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ON THE TOTAL CURVATURE OF KNOTS
By J. W. MiLNor

(Received October 5, 1949)

Introduction

The fotal curvature f | £”(s) | ds of a closed curve C of class C”, a quantity
C
which measures the total turning of the tangent vector, was studied by W.
Fenchel, who proved, in 1929, that, in three dimensional space, / | £”(s) | ds =
c

2w, equality holding only for plane convex curves. K. Borsuk, in 1947, extended
this result to n dimensional space, and, in the same paper, conjectured that the
total curvature of a knot in three dimensional space must exceed 4w. A proof
of this conjecture is presented below.!

In proving this proposition, use will be made of a definition, suggested by R. H.
Fox, of total curvature which is applicable to any closed curve. This general
definition is validated by showing that the generalized total curvature «(C) is

equal to f | £7(s) | ds for any closed curve C of class C”. Furthermore, the
(o}

theorem of Fenchel and Borsuk is true for any closed curve, if the new definition
of total curvature is used.

Closely related to the concept of total curvature is a new invarient u(€), the
crookedness of the isotopy type € of closed curves. This is either a positive in-
teger or «, according as the type € is or is not represented by a polygon. In
terms of the concept of crookedness it is possible to provide an alternative
formulation of the generalized total curvature as a Lebesgue integral over an
(n — 1) dimensional sphere. The crookedness u(€) of a type € of simple closed
curves is connected with the total curvatures of its representative curves C by
the fundamental relation 27u(€) = g.Lb. «(C). Generally speaking this lower
bound is not attained.

In the course of the paper several interesting incidental results are obtained:
if the total curvature of a simple closed curve is finite, then there is an inscribed
polygon equivalent to it by isotopy, and also if the curve is knotted there must
be a plane which intersects it in at least six points.

I am indebted to R. H. Fox for substantial assistance in the preparation of
this paper.

1. The Total Curvature of a Closed Polygon

By a closed polygon P in Euclidean n-space H", n = 1, will be meant a finite
sequence of points Gy, a;, *+* , Gm_, Gm = Go , of Which is required only that

! Since the completion of this paper, there has appeared an independant proof, by I.

Féry, that the relation f | £(s) | ds = 4 holds for all knots {6].
c
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a; ¥ ai41 , and the line segments a.a;1 for 7 = 0,1, --- ,m — 1. For convenience
let a; , where 4 is any integer, signify a¢) , where (?) is the least positive residue
mod m. The terms point and vector will be used synonymously, with every
vector referred to a common origin, so that a;41 — a; means the vector equal in
length and parallel to the line segment a.a;41 . Denote by a; the angle between
the vectors a;41 — a; and a; — a; satisfying 0 £ a; £ =. By the total curvature
k(P) of a closed polygon P is meant the angle sum S

1.1 Lemma.? The adjunction of a new vertex to a closed polygon cannot decrease
its total curvature. The curvature may remain constant if either the new vertex a;
and the two adjacent vertices a;_, and a;;1 are collinear or ;2 , @j1 , A7, Gj41, and
;42 are coplanar. Otherwise it must definitely increase.

Let P’ be the closed polygon with vertices a1, @z, -+ , @i, Gj41, " * 5 Qm -
Let P be the closed polygon with vertices a; , @, < -, @1, @5, Qg1 , **° 5 Am
obtained from P’ by adjoining the vertex a, . Denote by aifori=1,2, -,

F1a. 1
j— 1,7 4+ 1, ---, m the respective exterior angles of P’, and by o; for ¢ =
1,2, - ,5— 1,5, + 1, --- ,mthe respective exterior angles of P. Denote by

B~ the angle between a; — a; and ajq1 — @1, and by 8" the angle between
a1 — aj1and a;41 — a; . (See Fig. 1.)

By the triangle inequality for spherical triangles ajy + 8 = a;_l , where the
equality can hold only if the three angles lie in a plane, that is, only if a;—s,
a1 ,a; ,and aj4 are coplanar. Similarly ;. + gt = a;-+1 , where the equality
can hold only if a;; , a; , aj41 , and a;4» are coplanar. From the triangle with
vertices a;_; , a; , and a;4; we have 8~ + 8" = a; . Therefore

k(P) — k(P") = (ajo — o) + a; + (ajn — @j41)
-8 +aj -8 =0.

Hence x(P) = «(P’) and the equality can hold only if either aj— , aja, a;,
aj41 , and ;4. are coplanar or a;1, a;, and a;4, are collinear.

v

\
2 This proof is essentially the same as a proof given by Borsuk [1. pp. 254-256].
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1.2 CorOLLARY. If the vertices a;—s , a;_y , a;, and a;41 of a closed polygon P
are not coplanar, and the vertex a; ts replaced by a vertex a; which lies on the line
segment a;a;11 , then k(P) is decreased.

2. The Total Curvature of a Curve

By a closed curve C in Euclidean n-space H" will be meant a continuous vector
function r(t) = (r:(t), -+, 1.(t)) of period I which is not constant in any t-
interval. In particular any polygon can be described in this manner; it will be
convenient to regard a polygon as a closed curve, ignoring the dlstlnctlon between
different parameterizations. A closed curve r(f) is simple if 1(t) = z(tz) only
when (4 — &)/l is an integer.

A closed polygon P with vertices a; , -+ - , a, is said to be inscribed in a closed
curve r(t) if there is a set of parameter Values tisuch that t; <ty , bigm = 6+ 1,
and a; = r(¢;) for all integral values of 3.

2.1 LemMma. For any closed polygon P, x(P) = lu.b. {k(P")} where P’ ranges
over all polygons inscribed in P.

If P is a polygon having two or more vertices coincident, it can be represented
as the limit of a sequence of polygons with all vertices distinct; hence it only
remains to prove the lemma for P with all vertices distinet.

If P;is a representative inscribed polygon whose vertices include all but m
of the vertices of P, we may adjoin the remamlng vertlees of P one by one to
P, ) producing a sequence of polygons P;, Py, -- , Py, . By 1.1, x(P) <
k(P £, -+, < «(P,); but k(P,) = k(P). Therefore K(P) Lu.b. {k(P")}.
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For each closed curve C define the total curvature by «(C) = lu.b. {x(P)} where
P ranges over all polygons inscribed in C. If C is itself a polygon, the preceding
lemma shows that this definition is consistent with the definition of Section 1.

2.2 TueoreM. If C is a closed curve of class C” parameterized by arclength s,

then «(C) = fc | £ (s) | ds.

If af = p(s¥), -, af = x(sw) are the vertices of a polygon P, inscribed in
C, such that lim e max; { (s;T1 — s7)} = 0, it will first be shown that lim . cor (P )

= f | ©”(s) | ds (Compare Fig. 2).
(o}
Define 57 = 1(s7 + st for every 7 and m. Denote by 67 the angle between
' (571) and '(37). The vector t'(s) describes a curve L of length f | t”(s) | ds
(o}

on the unit sphere S”~*. The vectors t'(57) form the vertices of a spherical poly-
gon of length Z’{‘_l @ which is inscribed in L. Therefore lim,, .« Z’{‘:l 07 =

[1¥@ as

Since ¢”(s) is uniformly continuous, for each ¢ > 0 there is a § > 0 such that
| 7 () — 1”(v) | < eforall | u — v | < 8. From the identity

Sier [V "
KT — 260 = (T — DEE) + [ [ 1w — Dl dudy

+ f’”m fm [ () — ¢’ (w)] dudv

we have
(sTr) — x(s¥
Bl 7 B s:'L'l o 'GP | < (st — s7) jI whenever max; {(sth — s7)} < 6.
i+l T i

If 47 is the angle between r(s71) — r(s7?) and ¢'(57), then sin ¢f < (5% — %)
¢/4, since the end point of the vector (r(siy1) — r(s7))/(stn — %) lies within a
sphere of radius (st — s7) ¢/4 about the end point of the unit vector ' (87).
Hence for sufficiently small e we have i < 2sin g7 < (siy — s7) ¢/2. The angle
between r(s%1) — r(s?) and r(s?) — t(si1) is of , while that between t'(57) and
' (87,) is 67 . Therefore of =< 67 + o7 + ¢i-1 and < ot + of + oia, SO
that | of — 67| < (sth — s71) /2, and | D =1 of — D n, 07| < le, where
1l is the length of C. Therefore

lim x(Pn) = lim 3> & = lim 3 67 = f | (s) | ds.
C

m—+0 m—o0 1=1 m—0 =1

In order to show that f | £7(s) | ds = Lu.b. {(P)} for P inscribed in C, it only
C

remains to show that «(P) = f | £”(s) | ds.
C
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Given any polygon P; inscribed in C, we may form a sequence of polygons
P, form = k, k + 1, --- by adjoining vertices to P; so that

]imﬂz—mo max; {(S,'+1 —_ S,’)} = Q.

By L1 «(Py) £ «(Pap) < -+, but limp.e x(Pn) = ]'| ’(s) | ds, and
(o}
therefore «(P;) =< f [t ”(s) | ds.
(o}

3. The Crookedness of a Closed Curve

For each closed curve ' and each unit vector b, define r(C, b) to be the number
of maxima of the function b-r(f) (i.e. the number of parameter values ¢, for
which b-2(t) = b-z(¢) for ¢ within some neighborhood of t) in a fundamental
period. For each closed curve C' define u(C) = min, {u(C, b)}. We may call
u(C) the crookedness of C.

For every vector a;1; — a;inthe space H" define b; = (a1 — a;)/ | @iy — a; .
According to the convention introduced earlier, b; also denotes a point on the
unit sphere S™7', the spherical image of ;1 — a; . Given a polygon P with
vertices a1, az, -+ , @, a spherical polygon Q is formed on S"* by joining
each b,y to b; by a great circle arc of length «;. This spherical polygon @
is called a spherical image of P, and is unique unless for some j the vector
bj = —b;41 . Note that it may happen that b, = b, .

3.1 TuroreMm.’ For any closed curve C in H ", m = 2, the Lebesgue integral

/ ) u(C, b)dS, where b ranges over the unit sphere, exists and is equal to
n

(M,1k(C)) /27, where M,y = (27" /T(n/2) is the measure of 8™

We will first consider the case in which the curve is a polygon P. For every
point b of 8”7, let S; ™ denote the great sphere of 8™ which has a pole at b.
An edge b;_;b; of Q crosses S¢~*if and onlyif b- (a;12 — a;) and b- (a; — a,_;) have
opposite sign, so that b-a; is a maximum or minimum of b-t(¢). Therefore, if
Sy~ contains no vertex of Q, (i.e. no edge of P is perpendiuclar to b) the number
of intersections of Q with Sg? is 2u(P, b). The set of points b for which Sr™
contains some vertex of Q is the union of the finite collection of great spheres
Syi?; in each component of the complement with respect to S™ of U, Sy7* the

function 2u(P, b) is constant. The integral f . 2u(P, b)dS, where dS is the
=

element of surface on S"7, is therefore defined. The set of points b for which
Sy7* meets a given segment b;_,b; of length 0 < «; < = is a “double lune”
bounded by the great spheres S;;% and Si; >. Thus the contribution of b,_ib; to
2u(P, b) is 1 if b is an interior point of this lune and 0 if b is an exterior point,
The measure of this lune is («;M,_,)/7 where M,_; is the measure of the entire
sphere. Consequently

f 2u(P, B) dS = Urt 3 4o = Moty
sn—1

™ =1 ™

# This theorem is related to Crofton’s formula. Cf. [3. p. 81].
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If C is an arbitrary closed curve (t), let P, be a set of inscribed polygons
I.(t) with vertices ai’ = ¢(f1), - -+ , am = r(fm) such that each P, contains all
the vertices of P, and satisfying lim,-« k«(P») = «(C) and lim,-» max;
{4 — 1)} = 0. The values of b for which b-r(¢) or any b-r,(¢) has an interval
of constancy form a set of measure zero, and therefore have no effect on the
integral. Such values will be ignored for the remainder of the proof.

We first show that u(C, b) = limp-w u(Pn, b). It is certainly true that
p(C,0) =2 u(Pm,b) =2 u(Pma, b). If u(C, b) < «, it is possible to select a neigh-
borhood of each of the u(C, b) maxima of b-¢(¢) and of each of its minima suffi-
ciently small so that a polygon with a vertex in each of these neighborhoods
must have at least u(C, b) maxima; which is certainly true of P, for m sufficiently
large. If u(C, b) = o, the set of values of ¢ for which b- ¢(¢) is a maximum must
contain a denumerable subset {f;;} such that eitherty < f < -+« < limioe oy <
b+ lorty >8> -+ > lim;nw by > t, — [. In either case we may select a series
of intermediate values f»;1; such that each b-x(fz;) > b-2(t2:41) and b-r(t:) >
b-r(t2iz1). Given any 2j < « we may select neighborhoods of the g(¢;), for
1 < 2j, so small that any polygon with at least one vertex in each neighborhood
has at least j — 1 maxima; which is true of P,, for m sufficiently large. Therefore
u(Pwm, b) increases without finite bound as m — . Each of the integrals

fsn_l w(Pm, b) dS exists; and the nondecreasing sequence of positive functions

u(Pn, b) approaches u(C, b). Therefore* the integral f . w(C, b) dS exists and
-
(M n—l) (M 7!—1)

27 27

k(Pm) =

equals limp - f w(Pr, 6)dS = limporo «(C).
sn—'l

3.2 CoroLLARY. k(C) = 2mu(C).

Since Mt o) = f £(C,b) dS = / W(C) ds = M_1u(C).
2r gn—1 gn—1

By a convex curve will be meant a closed plane curve deseribed by z(¢) such
that any line contains r(t) either for not more than two values of ¢ within a
fundamental period or for all values of ¢ within some interval.

3.3 LEMMA. The necessary and sufficient condition that a closed polygon P in
H? be convex is that for every b either u(P, b) = 1 or u(P, b) = .

It is clear that this condition is necessary. Suppose that P is a closed plane
polygon such that either u(P, b) = 1 or u(P, b) = o« for each b in the plane.
For any b such that u(P, b) = 1, any line perpendicular to b will intersect P in
at most two points. If b is a vector for which u(P, b) = o, and if H' is a line
perpendicular to b which intersects P a finite number, say r, of times, then it is
always possible to rotate H' about one of its points of intersection with P in the
proper direction so that r is not decreased. Hence there is a b and a H' perpen-
dicular to b such that u(P, 6) < « and the number of intersections of H'
with P is # = r. But by the first case, # < 2, and therefore r < 2.

4 [4. Theorem 12.6 p. 28].
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3.4 THEOREM. For any closed curve C, k(C) = 2. The equality holds if and only
if C 1s convex.

Since u(C) = 1 for every curve, or since every curve has an inscribed polygon
P for which x(P) = 2, we have «(C) = 2. Since any curve which is not convex
has an inseribed polygon which is not convex, and since a polygon inscribed in a
convex curve must be convex, it only remains to prove the second portion of the
theorem for polygons.

It is proved in plane geometry that the sum of the exterior angles of a convex
polygon is 2. If there were a non-planar polygon P for which «(P) = 2, we
could select four consecutive non-coplanar vertices (neglecting vertices for which
a; = 0). By 1.2 there would be a new polygon P’ such that «(P’) < «(P) = 2,
which is impossible. If there were a non-convex plane polygon P for which
k(P) = 2r, then 3.3 states that there would be a direction b for which 1 <
u(P, b) < «, but there is a neighborhood of any such b within which u(P, b) is

constant. This means that «(P) = f w(P, b) dS > fl dS = 2.
8t 8

4. The Curvature and Crookedness of Isotopy Types of Curves

In H” the closed curve described by r(¢) of period [, and the closed curve de-
scribed by E(f) of period I are said to be equivalent by isotopy if there is some
isotopy of H" onto itself, which transforms z(ul) into E(ul) for all u.

By a curve type € in H” is meant an equivalence class of closed curves under
isotopy. A curve type is simple if the representative closed curves are simple.

A simple curve type € and its members are said to be unknotted if € is that
type which contains all circles. If a simple curve type contains no circles then
the type and its members are said to be knotted.

A curve type € and its members are said to be tame® if € contains a polygon.
Otherwise they are said to be wild.” It is well known that in H® every simple
closed curve is unknotted. In H" for n > 3, every simple tame curve is un-
kunotted.

For each curve type €, define x(€) = g.l.b. ¥(C) and u(€) = min u(C), where
C ranges over all members of @.

4.1 LEmMA. For each ¢ and v in H" ™' such that | ¢ — p | < r, there is an iso-
topy, f(x), 0 £ w £ 1, of H" " onto itself which transforms ¢ into v and leaves
fized all points of H" ™' outside the (n — 2)-sphere of radius r and center ¢, such
that f.7(x) is a continuous function of u, t, ¢, and Y.

For example:

f&”(x)={¥_u[l|‘x“;‘c‘](”—f) for [z —c| =
r

for |z —cl =

4.2 TareoreM. For any simple closed curve C, such that u(C) < =, there is a
polygon P inscribed in C and equivalent to C by zsotopy.

5 This definition was given by Fox and Artin [5].
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If b is a unit vector for which u(C, ) < o, there are a finite set of values
h <t < -+ <ty <t + I, for which b-z(¢) has a maximum or minimum.
About each point r(¢;) construct a cylinder Z7'(0) with generators parallel to
b which intersects C' in exactly two points r(t7) and r(¢7) such that both lie ona
base of the cylinder and such that r(t7) is the center of this base. It will first be
shown that there is an isotopy of the closed n-cell bounded by Z;™'(0) onto
itself which leaves Z7'(0) fixed and transforms the curve segment () for
i <t < tf onto the polygonal line r(t7), r(t.), (t]).

Each hyperplane H" ™" perpendicular to b which intersects Z{'(0) intersects
it in a sphere S™°. Perform the isotopy of each H" ™' onto itself which transforms
the curve segment r(¢) for t; £ t <t into the axis of the cylinder, and which
leaves all points outside of the n-cell bounded by the cylinder fixed, as defined
by 4.1. Select a continuous sequence of coaxial cylinders Z;'(»), 0 < v < o,
such that any Z77'(7) is contained within all Z}™(») with » < 7, such that each
cylinder intersects C only in the center of one base and in one other point of that
base, and such that Z?7'(») tends to the point z(t;) as v — «. Rotate each
Z¥ '(v) about its axis so that each point r(¢) for f; < ¢t < ¢; is transformed into
the plane determined by r(f;) and the axis of the cylinders. Since we have trans-
formed r(¢) for 7 < t < ¢ onto a plane curve within Z77'(0), it is certainly
possible to transform it onto the polygonal line r(¢;), z(t:), (D), still within
Z¥710), producing an equivalent curve C described by F(£). This curve is divided
into 4u(C, b) = 4u(C, b) distinct segments by the points r(t7) and r(6). If
g > 0 is the gl.b. of the distances between distinct and nonconsecutive curve
segments, then for each point of C which is not within any of the Z7 ~ we may
construct the sphere S"* which has its center at the point, lies in a hyperplane
perpendicular to b, and has radius g/3. Since no two of these spheres can inter-
sect, we have in effect, constructed a tube around each curve segment outside the
cylinders, with no two tubes intersecting. It is now possible to inscribe a polyg-
onal line, lying completely within the tube, in each segment of C. Perform the
isotopy of each H" ™' perpendicular to b onto itself which transforms each of these
curve segments onto the corresponding polygonal line and which leaves fixed
all points outside of the S"~*. We have thus transformed C, and therefore C, into
an inscribed polygon P, equivalent by isotopy. (Note for future reference that
u(C, b) = #(P7 b))

4.3 CorOLLARY. The necessary and sufficient condition that a simple curve type
S be tame s that u(€) < .

4.4 CoroLLARY. The total curvature of a tame knot cannot equal the curvature of
1ts type.

Assume that C is a tame knot of type € with «(C) = «(€). Let P be a polygon
of type € inscribed in C. Then «(P) = «(C). Since P cannot lie in any plane, we
may select four consecutive non-coplanar vertices (if we ignore vertices for which
a; = 0). By 1.2 we may select a new polygon P, still a member of €, and having
k(P) < «(P) £ x(C) = «(€); which is impossible.

4.5 CorOLLARY. The crookedness of any knot is greater than or equal to 2.

If C is a curve with u(C) = 1, then, in the proof of 4.2 we can select the two
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cylinders with a common base. The first isotopy will then transform C into a
plane quadrilateral, which is certainly unknotted.

4.6 CorOLLARY. The total curvature of any knot is greater than 4.

4.7. TaeoreM. If € is a simple curve type, then «(C) = 2mu(C).

It has already been shown that «(C) = 2wu(C) for any C e € and therefore
that «(€) = 2xu(C). If u(€) = =, this proves the proposition. If u(€) < «,
we may select a curve C' of € and a direction b such that u(C, b) = u(G). By
4.2 there is a polygon P which is a member of € such that u(P, b) = u(C, b).
For convenience we will select a new coordinate system so that b is parallel to

the x, axis. We may then define the isotopy Fu(xi, 2,23, -+, 2.) =
(%1, uxe , uxs , -+, ux,) for 0 < u =< 1. This evidently transforms P into an
C

A P: AEBC
YAl R: AEBD

\/E E:ADBC

F1c. 3

equivalent polygon P, such that u(P, , b) = u(P, b). Ifa?,1 < ¢ < m, is the
set of vertices of P, , we may divide it into four subsets:

(a) vertices a;’ such that b-aj; < b-ai® < b-ai,

(b) vertices a;’ such that b-aj; > b-af > b-afy,

(e) vertices a;’ such that b-a;"; < b-af > b-a¥y,

(d) vertices a;* such that b-ajy > b-af < b-afy .

(If an equality were to hold, we would have u(P, , b) = «.) Evidentlythe number
of vertices in (c) equals the number in (d) equals x(€). However for members of
(c) and (d), limyo (@) = 7; whereas for (a) and (b), lim,_o (a}) = 0. Therefore
limyo k(Py) = 27u(G).

As another interesting consequence of Theorem 4.2, we have the following.

4.8 THEOREM. Given a knot C in H® for which u(C) < o, there is a plane whose
intersection with C consists of at least siz components.

Since every such C has an inscribed polygon which is knotted, and since a
plane intersects a curve at least as many times as it intersects an inscribed
polygon, it only remains to prove the theorem for knotted polygons. If there is a
polygon which does not satisfy the theorem, there must be one having a minimum

number of sides. If P is such a polygon, we have: 4r < «(P) = %fz w(P, b)dS.
8

Therefore there must be some unit vector b such that 2 < w(P, b) and also
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b-a; # b-a, for every pair of distinct vertices a; and a; of P. If we select a plane
perpendicular to b and move it parallel to itself in the direction of b until it
intersects P, it must first intersect P in a minimum (i.e. an a; such that b-a; <
b-a;.1). After this it will intersect P in two points, until it intersects another
minimum, after which it will have four intersections. If it next reaches another
minimum, the theorem is proved. If it next reaches a maximum, there will then
be only two intersections. Join these two points by a line segment, so that two
new polygons are formed by this segment and the sides of P. (See Fig. 3.) At
least one of these new polygons, P; , must be knotted. Since u(P) = 3, each of
the new polygons Py and P; must have at least five sides. Since P; has five or more
sides, P; must have fewer sides than P; and therefore there must be some plane
intersecting P; in six or more components. It is clear that this plane must
intersect the original polygon P itself in six or more components.
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