an
element of G. We can therefore write:

(8.3) N =
1

|G|
(2(|G| − 1) + |X|)

In order to understand what this equation tells us about our action, we have
to do some algebraic manipulation. First, we know that by definition, |X| =∑N
i=1 |G(xi)|; that is, the size of the set is the sum of the sizes of all the distinct

orbits of the action on the set. Plugging this into equation 8.3 and rearranging
some terms gives us

(8.4) 2

(
1− 1

|G|

)
= N − 1

|G|

N∑
i=1

|G(xi)|

Using the corollary to the orbit-stabilizer theorem, we can replace our sum of orbits
with a sum of stabilizers, yielding the following equation:

(8.5) 2

(
1− 1

|G|

)
= N −

N∑
i=1

1

|Gxi|

And finally, we bring N inside the sum:

(8.6) 2

(
1− 1

|G|

)
=

N∑
i=1

(1− 1

|Gxi|
)

At the beginning of the proof we stated that G was not the trivial subgroup.
Therefore, the order of G is at least 2, meaning that the left hand side of equation
8.6 must be between 1 and 2, inclusive. We also know that the stabilizer Gxi of
a given element xi contains at least two elements, since each xi is fixed by both
the identity and by the rotation g in G about the axis through the origin which
contains xi. This constrains the right hand side of equation 8.6, giving us

1

2
≤ 1− 1

|Gxi|
< 1 with 1 ≤ i ≤ N.

These constraints on the two sides of the equation tell us that N must be either 2
or 3.

If N = 2, then equation 8.4 gives 2 = |G(x1)|+ |G(x2)|. There can only be two
poles in this situation, and they determine a single axis. All rotations in G − {e}
must be about this axis. These rotations take the plane containing the origin and
perpendicular to the axis to itself. Thus we see that G is isomorphic to a subgroup
of SO2 and, by theorem 8.1, G must be cyclic.

When N = 3, we have multiple cases to deal with. Our first step is to identify
these cases. We will begin by renaming our three orbits: for convenience’s sake,
G(x1), G(x2), G(x3) will be called G(x), G(y), G(z). Equation 8.5 tells us that

(8.7) 1 +
2

|G|
=

1

|Gx|
+

1

|Gy|
+

1

|Gz|
where the right hand side of the equation will, obviously, be strictly greater than 1.
This narrows the number of cases we have to consider down considerably. Since we
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know that the cardinality of each of the stabilizers is at least 2, the largest any of
the fractions on the right can be is 1

2 . If we start with halves and then reduce the
fractions as much as possible, we find that only 4 cases remain where the right hand
side of the equation is strictly greater than 1 and the cardinality of each stabilizer
is at least 2. The cases are:

(a) 1
2 ,

1
2 ,

1
n , where n ≥ 2

(b) 1
2 ,

1
3 ,

1
3

(c) 1
2 ,

1
3 ,

1
4

(d) 1
2 ,

1
3 ,

1
5

If we reduce the fractions beyond 1
5 , the right hand side will not be greater than

1; therefore, these are all the possible cases. All that remains for us to do is to treat
each of these cases in turn, and to show that all lead to the kinds of subgroups we
expect.

Case (a) First consider the subcase where |Gx| = |Gy| = |Gz| = 2. By equation
8.7, |G| = 4. Every element in G other than the identity has order 2. We can see
this by taking an element g in Gx, not the identity, and supposing that g2 is not
the identity. Then g2 will be equal to some element of another stabilizer, say h in
Gy, where h is not the identity. But since g fixes x, simple calculation shows that
h would be in Gx, providing a contradiction and confirming that the order of g is
2.

We will call the elements of G (g1, g2, g3, e). Let g3 generate Gz, and recall that
any g in G preserves the distances between points. Selecting the pole called z,
we see that x and g(x) are equidistant from z, as are y and g(y). Focusing on x
instead, we see that z and g(z), and y and g(y), are similarly equidistant from x.
We have, from the corollary to the orbit-stabilizer theorem, three orbits with two
points each, and we see that it makes sense to rename the points g(x), g(y), g(z)
as −x,−y − z, as the conditions of equidistance define the familiar perpendicular
axes of 3-dimensional space. Given three nontrivial elements each of order 2, with
g3 = g1g2, we see that in this subcase we are dealing with the dihedral group with
4 elements, D2.

If we have |Gx| = |Gy| = 2 and |Gz| = n ≥ 3, then the order of G will be equal
to 2n by equation 8.7. The axis through z in X is fixed by g in Gz, so Gz is cyclic
of order n. Take g to be the minimal rotation in Gz, the generator of Gz. Then we
have x, g(x), . . . , gn−1(x), all distinct. If we had gr(x) = gs(x) with r > s and such
that r does not equal s mod n, then gr−s(x) = x. But, since z and −z are the only
two poles fixed by gr−s, and x cannot equal −z since |Gx| = 2, gr(x) cannot equal
gs(x). Finally, we use the fact that g preserves distance, and we write

(8.8) |x− g(x)| = |g(x)− g2(x)| = . . . = |gn−1(x)− x|.
We can see that x, g(x), . . . , gn−1(x) must be the vertices of a regular n-gon, and
G is the rotational symmetry group of the n-gon, Dn.

Case (b) |Gx| = 2, |Gy| = |Gz| = 3. By equation 8.7, |G| = 12. By the corollary
to the orbit-stabilizer theorem, the cardinality of the orbit of z is 4. Choose g the
generator of Gz, and choose an element u in the orbit of z so that u is not z or
−z. We can see that u, g(u), g2(u) are distinct, equidistant from z, and lie at the
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corners of an equilateral triangle. We can similarly choose to focus on u, or on any
one of the other points in the orbit, and we see that for example z, g(u), g2(u) are
equidistant from u and mark the corners of another equilateral triangle. Thus it is
obvious that we are dealing with a regular tetrahedron, and that G is the rotational
symmetry group of the solid.

Figure 7. The rotational symmetries of a regular tetrahedron. [1] p. 109.

Case (c) |Gx| = 2, |Gy| = 3, |Gz| = 4. By equation 8.7, |G| = 24. By the
corollary to the orbit-stabilizer theorem, the cardinality of the orbit of z is 6. Choose
g the generator of Gz, and choose an element u in the orbit of z so that u is neither
z nor −z. We can see that u, g(u), g2(u), g3(u) are distinct, equidistant from z, and
lie at the corners of a square. The last point in the orbit of z is −z. Similarly, we
know that −u will be in the orbit of u, which is also the orbit of z. −u cannot be
z or −z, and it cannot be g(u) or g3(u) because those two points are adjacent to
u. Therefore, −u must be g2(u). We can look at the orbit starting at any one of
the points, and we always see four equidistant points forming a square: thus, we
see that the points are the vertices of a regular octahedron and G is the rotational
symmetry group of the solid. We note in passing that since the octahedron and the
cube are dual solids, G is also the rotational symmetry group of a cube.

Figure 8. The rotational symmetries of an octahedron. [1] p. 109.

Case (d) |Gx| = 2, |Gy| = 3, |Gz| = 5. By equation 8.7, |G| = 60. By the
corollary to the orbit-stabilizer theorem, the cardinality of the orbit of z is 12.
Take g to be the minimal rotation which generates Gz, and choose u, v in the orbit
of z such that 0 < |z−u| < |z−v| < 2. This keeps everything in the unit circle, and
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allows us to see that we have u, g(u), g2(u), g3(u), g4(u), all distinct and equidistant
from z, and similarly v, g(v), g2(v), g3(v), g4(v). These two sets of points lie at the
vertices of two regular pentagons, and since the two sets of points are not the same
distance away from z we have two separate regular pentagons. The 12th point in
the orbit of z must be −z. Once again, we can shift our perspective to view our
12 points looking out from any one of the 12, and we will see the same picture:
two separate, equidistant regular pentagons, and then the negative point to our
viewpoint. Thus we see that our points lie at the vertices of a regular icosahedron,
and G is the rotational symmetry group of the solid. As with our octahedron and
cube, the icosahedron and the dodecahedron are duals, so G is also the rotational
symmetry group of a dodecahedron.

Figure 9. The rotational symmetries of an icosahedron. [1] p. 110.
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