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CHAPTER XI

Show on the Wirtinger generators,

- -1
b lab = (o) = (1-t Har+t”Hm

¢ = bab ! = (&)

c

(1-t)(a)+t(b).

il

Show that a homomorphism such as in (ii) exists
exactly for those t that are roots of
= 0.
B (£)
Compute the affine representations of the tre-

foil and of the figure-eight knot.

e

XII

CYCLIC BRANCHED COVERINGS

In Chapter IX we illustrated Seifert's approach to
branched covering spaces. In this chapter we turn to t}
spaces in a more systematic, and Umwnmmwwﬁ four~dimensi«
manner. Let K be an oriented knot or link MJ the
3

oriented sphere 8 Then there is a homomorphism

¢ #Hﬁmwlwv ~— Z defined by the equation ¢(d) = Lk(a,
where this denotes the sum of the linking numbers with

individual components of K. Let Qv : #Hﬁmwlwv — Z/nZ

denote the composition of ¢ with the mcwumonwﬂ=
is by

{
definition the covering mvmnmom wwlx nvmwoowﬂomvoﬁam
_

Z — Z/nZ. The n-fold cyclic covering of K

this representation.

These coverings can be described, as we #m&m done i

Chapter IX, by first cutting mw along a spanning surfa
for F, and n#mb,ﬁNanum n  copies together cyclically
end-to~end. Another useful description is as follows:

3 1

There exists a mapping ¢ : S°-K — § that induces the

I
map ¢ on the fundamental groups. (The proof involves
some obstruction theory.) This map ¥ is unique up to

homotopy, and it can be adjusted so that

(1) For a small tubular neighborhood of K, N(X),

271
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2

there is a product structure N(K) = K x D so

that ¢ |3dN(K)

is equivalent to projection on

1

There is a point p € S such that

(2)

IR

v Hp) noaN(k) s for this

p € ap% = st.

to K x p

“1p)
ey nEg isa

That is, is a parallel

copy of K. And F

connected, oriented, spanning surface for this

(parallel copy of) K. Here MN denotes the
closure of the exterior of this tubular

neighborhood.

3 1

We shall call a ¢ : 8S-K — S satisfying (1) and (2)

above a good representation for K.

Some knots have especially good representation in that

1m)

That is, gives a spanning
Hﬁmsmwy neighborhood(p))

Y can be a fibering.
surface for all p, and V¥

Surface x neighborhood(p) for all p. Such a knot is

called a fibered knot. Some examples of fiberings will

appear shortly.

CHAPTER XII

mwlﬁ -— M

|
Contemplate the mowwoswﬂm diagr:

=

let ¢ : be a

To return to coverings,

representation for K.

w 1
- —_—
p (K) = K S
A
n
¥
w K —_—— mw
where VﬁﬂNv n (complex multiplication on the circl
The meaning of the diagram is that tamxv is defi
to be the pull-back of 7: by ¢. In general,
Ty
p—X 5 Y P = {(x,¥) €X x Y]a(x) = b(y)}
— _v
a . !
X —m————— 7

This diagram defines the pull-back (or mncwwwNMﬂv of tw

is the n-fold cyclic cover of K. [Notice t

n general

3}

El
MR
» —€

ill produce an n-fold covering of X:

{((x.z) | w(x) = 2"},

) = {(x.2) | 2" = ¥(x))}
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Thus we produce the n-fold covers by solving equations of

n

the form z = k.

Branched covers follow similarly. Let mw be the
exterior of K as described above. Let mmw = K x mH via
the given identification of N(K) with K x wm. Then
T ol mx —_— mm restricts on the boundary to K x mH — K x mH.
(x,z) — ax.Ndv. Since this extends over K x UM (same

formula), we get

~ N 2
W(K) = B U (xx0%) T B U (KxD?) = 82,

This is the n-fold cyclic branched covering space,

branched along K.
All we have done

so far, is to redescribe our previous

construction. But it is important to keep making the com-
parison. Thus in the covering construction, splitting
-1 1 Vﬁ 1
along F is included in that F = ¢y “(p) and 8§ —— S
1

can be described by splitting S on a point

CHAPTER XII

0Of course,

using A, R — mH. Ay(r) = oM#wﬂ.

We can, if we like,

that
-1

v (0) =K.

the pull-backs:
7~
3 2

$¥ ——— D

3 7 2

S D

" RIEMANN SURFACE DIGRESSION

Take

. s 2
Am = 4 points in S7.
F 2

Draw a picture of mw

Mﬁrm resulting 2-fold branched cover:

use a mapping

is differentiably transverse to

intervals joining 2 pairs

split along F,

the infinite cyclic cover is obptained ]

¥ o s3 — % |
2

0 € T and
g_
!

Then branched covers are directly|l formed :

_ of poin

and a |picture

T ) )

/




276 CHAPTER XII

Thus the torus is the 2-fold branched cover of mM along 2

points.

And by the same construction, we see that the solid

2 3

torus D7 x mH is the 2-fold branched cover of D along

two arcs (that meet the boundary in 4 points).

Here you see the 3-ball split along two disks. Each disk
bounds one of the interior arcs that form the branch set.
(Another part of the boundary of each disk is an arc on the

surface of the solid ball.)

branch set in the 3-ball

e

CHAPTER XII
ﬁ

This bit of geometry will be useful to us mcﬂ_N number

constructions, but first we generalize it! The solid

as 2-fold branched cover of Uw is our first \example

branched covering of a manifold with vocﬁmmd<;

Moving back up one dimension, consider a 'connecte

oriented surface F C mw. Push this surface into UA

: |
keeping its boundary fixed in mw.

| =

In the diagram, F’ denotes the pushed-in surfac
As the surface is pushed in, it traces out a wmawﬁmmoH

that is homeomorphic te F x I with K x I (K = dF)

collapsed to a single copy of K.

4

Now imagine splitting D along M. The result

|

4-ball again with the surface 3-sphere now containing

and M_ with M_ N M_ = F’.

e e T e T e
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3

Front View : Side View

Here we have drawn a dimensionally-reduced diagram. Notice
that this diagram is isomorphic to our pictures for
branched covers of spheres and balls in dimensions two and

three.

With this model in mind, we can describe cyclic
4

branched covers of D branched along F’ (the push-in
of F).

Thus, if zmnwv = zm denotes the a-fold cyclic cover
of U». branched along F’, then we make zw from
a~-copies of U&. labelled uA_Nu¢.xMUA.....waHUA. Here
the symbol x has order a : x> = 1.

on op? Hmvmwﬁz+ me
M as M.

MU xM c p?

k k

= x*M U x k4

*ly ¢ x*p%.

is identified with

CHAPTER XII

Identify appropriately labelled pieces. Thus

xM = xM_ C NUA.

p? xn?

a-1

Of course, the

cyclic cover of mw.

the subspace W = M
3

is U.

Example 2: Let L =

x°M

It
=

It is then appropriate to identify x: N

boundary zw = 0N is the

a

branched along K.

3

Example 1: Let U C S be the unknot of one

a
the covering translation. We have Na/x = N_fZ_ = D

|

componen

U = Nu . Then the spanning surface F is a disk D

U xM consists of the lower and up:

3 3

of nozdmm_ in this case N_ =D for all a.

O be the Hopf Link

M=P

|
|

W

hemiballs D and u+ of a 3-ball D sVOmw equator

M Lm

Then tl
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spanning surface F is an annulus:

And W = M U xM is a solid torus T on whose boundary is

embedded the Hopf link.

The surface of this torus is divided by L into two annu-

and xM meet along the central annu-

li: F and xF. M
lar slice of this torus (as the page appears to cut it).
M, (L)

taking two solid tori (the result of drilling out W

In this case we see that can be described by

from

mwv and identifying them along their boundaries via the

involution x : mu x mHhHHU obtained from this construc-
tion. This shows that smmrv v“m a Lens space ([ST]). In
fact, it is homeomorphic to 5%& (= Uw with antipodal

Do this as an exercise.
zwﬁrv.

where the two 4-balls

identifications on the boundary).

We can also see clearly the structure of For

4 4

this consists in zmﬁhv = D" U xD

are pasted QMOﬁm W. Pasting two 4-balls along solid tori

in their 3-sphere boundaries obviously produces a space

CHAPTER XII

with mmﬂzwmhvv = Z mmvmawﬁmm by a suspension

|

denotes the result of coning «

ﬁ

Sa of

generator of the solid torus: 3a = ca-xca SJoﬂm ca

into the center of D
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This is the sort of schematic diagram we use for this situ-

ation.

We can also see the self-intersection number of the

2-cycle 3a C zmahv. To find (3a)+(3a) deform 3Ia to
d(Za) via
d(2a) = d{ca-xca)
»*
= OR* - Xca
where a, denotes pushing a in the positive normal
direction to F in mw. The involution x exchanges

pushing up and pushing down, so this is identified with

CHAPTER XII

R
=]

Hy (N, (F))

Proof: As in the examples,

Now we want to determine the intersection

P Hg(N,) x Ho(N)) — Z. (See [K4].)

THEOREM 12.2. The intersection form £

CN.

xnx. On each side the result is
Coc*
[ O \co
ﬁonv.ﬁonxv = pwﬁa_n*v = +1
Thus (3a)-(3a) = 2. (See [GA].)

We now generalize the geometry of this example.
LEMMA 12.1. zwﬁﬁv has the homotopy type of CMHW Nmoﬂ
where CF C UA denotes the cone over F C mw with the
apex of the cone at the center of UA. Given a cycle «a
on F, let 3Za denote the cycle 3a = ca-xca. Then
muﬁzmﬁﬁvu =0 and mmﬁzmﬁmvv = 0 while

1) x (a-1)

blocks.

y the formulas: MM
I
8(ax,B) + 8(B.x), 1=
f(x'sa,x336) = {-8(a,B) . i= j-1
-8(B.a) , i = j+l
is zero in the other cases].
~
[} -8
~
6’ a -8
Pl
Hence f has matrix -0’ [:]
|m\
is the Seifert form for F C ww. and there

|
|
|
|

(F)

M
|
,
|

form

(above) is giv.

(mod a)

(mod a)

(mod a)

wht

are
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Proof : £(3a,3p) = f(3a,d3p)

= f{ca~xca, om*lxnm*u

= wﬁop.om*v + mAcR.ou*v

11

Ok(a,B,) + Ok(a,p™)

.. f(3a,3B) = 6(a,B) + 6(B,a).

Here the deformation d2f is produced just as in the Hopf

Link example. We also need f(3a,x32B8) and f(x3a,3B).

£f(3a,x3B) = £(d3a,x3pB)

mAnRXIxoax. xomlanmv

i

lmAxon*. xcf)

i

lmﬁnpx_cmv

-0k(a’,B)

]

L. f(3a,x2B) -8(a,B).

A similar calculation shows that f(x3a,38) = -8(B,a).

These calculations, and the fact that x is an

isometry of f suffice to prove the theorem.
Remark :

Everything can be generalized to other dimensions.

We shall make use of this in Chapter XIX.

¥e now need some discussion of the algebraic topology

of N
a

and mzm. Let j : mmﬁzmv — mwﬁzm.mzmv denote

CHAPTER XII

the mapping induced by the inclusion zw C mzm;mzmv. T
|
il
|
i

is part of the exact sequence of the pair:

0 — Hy(8N_) — Hy(N)) -4 Hy(N,.,8N_ ) — H (dN ) — 0

with respect to appropriate bases

_

[Don't forget

w

branched along

Thus a matrix for

will be a relation matrix for mwﬁmzmv.

mzw is the a-fold cyclic cover of mw

LEMMA 12.3. Let % and %’
Mﬁzw.mzmv

efschetz duality.

be bases for mmmzwu and

,

that are dual in the sense of Poincare-

*

[That is, if % = {b,,*++,b } and

‘= {bf,+++,b/} and ( , ) : Hy(N,) x mwAzm_wzmv — 7

‘he (nonsingular by Poincare-Lefschetz) interséction pa

g, then Avw~v\v = me.u Then the matrix of| i, wit

k 22

#%,%’ is the intersection matrix for f wi

|
“

4.

Let m,. = mﬁvw.vuv. Then

ij

= £(b,,b,) = £(b,.,i(b.))
i J 1 J

n
mﬁvm_ M uvaww where J is the matrix of the ma
k=1

n
M Ty f(yaby)
k=1

5.
H M QWMQMW H uwu.
k=1

e —————
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Thus we now know that the matrix 6 & >p + B8/ @ >M is

a relation matrix for mHAmzmv. The matrix >m is shown
below.
1 -1
1 -1,
A, = . ., (a-1) x (a-1).
. -1
1
For example, if a = 2 then 6+8’ is a relation matrix

for mHAEMANVV. In the Hopf Link example, 6 = (1), so
(2) is the relation matrix, whence munzwﬁhumu )) = NM. To

continue the Hopf Link example, we have that

2 -1
4 2 -1
>N + >M = -1 2 (a-1) x (a-1)
’ -1
-1 2
is a relation matrix for mHAzmﬁnﬁuvv. Thus

_-w w_ - : ﬂ - E w_ = H (M3(C6D)) = z/3z.

Compute

Exercise. mumzmmﬁﬁu )) for a = 2,3,4,5,6,°¢-.

As a next task, let's see how to compute the signature

of N_.

a the signature of a manifold of

By definition,

2k-dimensional

dimension 4k is the signature of its

intersection form. Thus

CHAPTER XII

o(N,) = o(f) = a(8 @ A_+.8’ 8 A).

We shall proceed with a mixture of Numovdw and geo

~

x mwﬁzwu — mwﬁzwv isjan isome

etry. Remember that

(f(xa,xB) = £f(a,B) for all aipf € mwﬁz

mmﬁzwv

Eigenspaces for differént eigen

,

are perpendicular w

,

of the form f

Thus it would be helpful to decompose into a s

of eigenspaces for x.
- values of an isometry of a form f

resepct to f.

In order to construct the eigenspaces we extend

coefficients to the complex numbers €. Then [{f beconm

hermitian form over €. This means that mmymwtwv

= Anf(a,b) sﬁn: A,p €C; and f(a,b) = f(b,a for

a,b € mmAzw"ﬁv. A hermitian form has real eigénvalues
hence a well-defined signature. The hermitian!form
obtained by extending scalars from a real form has the

ignature as the real form (exercise).

Thinking of f over €, construct eigenviectors a

ollows: Let ©w € C and e € EMAZNV. Define, |for %
V(w,e) = e + xwe + x2ae +---+ x2 15271,
|
hus V(vw,e) € mwﬁzwnﬁv. And V(w,e) 1is an eigenvecto
for x with eigenvalue wo.
xV(w,e) = x(1 + xo + X202 oot xwlumwlavm
= (x + %25 + 1502 +eeer 2715272 4 252,
= (w -1 + X + XMN + xwmw tooot lepﬂmxmvm
= 0(1 + xo + x202 +--04 x271527 ],
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L xV(w,e) = e<A€.mv.v Aem = 1)

you can easily check that if

3H, (F) C Hy(N_(F)),

Furthermore,

Amw.mw.....mdv is a basis for then

A<Ae.m~v....-<ﬁe.o=vv is linearly independent whenever

©® =1, © # 1. Therefore, let V(w) C Hy(N_; C) be the
subspace <me.MmHﬁﬂvu for each mn# root of unity:
V(o) = {(1+xare+++x® 150 e | e € 30, (F)).
Then (by dimension count) we have that
~ pa-1 k
Hy(N_:C) = 67_; V(o")
where w = exp(2wi/a). This is an eigenspace decomposition.
LEMMA 12.4. The form m_<A€wv has matrix

WAAH|Eva+NH|Eva\V

where 6 1is the Seifert matrix for F C mw.
th
Proof: Let a = 3X, B =23Y € Mmumﬂv. Let © be any a
root of unity, and f = f[V(w)
a-1 a-1
f(V(w,a),V(0,B8)) = mﬁ M x o a, M Nuﬂumu
i=0 j=0
a-1 a-1
= M f (xwa,xwB) + M mﬁxuﬂ R.xw+mﬂy+~uv
i=0 i=0
a-1
+ M mﬁXw+HNw+HR.N~m B).

12.2). Consequently,

a-1 a-1

f(V(w,a),V(w,B))

i=0 i=0

i}

ompare [T].)

&

Y £(a.B) + ) f(a,xap) +

= a[(1-0)8(x,y) + (1-0)8(y,x)

I
|
w
CHAPTER XII m

!
These are the only possible nonzero terms (using Theor¢

a-1
M £ (x¢
i=0

= a[f(a,B) + wf(a,xB) + mmﬁx$.uvu

af08(x,y) + 6(y.x) - emﬁx.QL - wl(y.:

1.

his completes the proof. g
EFINITION 12.5. Let K C ww be an oriented jknot or 1
C mw a connected oriented spanning surface for K.
be the Seifert form for F and let o # 1 | be a con
iumber. Define the w-signature of K by the| fornula
o,(K) = o((1-w)8 + (1-w)8’).

xercise. (a) Use S-equivalence to show thalt Qeﬁwv
an invariant of the knot K. _
(b) Show that QEANU vanishes on slice FSOHm.
(c) Compute o,(K) for all o for the Vﬂon

e
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(d) Prove that if Te = AH+NW+.'.+M¢|»xWIHum then

Actually, it is better to observe that
for e € Mmaaﬂv. Te = 0 = e = 0.

Bl = [(1-0) (0-08) | = (1-0) A, (a)

(1-0)2(02-0k1).

]

We can now summarize our calculations in the

Note that se will be singular at roots of >zﬁnu = 0.

THEOREM 12.6. Let ZNﬁﬂv be the a-fold cyclic cover of From this we will be able to calculate QEANV i for all

4 4 . s . . |
D branched along F’ C D where F’ is the push-in of Exercise: Do the calculation in this direct form.
F C mw. F 1is a connected, oriented spanning surface for a .
. 3 .
knot or link K C 8°. Then the signature of zmﬁﬂv is Let's do this exercise:

given by the formula

1 wte-2 1-w
a- EE = _ _ .
g(N(F)) = ) o ((K) -6 wto-2
i=0 ¢ _w
a z |
where © = exp(2wi/a). iven a hermitian matrix H = —M N_ with a # 0 we ¢
nd a matrix H’ congruent to it by (1) acHnW@H% the
i
Proof: This follows at once from the preceding discussion. TSt row by -z/a and add it to the second row: (2)

|

.v~< the first column by -z/a and add it ﬁcmnrm secc

Example: Let K be the trefoil AWWMHV with Seifert form i‘column. The result is
|
_ -1 1 a 0
6 = ﬂ 0 IHH. Then H = a . v
_ wtw-2 1-w ’ 0 a-zz/a “
M= (1-0)8 + (1-w)8’ = _ _ . _ _d _
1-w wtw—-2 In our case, a = wtw-2 and hence a = 0 = wtw =

|

Hence — Re(w) =1 = w =1 (since « € mHv. Since we're or

— P —
_Se_ = (ete-2)"~ (1-0)(1-0) 'terested in I, for @ # 1, our H’ applies and we
=02 4 2+ 2 - 4o - 40 + 4 - (1-e-0+1) ave
LMl = 0% 8% - 30 - 3T + 4.
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a - zz/a = (wte-2) - hhth%whmp
(0+w-2)
= (oto-2) - {lme-e+l)
(w—w-2)
= (0~0-2) + 1
.. a - zz/a = (w+e-1).
Hence
wto-2 0
H’ = .
0 wto-1
Examine the unit circle:
wr
W W —
K\‘ w # 1 = wtw-2 < 0.
4. 2 L. o, = -1 + sgn(wtw-1)
b

QeAmWU ) = o, (K) for different o € S°:

_ w = at+bi
we need to know when w+w = 1. A v = a=1/2

€+m =1

= + J3/2. This is no surprise, since we know that the

goes singular at the roots of the Alexander polynom-—

¥e can now draw a diagram to indicate the values of

a‘l
il
»

CHAPTER XII
It is easy to use this diagram to calculate

QAZbANVV = o(K,2)
def.

2 =1,2,3,4,°++. Just remember (Theorem 12.6) tha:

Q-1 i

. .M
M o wﬁxu where o = wwﬂu\p. and plot these
©

—~
=
©

—
I

i=1

mﬁsnm on the diagram: Let o[8] = o(K,2).

Qﬁuu = 0
(empty plot!)

o[2] = -2

-6 Qﬁmu = -8

Exercise. o[8+6] = o[Q]-8 Vg 2 1.

The last exercise can be generalized:

ercise 12.7. Let K C mw be a knot such th

|

f the Alexander polynomial bxﬁnu are contained in the
g !

roots of unity. Let o[2] = o[2](K) dendte the s!

_
ature of the 0-fold branched cover of UA. mdmsormm

|
ong a pushed-in spanning surface for K. wwm<m the

e ——
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PERIODICITY THEOREM. There exists a constant c¢ such that

o[0+d] = c+o[R] for all Q 2 1. (See [DK], [N].)
TORUS KNOTS
‘A torus knot of type (a,b), denoted K[a,b], has

Seifert pairing (with respect to a Seifert surface for the

usual drawing) 6 = |>m ® >v. There are many ways to see

this. For the moment, take it as an exercise and contem-—

plate the form of spanning surface for K[3,4]:

RS

~
N

X

W\n\\\ This "tracer circle” must
T be capped off with a disk.
i

<27

P

=

A uu_”m..du..._
8F[a,b] = K[a,b]

In three-dimensional space, the surface F[a,b] has an

action of (Z/aZ) x (Z/bZ) corresponding exactly to our

algebraic actions for A

a mdm. >v. Thus we have

x ¢ x =1,y iy =1 acting as isometries of 6.

we can apply the same algebraic technique

Consequently,

,;
|
|

CHAPTER XII

|
: i
hat we used for cyclic branched covers and 4-manifolds

_Nm°dmwwNm"

1>N ® >v & Ibm ® Q

d conclude that the signature of

b
K[a,b] 1is {the

gnature of

*
(-2,© @) + (-2,0 @)" = M_

here Q is as shown below.

a
1-w
Hlew /
Dm = Hlew

Hlemlw_

@ = mm#u\m. Our formalism shows that A $2 Q wk

w\e a
eans congruence of matrices. that is, nrmﬁw is an
vertible complex matrix P such that w*>mw F nm‘ Tt

|
so anﬁ we obt

|

as isomorphic to the Seifert form o<mT the cor

hange of basis respects the isometry x
nm ] Dv

‘ex. numbers.

1
The signature of the matrix Em b is mm<mﬁ by the
riula M
i Jy!
ofa,b] = M sgn Re[-(1-w )(1-77)].
leiga-1 A .
1¢j<b-1 (t = &2"1/Py
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sgn(a) =

To determine these signs more explicitly,

CHAPTER XII
+1 if a > 0
-1 if a < 0
0 otherwise.

note that

(mod 2)

(mod 2)

i6 -igs/2 i6/2, i6/2
1-e = (e -e Je
= -2i sin(6/2)e?/2
. |AH|€anH|ﬂpv =4 mwﬁA4W\Nvmwsﬁdp\vv.ow4AW\N+b\vv
.. sgn(Re[-(1-05) (1-7%)]) = sgn(Re(elT{k/2+0/D)yy
= sgn(cos(inm(k/a+1/b})
+1 if -L < k/a+Q/b < +W
- 2 2
-1 if < k/atQ/b < 3/2
+1 if 0 <X 42yl (noa 2
. - a b 2
L e[k,0] = ) X Iy 1
mmlwlm.ln— if Ham+ﬂ+MAMAEOQM.V
We have the explicit formula:
o(K[a,b]) = )  e[k,2]
l¢ksa-1
1¢D¢h-1
for the signature of the torus knot K[a,b].
For example, if a =2, b =3 then
1,1, 1 1 _
k =1, QO =1,2 M+M+MHH+W.”VW_”H.H”_|
1 2 1 2
M+.WI+MIH+MHVW_”H.MU_I
Hence o(K[2,3]) = -2, as we know.

CHAPTER XII

g T

Hack Model 100 Portable Computer.)

r fixed a, the signatures

iodicity to the effect: d =

2) then f(k+d) = f(k)+c for a

xercise 12.7].
But there are other patterns.

the links of ﬁ<vm (a,a):

You are strongly urged to try your hand a
me of the patterns that leap to the eye.

o[a,k] =

|

|

£(k) W
ﬁ

fixed constant

|

‘his is actually a case of the periodicity theorem

Since these computations work just as welll for linl
s for knots we can set up a table of signature ala,b’
12 13
-71
|-721-84
. |
hese signatures are brought to you courtesy of the Rac

t proving
Hn~wm true 1
Have a que

least common SanwvHQ

C.

Look at the signatur

e .
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-1, -4, -7, -12, -17, -24, -31, -40, -49, -60, -71, -84
3 3 5 5 7 7 9 9 i1 11 13

The successive differences indicate the pattern.

These facts imply that o[a,b] # O for all a,b.

Hence no torus knot is a slice knot.

XIII

SIGNATURE THEOREMS

We will return to knots and cyclic branched coverir

|

Here we prove general results abou

|

the next section.

1e signature of a manifold. (Unless otherwisel specific
1
}

omology is taken with real coefficients.)

IEOREM 13.1 (Novikov Addition Theorem). Let M be

“dimensional manifold that is obtained by gluling two

anifolds along a common boundary. Then the siighature «

|

is the sum of the signatures of these manifolds. Tht

)

where Y 4n-manifolds,

+

manifold (X = m<+ NSP X = 8
i

M= <+ uy_ and Y_ are

<+ NY_ is a 4n-1

(Orientations compatible wi

|

then o(M) = QA<+V + o(Y_).

s pasting.) (See [AS].)
Use the Mayer-Vietoris sequence to decompose

= O+ @ G_ ® A ® B where

(2]
1l

+ HENmmAEM5A<+V — mwﬁasvv

G_ = HENWmAmMUA%IV — mwﬁasuv
A= {x €Hy, (X)) ]| ix=1ix=0)
B = mmuﬁxv\ﬁx € Hy (X) | i(x) = 0 in H, (M) }.

299
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Here:

the diagram of inclusions

Thus

G, = 2n-cycles on <+.

«
[}

2n-cycles on Y .

A = cycles in X of dim(2n-1) Dbounding in Y, and Y_.

B = 2n-cycles in X that ~w<m in M.

We leave this decomposition as an exercise, but note:

In the Mayer-Vietoris Sequence for M = <+ U Y_  we have

s S Hy (M) — Hy (X)) = H (Y.) — +=-

!
A

(Y,) ® H

2n-1 2n-1

since A = Kernel(f). Therefore we have a surjection

mwsﬁzv — A — 0. A becomes a direct summand of mMSASV

by lifting back: Given [x] € deIHﬁxv with m+mxu =0

= i_[x] there are chains @, a_ on <+ and Y_ respec-

tively such that d8a, = x, 08a_ =x. Thus o -a_ is a
2n-cycle on M. Let [x] = [a,-a_]. Then A C mwsnzv as

the actual direct summand.

CHAPTER XIII v

Ve

neA #

O

,

Now observe the following basic fact about interse

ions of cycles:

x €A,y € Hy (X) = x+y = x-5(y) |

ere the left + denotes the intersection paiging
Mﬁlwﬁxv x mmﬁﬁxv — Z and the right . mm50wmm the

airing H, (M) x Hy (M) — Z. One dimension down, the

icture is:
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4n )
. _ ey = THEOREM 13.2. Let M be a compact, oriented, 4n-~-din
Claim: Given Yy € Omuﬁxv. then j(y) = 0 & x*y 0 for y e M
X onal manifold. Suppose that M forms the boundary
all x € >mﬁlwa )-

4n+1

»T

|

|
|
ocof: Let j : EMSAEV — mwﬁazv denote the map induce

_compact oriented manifold N Then oM = 0.

Proof: —— : j(y) = O given.
x'y = x*j(y) =0

&= : j(y) # 0 given. Then by Poincaré duality on inclusion. And let A = {x € H, (M) | i(x) = 0} der

M Jac mwﬁzv with a*j(y) # O e kernel of j. Note that x € A implies that there

sts X € EMD+Hmz.zv with &8X = x. Choose a lifting

~ A — H N, M such that dJda(x) = x for WHH x €
" —=> a = x some x €H wazv m=+Hm ) (x)

2n-
en we have, for x,y € mmﬁzv. the formula x+y| = j(x)-a

~

re the first intersection denotes intersection number
0 # aj(y) = xj(y) =xy. m

_

. M, and the second denotes intersection numbers in

If a,b € A then a*b = j(a)+-a(b) = O.

We conclude, from this claim, that A an B are

If b € H, (M) and j(b) # O, then by Pojincaré-
Poincaré dual on M (via duality of A and n

. 3 fschetz duality we have an X € mm +~Az.zv wii th
Therefore we can choose bases so that the intersection form n

b)+X # 0. Hence b+(8X) # O and (8X) € A.
on mmbmsv looks like:

Let ANH.....WHV be a basis for A and

H.....Nﬁv C mwsﬁzv be dual (Poincaré dual) in the sen

B

o+ 3 0 2 6] at WM.NM = mwu. Since A is L ﬁo A  we know that
G 0 * %10 . . a. . +ee. m is 1i i

_ a8y, 2.y, .Nﬂv is linearly independent.

A * * * | 1 aim: This is a basis for H, (M).

B 0 0 I 0 To see the claim, suppose x € mmsﬁzv NsJ let

= Mﬁx.meNH+Mﬁx.wuvmu. Then umxlev.:M5+Hmzuzv
where 1 1is an identity matrix. This implies that i j

o) = o(-16,) + o(+]c_). Hence o(M) = o(Y,) +o(Y)): m (x-w)-A = {0}. Hemce j(x-@) = 0 and therefore
. -

-w) € A, whence x = o.
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4n

These remarks show that M has intersection form

—w Mg and hence o(M) 0. This completes the proof. m
Remark: It follows from the argument that if EMd = m2N=+H
then
. 1 ..
&wsﬁxmﬂﬁmsﬁsv - mdﬁzvu = 5 dim mﬁﬁzv.
s : 4n 4n

Remark: Two closed, compact, oriented manifolds EH N zw
are said to be cobordant if there exists a compact, ori-

. 4n+1 : ces s
ented manifold N with 8N = M U alswv (disjoint
union). Theorem 13.2 implies that 0 = o(dN) = Qﬁz_vlquwv.
Hence Qazwv = QASMV. Signature is a cobordism invariant.
Remark :

We can now prove that the signatures associated
with cyclic branched covers of knots are independent of the

choice of spanning surface in the four-ball.

PROPOSITION 13.3. Let K C mw be an oriented knot or

4

link. Let F CD be any properly embedded surface which

is oriented with boundary X. Let zmﬁﬂv denote the
a-fold cyclic covering of u¢ branched along F. Then
szwﬁwvu depends only on the knot or link K C mw. By our
previous work this means that Qﬁzmﬁﬂvv = Qwﬁxv.

Proof: Let F’ C U\A be another surface bounding K.

Then ¢ = F U -F’ C UA u 1U\¢ = mA is a compact oriented

CHAPTER XIII

4

S*. We conclude that nroﬂ

Tface embedded in

5

anifold % C D N

bounding ¥ C m Hence
4 4
= zwﬁﬁv U |zwﬁﬂ

a(N2(F))

-manifold with boundary zwm%u

(vi#)) = o,

and by Novikov, o(N

Another fundamental property of the signat

4n 4m
1' 72

QAzﬁuszwv.

DUCT THEOREM 13.4. Let M®, M2™ bpe compac

hifolds, then Qﬁzwxzwv =

Qm<HvQA<MV. |

|
|

e exists
wAmv

wv
M -

is

Henc

).

ure is tk

t oriente

: It suffices (by Kunneth Theorem) to prove that |

|

‘tensor product of bilinear forms on vector ;spaces
5 oOver R, Qm<H®<MV = QA<~VQA<MV. Let
ay. .2} be a basis for V,, % = ﬁwH.A. by}
sis for <M. Let ( , ) : <m x <w — R d&ﬁd%mo=ﬁ the
ms. We may assume that they are mﬂaw<m&:mwww,amwmodm
zed. Hence Amm ] qu is a diagonalizing vmdmm for
® <M If QA<HV wHIZH and QA<M = lz where
number of i such that ANw.me > m:m\ = nu
i such that AWM.mmv < 0. (Similarly mon“ wm and
Then
QA<H ® <wv ﬁm P +z z u nmwzm+mwsz
= Awulevawwlzmv
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Remark: If zw is a compact oriented manifold and 4 does
not divide k = dim(M), define the signature of M to be
zero: o(MX) = 0 if 4|k. Then o(M xMy) = o(M )o(My)

for manifolds of arbitrary dimension.

Example: Complex Projective Space. Complex projective

2

cP It is

can be described in a number of ways.

the set of complex lines in ew.

space

Hence

2

3
CP” = {(z(,2,,2,) | (zg.2,.25) € €°-{0,0,0}}.
Here, ( , , ) denotes homogeneous coordinates so that
ANO.Nn.va = AVNO.VNH.VNMV whenever A # 0. By reformu-—
lating this version you can show that ﬁ%M = UA C= mw
where H : mw — mm is the Hopf map and Cm denotes the
mapping cylinder on mU» = mw — wm. The Hopf map is the
map mw -_— mw\mH where mH = unit circle in € acts on
3 2 2
s = AANO.NHV _No_ +_NH_ = 1} by VANO.NHU = AVNO.VNHV.

Jild

From this, one sees that mNAe%MV Z and the generator

has self-intersection +1. Hence QAS%MV =.+1.

G-SIGNATURE

In studying branched covering spaces we have been
looking at manifolds with a cyclic group action. We found
that signatures decomposed into sums of signatures of
eigenspaces. These patterns fit into a more general

context. We will outline this context and discuss how to

CHAPTER XIII

ompute signatures of 4-dimensional manifolds admitting

OlmWMdNncuW theoren

e N

clic action. This is called the

‘or 4-manifolds). We shall use it in Orwﬁnmﬂﬁx<HH to

..ca< slice knots.
be a cyclic group of order

d
G acts smoothly on ZM:.

Let G = 0 d. Suppt

preserving orientatior

|
HDM
Assume for now

_

4> R be

is even.)
b

is a compact, oriented manifold.
) ¢

(Symmetric since n

Let B( ,

is even. mdﬁznﬁv x mﬂﬁzuﬁy

ntersection form. Si:

N, we have B(gx,gy) = mﬁb.ﬁv for

€ G.
|

Thus we have the following algebraic situation:

|

%samnawn form B( , ) :VxV—R, V a <mmnon spac
er R. Assume, for simplicity, that B( ., L is
ndegenerate. For the cyclic action, we mam“mM<m: a
fhear transformation g : V — V with ma =|1 and

x,gy) = B(x,y) for all x,y € V.
MA 13.5 Let V be as above. Then therel exist su
aces <+.<| C V such that

(1) v=vev.

(2) B is positive definite on vt

B 1is negative definite on V

g(vhy = v, g(v) = v .

|
By averaging the standard inner vaomcmn we can

4 r—



