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Abstract Mathematics




INTRODUCTION
FOR THE STUDENT

This text and others like it are often described as transition books, primers
for higher-level mathematics. What do we mean by a transition book and
why is such a book necessary?

By now, you have seen a significant amount of mathematics, including
at least a year or two of calculus and possibly some linear algebra. The
mathematics in these courses is quite sophisticated. Calculus, for example,
as developed by Newton and Leibniz, is the greatest mathematical achieve-
ment of the seventeenth century. The tremendous scientific advances of
the last 300 years would not have been possible without the formulas and
algorithms that follow from the theory of the integral and the derivative.
Soon, you will take additional courses in such fields as probability, combinato-
rics, dynamical systems, linear programming, or topology, to list just a few
examples. Given that calculus involves such high level mathematics, why
does a math major need a transition course? Why not just plunge right into
these so-called advanced courses?

One reason stems from the history of calculus itself. In the seventeenth
and eighteenth centuries, mathematicians would manipulate infinite series
much like ordinary finite sums. The results were usually quite correct, but
the methods often led to errors. Here is an example:

The MacLaurin series expansion of In(1 + x) is given by:

2 3 4
In(1+x)=x—)—;-+x§—%+.... (*)
This series converges for —1 < x < 1. Differentiating both sides of (*) gives:
L =1l-x+x*—-x+.... (%)

1+=x




The right-hand side of the equation, however,
What has gone wrong here is t
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If we substitute x = 1 in (¥#), we get

1
- p— -+ -— ..J[_'.”
5 1-1+1-1

is not a convergent series.
he indiscriminate differentiation of a power
series, term by term, as if it were the same as a finite sum. Sometimes this
can be done and sometimes it cannot. In fact, (+*) is a true equation for all
x such that —1 < x < 1. What becomes important is to prove under what
conditions a power series can be differentiated term by term.

Another example is provided by letting x = 1 in (¥) above, giving the

true equation:

(k)

1
4+....

W=

—q_1
n@)=1-5+

Now if we rearrange the terms of the infinite series on the right-hand .

side, we obtain the equation:

- ] p— -— —_— —_ — —_ pay

=0.

Since we know that In(2) # 0, we have an apparent contradiction. Th
contradiction is resolved by noting that the right-hand side of (3x%) 18
conditionally convergent series; that is, the series converges but if the texms
of the series are replaced by their absolute values then the resulting serie!
diverges. It can be proven that a rearrangement of a conditionally convergent
series will not necessarily converge to the same sum as the original series.
In fact, a conditionally convergent series can be rearranged to converge to
any given number or even to diverge.

In both of these examples, mistakes are made by treating an infinite su
the same as a finite sum. In trying to determine which rules that apply to
finite sums also apply to finite series, it is necessary first to define carefully
what we mean by an infinite series and then prove properties of series
using that definition. As each property is verified, it can be used to prove

subsequent properties. 3
Mathematicians of earlier centuries commonly manipulated formulas and
symbols indiscriminately without regard for whether or not those manipula
tions were justified. Nevertheless, often these “missteps” actually led to
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true formulas or provided insights into why something was true. The great
mathematician Leonhard Euler (1707-1783) is famous for making discover-
ies in a totally nonrigorous way. Here is an example.

You may recall that the infinite series E — Is a convergent series by the
n=1
so-called p-test. But knowing that the series converges does not tell you ro
2

. . . T
what number the series converges. In fact, this series converges to 5

Euler’s “proof” of this fact goes like this: the MacLaurin series expansion
of sin x is

Dividing by x gives the equation:

sin x x2  x* x
— =1+
X 31 st 7

sin x
If we set —— = 0, the roots are: +w, *27, *37, ... .
x

If we treat the infinite series as if it were a polynomial, as Euler did, then
we can factor it as

(=) )55

, since this infinite product has the same roots and the same constant term as
i the infinite series.

So we get:

3 2 4 6
sinx_ 2 xt xf
X 35t

;fj )20zl )
B O O [

If we multiply out this last infinite product, as we would a finite product,
we see that the coefficient of the x? term is the infinite series

On the other hand, the x? term of the MacLaurin series is — 317 = — %

Multiplying both expressions by —2 gives us Euler’s result.
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We emphasize that Euler was not indifferent to the idea of convergence
he knew that a power series was not

of an infinite series and, of course,
the same as a polynomial. His insight and cleverness produced significant

. . &1 _at . .y
mathematics. He was later able to give a proof that > i that is consid-

n=1 B
ered rigorous by today’s standards.

One of the important byproducts of finding a rigorous proof of a mathe-

matical theorem is that it can often lead to new results or even to generaliza-
tions of the theorem, generalizations that may be impossible to discover by
informal methods such as the ones employed by Euler.

. . . =l :
For example, if you change the exponent in the series > i from a 2 to
n=1
another integer such as 3, 4 ... and so forth, you may well ask to what
numbers these different series converge. There is a long history of attempts

to answer this question.

o 1 :
> o for s a real number greater than

n=

First, we define a function {s) =

2 .
—ﬂg. (Note: the

1, so that £(2) is the series we considered above and {(2) =

symbol { is the Greek letter zeta and the function {(s) is known as the
Riemann zeta function, named after the mathematician Bernhard Riemann
(1826-1866). You may recall the name Riemann from the study of Riemann
sums in calculus.) Euler derived a formula for £(s) when s is an even positive
integer. The formula involves a power of 7 and the so-called Bernoulli .
numbers, which we won’t define here. No formula for £(s), when s is an odd
positive integer, is known. In 1978, the French mathematician R. Apery
proved that {(3) is irrational, but not much else is known about these num
bers. This and countless other examples show that mathematics is not a
closed subject. Many unsolved problems and even new areas of mathematic
await the budding mathematician.
A transition book such as this one, then, is an introduction to the logic*
and rigor of mathematical thinking and is designed to prepare you for more-
advanced mathematical subjects.
We designed our course and this book with three goals in mind. Fir
and foremost of these is to show you the elements of logical, mathematic
argument, to have you understand exactly what mathematical rigor mea
and to appreciate its importance. You will learn the rules of logical inference,.
be exposed to definitions of concepts, be asked to read and understa’nd:
proofs of theorems, and write your own proofs. At the same time, we want
you to become familiar with both the grammar of mathematics and its style-5.

We want you to be able to read and construct correct proofs, but also 10.
appreciate different methods of proof (contradiction, induction), the value

of a proof, and the beauty of an elegant argument.
A second goal is for you to learn how to do mathematics in a contexb

~
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by studying real, interesting mathematics and not just concentrating on form.
We have chosen topics that do not overlap significantly with other courses
(such as the properties of the integers, the nature of infinite sets, and the
complex numbers), that are essentially self-contained, and that will be useful
to you later when you are exposed to more specialized, advanced mathe-
matics.

Finally, we want you to realize that mathematics is an ongoing enterprise,
with a long, fascinating, and sometimes surprising history. The notes sprin-
kled throughout the text are deliberately eclectic. “Historical Comments”
give you pictures of the tremendous successes (and equally spectacular fail-
ures) of brilliant mathematicians of the past. ‘“Mathematical Perspectives”
may spotlight questions that are still unanswered and are the subject of
current research, or that simply show an interesting further aspect of the
material you have just studied.
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This proves P(n + 1) and by induction it follows that P(n) is true for all

positive integers rn. &

orollary 5.2.8 n n

= 2" ~
i \k

PROOF: Apply the Binomial Theorem witha=5b=1.&

Note: The Binomial Theorem is also true when a and b are real numbers.
The reason is that the axioms of addition and multiplication that hold in
Z (Axioms 1-8) also hold in R. These matters are discussed in detail in

Chapter 7.

# MATHEMATICAL PERSPECTIVE: BERNOULLI NUMBERS

We conclude this section with a discussion of the Bernoulli numbers, which
were alluded to in the Introduction. The Bernoulli numbers are a sequence
of rational numbers defined by Jakob Bernoulli (1654-1705). They have
had some very interesting applications in mathematics over the last several
hundred years. As background, consider the following formulas:

1—l;2+3+...+(n—1)=@7_—2

P+22+ 3+ +(n—1)2=”———————(”_1)(2”—1)
:

2(n — 1)
13+23+33+...+(n—1)3="—(%—&.

oven by induction. The first

These formulas for sums of powers can be pr
mple 1 and the other two

is an easy comsequence Of the formula in Exa

are exercises.
Can you see any pattern to these formulas? Nothing is immediately

obvious, but note that the right-hand side of each equation is a polynomial
expression in the variable n. The first is 3n? — #n, the second ¥* — ¥ + &,
and the third 3¢ — 3n® + in2. Note that each of these polynomials has 0 as
its constant term and that the highest power of n that appears is one more
than the exponent on the left-hand side of the equation. In looking at other
formulas of the form 1¢ + 2% + 3¢+ ... + (n ~ 1)%, Bernoulli noted that
the sum was a polynomial in n of degree k + 1 and O constant term. The :
coefficient of n in these polynomials takes on the values —%, }, 0, —35, 0 for
k=1,2,3,4,5. These are the first five Bernoulli numbers. Bernoulli was

led to the following recursive definition.
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Using this formula fort=1,2,3,4,we obtain the following equations:
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Other Bernoulli numbers can be comput
be noted that if ¢ is an odd positive integer >

easy to prove from our definition. __
Using these numbers Bernoulli was able to give a formula for the sum:

of the first n kth powers. We state the result without proof. You are encou
aged to learn the proof on your own. One source is A Classical Introduction
to Modern Number Theory by K. Treland and M. Rosen [10]. :

Bernoulli If k is a positive integer, then

1 &Kfk+1 .
kg gk 43k 4 L — 1) = k.
1k+2+3 +(n \1) k+1,~=0< j >B,n

Theorem 5.2.10

The reader should verify the formula for k = 1,2, 3 to see that it agrees

with the formulas given.
Another application of the Bern
function, which was discussed in th

number s > 1, s(s) = >, 1/n. Euler proved that s(2) =
n=1

oulli numbers is to the Riemant zeta
e Introduction. Recall that for real

72/6 and 10 he

Introduction we gave his informal proof of that fact. Euler generalize“d:,thaﬁ
¢

result to even integers and again Bernoulli numbers are involved. MoT®
specifically, he proved that if k is a positive integer, then
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(277.)2k

2(2k)! B

s2k) = (~ 1

As an example, we see that the series p, 1/n* converges to 7*/90.

n=1

Exercises 5.2 .

1. Prove the following formulas using mathematical induction.
(@1+3+5+...+@n—1)=r’
(b) 12+ 22+ 3+ ... +nz=n(n+1)652n+1)'
R

© P+2+F+...tnr=

Prove the following:
() P+ R +5+... +@Qn—17= (2n = 1)(26”)(2” +1)
(2n)(2n +1)(2n +2)

3 :

Prove that if a is any real number except 1, then
( an+1 — 1)
a—-1 "~
(a) Prove that 2* > n? for all integers n = 5.
(b) Prove that 2" < n! for all n = 4.

Leta, by, by, ..., b, € L. Prove that a(by + by + ... + b,) = ab; + ab,
+ ...+ ab,.

Let f: Z+ — Z* be defined recursively by f1) = 1and f(n + 1) =
f(n) + 27 for all n € Z*. Prove that fn)y=2"-1.

Let f: Z* — R be defined recursively by f(l) =1land f(n + 1) =
V2 + f(n) for all n € Z*. Prove that f(n) <2foralln € Z".

The Fibonnaci numbers f,, n = 1,2, 3, ..., are defined recursively by

the formulas f, = 1,6 = 1, fu = fa-1 T fan forn = 3.

(a) Write out the first ten Fibonnaci numbers.

(b) Compute f, + o A+ A+ A+ h+ At

(c) Derive a formula for the sum of the first n Fibonnaci numbers and
prove it by induction.

(d) Prove that f2 + fi+... + fr = fufs foralln = 1.

9. Let H, be the number of handshakes required if in a group of n people
each person shakes with every other person exactly once.
(a) Compute H, forn =2,...,6.
(b) Find a recursion formula for H,,; in terms of H,.

by 22+ 42+ 6+ ...+ @2n}=

1+a+at+ad+...+a"=




