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APPENDIX. The 91 ... 819&1 Alexander Polynomial 
In this appendix we shall sk.etch one approaoh";$O the 

Alexander polynomial. This material is standard, and is 
based upon Alexander's original paper [1]. 

Let G be a finitely presented, tinitely related group 
that is equipped with a surjective homomorphism t: G -> Z 
where Z denotes the group ot additive integers. Assume 
that Kernel(t) = G', the commutator subgroup ot G. Let 
H = GI/G" be the abelianization of this commutator subgroup. 
It s is an element of G such that f(s) - 1 and x de-
notes the (mUltiplicative) generator ot the group ring 
r = Z[Z] = Z[x,x-l ], then H becomes a r-module via the 
action on G': x(g) _ sgs-l. 

We say that the pair (G,t) is an indexed &:Q!!P.. Two in-
dexed groups (Gl,tl ), (G2,t2 ) are isomorphic it there is a 

group isomorphism h: Gl -> G2 such that f2 0 h = fl' It 
H(G,f) denotes GI/G" with modUle structure as above, then 
H(G,f) is an isomorphism invariant of the indexed group 

(G,t). 
As we shall see, H(G,f) is f1nitelypresented and related 

over r. Suppose that there exists such a presentation with 
an equal number n of generators and relations. (This will 
be the case tor the knot group.) Then there is an exact 
sequence 

rD rD -> H(G,t) -> 0 
where A is an n X n matrix with entries in r. 
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Let D(A) denote the determinant of A. The r-module struc-
ture on H(G,f) is indu¢ed by scalar (r) on 
tn. Let A denote the adjoint matrix to A so that 
AA = D(A)I where I is the n x n identity matrix. This 
shows that for all A, D(A)a • A(Aa), and hence D(A)a is in 
the image of A. Therefore D(A)[a] = a fo,r all [a] f H(G,f) 
Thus D(A) is an ann1,hilating element for ···H(G,f) as a r-
module. We shall see that the Alexander polynomial takes the 
form of D(A) = for an approrpriatc§; matrix A. 

Before doing more algebra, let's turn to the geometry. 
Let G.= be the fundamental group of the knot com-
plement. This group is finitely presented and related, with 
a particularly useful presentation known as the Dehn presen-
tation. In the Denn presentation each region of the knot 
diagram corresponds to an element of .1(S3_K) via the 
following conventions: Replace S3_K by R3_K and assume 

that the knot lies in the (x,y,O) plane, except for over 
and under-crossings. These crossings deviate in the z-
direction (third variable) by 0 < Izi «1. Let the base-
point p = (0,0,1) be a point above the knot diagram. Asso-
ciate to each region R a loop that starts at p. descends 
to pierce R once, and then returns by piercing the unbounded 
region once. See Figure 49. 

In this form1each region of the knot diagram. corresponds 
to a generator of the fundamental group, except tor the un-
bounded region, which corresponds to the identity element. 
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(A) = Lk 

Crossing relation in presentation 

Figure 49 



159 

Each crossing in the knot diagram corresponds to a relation 
in the fWldamental grOUlI) (as illustrated in Figure 49). This 
gives a complete set 01' relations for the group. The mapping 
f : "1 (S'-K) -> Z exists lince a fundamental group of a knot 
complement abelianizes to Z. The map can be specifically 
described by linking numberel f([g]) - Lk(K,g) where Lk 
denotes linking numbers 01' curve. in R'. With thi. inter-
pretation we see that, when we let elements 01' the group 
correspond to regions R in the knot diagram as described 
above, then feR) = Index(R) where Index denotes the Alex-
ander index of the region R (See. Lemma 3.4.). (The Wl-
bounded region is assigned index zero. See Figure 49.) 

Remark. The r-module RCG.f) has the following interpreta-
tion. Let q: X -> S'-K be the covering space correspond-
ing to the representation f: G -> Z. The space X is the 
infinite cyclic cover of the knot complement (see [26]). The 
first homology group, Hl(X;Z), is a r-module via the action 
of the group of covering translations of X. With this struc-
ture, Hl(XjZ) and H(G.f) are isomorphic r-modules. Th1s 
interpretation is very important. but will not be pursued 

here. 
Returning to algebra, we wish to describe a presentation 

for GI. and thence compute GI IG". Suppose that G has a 

presentation of the form: G = (s'gl'g2' ...• 9nfRl' •.. ,Rm) 
with 
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1. n .. "mi" ('1'ru. tor the Dehn presentation since there 
are' two mo ••• ,,1ons than crossings, and ,one region 
corre.,ond. to the identity element.) or· m n. 

2. t(ll) • f(g2) = ••• = = o. 

The seoond aondttton 1s accomplished from an arbitrary 
presentation bJ ohooltns an s (f(s) = 1), and re-defining 
the other •• n •• ,tol" via multiplication by approrpriate 
power. ot ., to tnlure that they all hit zero under f. 

Iloall that r. Z[x,x-l ] acts on G via xg = SgS-l. 

It is eal, to .e. that G' is generated by the set 
CxkS1/k • Z, i. l, .•• ,n}. In particular, each relation Rk 
can be rewritten in terms of these generators. Let p(Rk) 
denote th"'s rewr1tlns of Rk • Then E Z, 
i - l, .•• ,m) is a Bet of relations tor G' (proof via cover-
ing spaces or combinatorial group theory). Thus 
G' = «(xkgi}/(xkp(Rj»)). By abelianizing these generators 
and relations, and writing them additively, we obtain the 

structure of H(G,f). 
Consider the Dehn presentation. Let s correspond to a 

region of index 1 (or -1 if necessary). Suppose A, B, 
C, D are the regions around a crossing with in<iices f(A) = p, 

feB) = feD) = p+l, fCC) = p+2 as in 50. Then we have 
new generators a, b, c, d with A = B = sp+1a, 
C = sP+2c , D = sP+ld. The relation R = AB-1CD-1 becomes 

R = AB-1CD- l 

(sPa)(sP+lb)-l(sp+2c ) (sP+ld)-l 
= 
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The next calculation rewrites R in terms of the generators 
xKa, xkd of G'. 

R = sPas-PsPb-ls-psp+lcs-p-lsP+ld-ls-P-l 

(xPa)(xPb)-l(xp+lc) (Xp+ld)-l "p(R). 

Upon abel1anizing G' to form H(G.f), this''i<elation'becomes 

the additive relation x'P(a-b+xc-Xd). Thus. as a module 

over the group ring r. H{n,f) is generated by symbols 

a,b.c.d, ••• corresponding to the regions of the knot diagram. 
with generating relations. one per crQ6sing. of the form 

a - b + xc - xd. These relations can be remembered by plac-
ing :l.:x around the crossing in 'the regions that they 

correspond with (as shown in Figure 50). 

P AID 
,., 

.i. T-+ • SIC -il P+l p+-. 

Fim!:re 50 

Earlier in the notes we have referred to this labelling 

as the Alexander code. The symbol corresponding to the un-

bounded region is set equal to zero, and an adjacent region 

corresponds to s (f(s) = 1) and is also eliminated. The 

resulting square relation matrix is exactly what we have 

described in sectiOn 3 as the Matrix for this code. 

Its determinant is the Alexander polynomial, <i<:(x). 

That the Alexander polynomial is well-defined up to 
and powers of . x and that it is a topological invariant of the 



knot K can be verified by examining the comb1natorial group 
theory that we have sketched. 

Alexander apparently felt that the algorithm tibould stand 
on its own right, and he wrote his first paper on the poly-
nomial from a combinatorial standpOint with slight mention of 
the background group theory and topology. 

Remark.on Determinants 
In these notes we have used a tormulation of'certain 

determinants (ot Alexander matrices) as state summations over 
the states of a universe (knot or link graph). The signs in 
the determinant expansion come trom the geometry of the uni-
verse. I wish to point out here that the formula for any 
determinant tollows a Similar pattern. 

The sign ot a permutation is determined geometrically by 
the tollowing prescription. List the numbers l, •.• ,n in 
order, and the permutation ot them on a line below. Connect 
corresponding numbers by arcs so that all arcs intersect trans-
verselyat double ,points. Then the sign of the permutation 
is (_l)c c is the number of intersections ot the 

arcs. For example let P = 
12345 6 

+1 

The combinatorics underlying the determinant expansion of 
an n x n matrix conSists of the n! grid of an n x n 
grid. A grid state is a pattern of n rooks on the n x n 
chessboard so that no two rooks attack each other. (Rooks 



move only on hori·zontal and vertical files. .Thus no file con-

tains more than one rook.) For example, the grid states for 
a 2x2 

Given a grid state S and matrix A, define <Als> to 

be the product of the entries of A that are 1n boxes corres-

ponding to rooks of S (when the matrix and grid state are 

superimposed). 

The sign of a grid state S, denoted a(S), is the sign 

of the permutation of the rows that.produces this state from 
the diagonal state (all rooks on the main diagonal) .. To ob-

tain this sign directly, draw arcs outside the grid from top 

row positions to left column positions so that each arc marks 

the row and column position of' a corresponding rook. Then 

a(S) (_l)c where c is the number of crossings of the 

arcs. Then Det(A) = t a(s)<Als) where is the collection 
. 

of all grid states for the n x n grid. 


