## Three Extra Credit Problems For Math 215

1. Consider the rectangle diagram shown in the figure below. The corners of the rectangle are $A, B, C, D$ and there is a point $P$ in the rectangle whose distance from $A$ is $a$, from $B$ is $b$, from $C$ is $c$ and from $D$ is $d$. Prove that

$$
a^{2}+d^{2}=b^{2}+c^{2} .
$$


2. Prove that

$$
2=\left(2+\frac{10}{\sqrt{27}}\right)^{1 / 3}+\left(2-\frac{10}{\sqrt{27}}\right)^{1 / 3} .
$$

In order to do this, note that if $x=a+b$, then

$$
x^{3}=a^{3}+b^{3}+3 a b(a+b) .
$$

Hence

$$
x^{3}=a^{3}+b^{3}+3 a b x .
$$

Apply this result to the problem.
3. Let $S$ be a subset of $\{1,2,3, \cdots, 2 n\}$. Suppose that $|S|=n+1$. Prove that $S$ contains two numbers such that one number divides the other number. (Hint: Any natural number $m$ can be written in the form $m=(2 k-1) 2^{j}$. That is, it can be written in the form of an odd number times a power of two. For such a number $m$, define $f(m)=k$. Show that this gives a map $f: S \longrightarrow\{1,2, \cdots, n\}$, and make use of this map. )

