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$1. INTRODUCTION 

THIS paper generalizes some properties of hypersurface singularities into the combined 

contexts of branched covering spaces and open book decompositions. 

Perhaps the most striking corollary of this analysis is a completely topological con- 

struction ofthe Brieskorn manifolds C(a, , . . . , a,) = V(f) n S’“+l (forf=zOso f . . * + z,““, zi 

complex variables, ai 2 1 positive integers, V(f) = zeros off in C”+r). These manifolds 

have been of extraordinary interest in recent years, producing examples of exotic spheres, 

lens spaces, new group actions and so on. 

To explain the approach note that C(a,, ai, . . . , a,) may be regarded as an an-fold 

cyclic branched covering space of S*“-r with branch set C(u,, a, , . . . , u,_r) (see [7] or 

[13]). Thus there is the following tower: 

The vertical maps in this tower are branched coverings; the horizontal maps are the embed- 

dings of the Brieskorn manifolds specified by their definition V(f) n Sznfl c S*“+l. These 

embeddings appear to depend upon the algebraic nature of the spaces involved. 

However, one also knows [ 121 that there is a smooth fibration 4 : S’“+l- C(u, , . . . , a,)-+ 
S’ and the embedding of C in S”‘+’ may be regarded as its natural placement in E u (IZ x 0') z 
SZn+' where E = F x [0, II/[/z :F x 1 + F x 01, F the closed fiber of 4, h the pasting map for 

t Partially supported by NSF Grant No. GP 28487. 
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the fibration over the circle. Thus the embedding C + S2”+i arises from an open book 

structure [20] on the sphere with binding C and leaf F. 

I generalize this situation as follows. Let SZnfl have a simple open book structure (see 

Definition 2.3) with binding K and leaf F. Let K(a) denote the a-fold cyclic cover of S2”+’ 

with branch set K; F(a) stands for the a-fold cyclic cover of D*“+* with branch set P, E = the 

result of pushing F (keeping the boundary of F fixed) into D2”+2 via an inward normal 

vector field. Thus LJF(a) = K(a). 

THEOREM. Under the above conditions there is a good choice of diffeomorphism H(a): 

F(a) -+ F(a) such that H(a) 1 aF(a) = lag and S2n+3 N E(a) u (K(a) x 0’). Here E(a) is the 

fiber bundle over the circle determined by H(a). Thus SZn’ 3 inherits an open book structure 

with leaf F(a) and binding K(a). 

Here and throughout the paper ‘v will denote diffeomorphism. 

The construction may be iterated. Starting from an arbitrary simple book structure on 

S*“+l with binding K, define inductively K(a,, a2 , . . . , a,) = K(a,, . . . , a,_ l)(aJ. These are 

generalized Brieskorn manifolds. 

In particular, if K is a torus link of type (a,, a,) then there is an easily described book 

structure on S3 with binding K. This book coincides with the algebraic book with binding 

%I 2 al). Then C(a,, a,, . . . , a,) = K(a,, . . . , a,) giving a topological construction for 

Brieskorn manifolds (see 9 7(a)). 

The paper is organized as follows. $2 defines simple knots, open books and linking 

numbers. The Seifert pairing is discussed and an explicit form of Alexander duality [Lemma 

2.21 is given. An open book with leaf F2” has a “variation” map A : H,(F, aF) + H,(F). 

Lemma 2.7 relates A and the Seifert pairing. 

93 shows (Proposition 3.3) that a simple open book M’“+‘(n > 1) is a homotopy sphere 

if and only if the variation A is an isomorphism. 

$4 and $5 construct the branched coverings F(a) and K(a). $5 gives a cut and paste 

description of F(a) which shows that F(a) I fj, b a “ fundamental domain ” for the covering 

action x : F(a) -+ F(a) and (i) F(a) = US:: x’B, (ii) b N DZnf2. Using this decomposition, 

Lemma 5.4 and Proposition 5.6 compute the intersection form on H,+,(F(a)). 

While $4 and $5 are independent of the book structure, $6 assumes that F is the leaf of a 

book for SZn+‘. If h is the monodromy for this book structure then h has an extension 
h: D2?t+*+D2n+2(L emma 6.1). Then the monodromy H(a) : F(a) + F(a) is defined (Defini- 

tion 6.4). Essentially, H(a) = x 0 ff where h : F(a) -+ F(a) via h : a + b and the decomposi- 

tion of $5. Theorem 6.6 then shows that the open book determined by H(a) is a homotopy 

sphere by computing the variation and applying the criterion of $3. 

While this completes the proof of the theorem stated in this introduction, actually more 

is true. Lemma 6.7 computes the Seifert pairing associated with F(a) -+ S2”+3. This computa- 

tion may be used to find invariants for generalized Brieskorn manifolds. 
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97 contains applications to the classification of book structures on spheres, knot cobor- 

dism periodicity for fibered knots, identification of algebraic and topological book structures, 

and codimension one foliations of spheres. 

The author would like to thank Ralph Fox for introducing him to branched coverings 

and Alan Durfee for helpful conversations. 

$2. LINKING NUMBERS, INTERSECTION NUMBERS, SEIFERT PAIRING 

Definition 2.1. A simple knot is a pair (S’“+l, K2”-‘) where K2n-1 is an oriented 

(n - 2)-connected submanifold of SZnfl, and there exists an embedding of an (n - l)- 

connected oriented manifold F2” c S2”+l such that aF2” = K2=-‘. If K2n-1 is a homotopy 

sphere, the knot is said to be spherical. (S “+’ is also oriented and all manifolds will be 

smooth.) 

In case n = 1 a simple knot denotes a collection of disjoint circles embedded in S3. 

When spherical, it is a knot in the usual sense of the word. 

Dejinition 2.2. An open book structure on a closed manifold M2”+r with binding K’“-’ 

and leaf F’” is a decomposition M”“l =Eu(Kx D2)whereaE=KxS’;Eisa(2n+1)- 

manifold with boundary which fibers over the circle via 4 : E --f S’, fiber Fand 4 ( 3E : K x S’ + 

S’ is projection on the second factor. 

Open book structures on manifolds have been considered by various authors [see 5, 

19, 201. 

Definition 2.3, An open book M”‘+l is said to be simple if K2n-t is (n - 2)-connected, 

F2” is (n - 1)-connected. A simple book structure on S2n+1 will be called a simpzefibered 

knot. 

Remark. It follows from the definition that the leaf of a simple book has homotopy 

type of a wedge of n-spheres. For n # 2 F will in fact be a handlebody. For n = 2 we shall 

assume that every two-dimensional homology class can be represented by a (combinatori- 

ally) embedded sphere. (This will be true for F(a), F the leaf of an S3-book, F(a) as described 

in the introduction.) 

Suppose a, b c S2”+l are disjoint embedded n-spheres. Assume orientations are 

chosen for a, b and S2”+‘. We define the linking number of a and b to be I(a, b) = (ca, cb) 

where ca and cb are radial cones in D2”+’ with apex the origin 0 E D2n+2. The symbol 

( , ) denotes intersection number and is well-defined since ca and cb are representatives for 

the generators of Hn+I(D2n+2, a u 6) and one may choose piecewise linear representatives in 

their homology classes which intersect transversely. The vanishing of H*(D2n+2, a u b) for 

* > n + 1 then assures that any pair of transverse representatives have the same intersection 

number. (See the PL general position Theorem 5.3 of [15].) 

It follows that f(a, b) = (a, B) where B is an (n + I)-chain on S’“+‘, dB = b and (, ) 

denotes intersection number in S2”+‘. Also, E(a, b) = (- l)“+‘Z(b, a). 

Given a simple knot K2”-l c S2n+1 with spanning surface F2” there is a bilinear pairing 
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(Seifert pairing) 8 : H,(F) x H,(F) + Z, 0(a, b) = Z(i, a, b) where i, = “push off F into 
s2n+1 

- F in the positive normal direction”. 

One also has an intersection pairing ( , ) : H,(F) x H,(F) -+ Z. This may be defined via 

the nonsingular Poincart-Lefschetz duality pairingf: H,(F) x H,(F, cYF) + H. Letj : H,(F) -+ 

H,(F, aF> be the map induced by inclusion. Then (a, b) =f(a, j(b)). 

There is a well-known relationship between 0 and (, ) [see lo}. We include a proof 

since the technique is useful. 

LEMMA 2.1. (- l)“+‘(a, b) = l3(a, b) + (- 1)“8(b, a). 

Proof. Note that via a normal vector field to F we have diffeomorphisms i, : F-+ Szn+l 

for - 1 I t I + 1. Here positive t denotes translation in the positive normal direction. We 

may assume that i, I8F = I,, so that for F, = i,(F), F, n Ft, = K for t # t’. Let i, = il12, 

i* = iLlj2 so that i*i, = i, i* = l,(F = F,). Hence Z(i, a, b) = l(i*i, a, i*b) = Z(a, i*b). Now 

ifB= u i,(b), then B is an (n + 1)-chain on S2”+i and, up to sign, (a, b) = 
tc[-1/2,1/21 

f (a, B) where the second intersection number is in S’“+‘. Choosing the orientation for B 

so that (a, b) = (a, B) means that we regard B N b x [- l/2, l/2]. Then aB = (- 1)” 

(b x (l/2) - b x (- l/2)) = (- l)“(i, b - i*b). By our definition of linking numbers, 

(a, B) = Z(a, 13s) = (- l)“Z(a, i, b - i*b) 

= (- l)“((- l)“+‘Z(i, b, a) - Z(a, i*b)) = -B(b, a) + (- l)“+‘B(a, b). 

Thus (- l)“+‘(a, b) = fl(a, b) + (- l)V(b, a) proving the lemma. 

LEMMA 2.2 (Alexander duality). The linking pairing I: H,(F) x H,(S’“+l - F) + h is 

non-singular. (Here F = F - (coZZar neighborhood of aF).) Moreover, if {ai} is a basis for 
H,(F, 8F), dual 10 Q basis {a,} for H,(F) in the sense that f (ai, aj) = 6ij, then Z(ai, Aj) = 6ij 

where A, = (- l)“(i,aj - i*ilj). Thus {Ai} is an Alexander dual basisfor Hn(S2”+’ -F). 

Proof. Alexander duality implies that the pairing is non-singular. Using the notation of 

the previous lemma, let Bj = u i,(iij). Orient this (n + I)-chain so that (ai, Bj) = 
tE[-l/z,l/z] 

f (ai, aj) for all i. Since it 1 aF = l,, , LJBj is an n-cycle on S2”+’ - F. Furthermore, aBj = Aj. 

Thus dij = f (ai, hi) = (ai, BI) = Z(ai, 8Bj) = Z(ai , Aj). This proves the lemma. 

LEMMA 2.3. The following sequence is exact. 0 + H,,(K) + H,(F)L H,(F, 3F) + 

H,_,(K) + 0. With respect to the bases {a,} and {iij}, j has matrix N where Nij = (ai, aj>. 

Proof. Exactness follows from the homology sequence of the pair (F, 8F), K = aF, and 

the given connectivity conditions. 

This completes a summary of the algebra associated with a simple knot. Now suppose 

that K”‘-l c Sznfl is a simple fibered knot with fiber F. Thus S”‘+’ has an open book 

structure and S2”+’ = E u (K x II’), q% : E + S’. The fibration 4 is determined by a diffeo- 

morphism h : F -+ F such that h / aF = 1dF. The map h will be referred to as the monodromy 
of the open book. In what follows, we shall use the notation developed above for bases an 

pairings. 
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Note that h may be regarded as h, : F,, + F,, where h, : F0 + Ft’,, F, = 4-1(e2ni’), t E R, 

h fI+r2 = h,, 0 h,, . Thus we may take i, = hIlz, i* = h_l,z so that i*i* = i*i* = h, = 1,. 

Each map h, is the identity when restricted to aFO. Thus hi* = hl 0 h_1,2 = h,,, = i,. The 

following lemmas are direct consequences of the definitions. 

LEMMA 2.4. e(a, b) = (- l)“f’8(b, ha). 

LEMMA 2.5. (- I)“+‘(a, b) = &a, (I - h)b). 

LEMMA 2.6. Let V = ( Vij) (Seifert matrix) where Vij = 8(ai, uj). Then i*uj = xi= 1 Vij A, 

in H”(SZ”+t - F). 

Now consider the action of h on H,,(F, aF). Since h 1 aF = IdF, Z - h induces a map 

A: H,(F, aq + H,(F). 

Remark. To avoid complexity of notation, the same symbol will often be used for a 

map, the induced map on homology and the matrix of the latter with respect to a basis. 

LEMMA 2.7. For a simple jibered knot the Seifert matrix V is unimodular and the 
matrix oj’A (also denoted by A) with respect to the bases {ai} and {ai} is given by 

A =(-l)n+lV-l. 

ProoJ Recall that Ai = (- l)“(i,iii - i*ai) 

= (- l)“i*(ha, - a,). 

Thus Ai = (- l)“+‘i* A(izi). 

Lemma 2.6 shows that V is the matrix of i* with respect to the bases {a,} and {Ai). 

Hence the last formula reads Z = (- I)“+’ VA. Thus V is unimodular and the lemma follows. 

Note that this last lemma shows that the monodromy of an open book structure on 

S”‘+’ determines the Seifert pairing. Classical formulas for the Picard-Lefschetz transforma- 

tion in algebraic geometry [see 9,141 compute the variation A, and hence a Seifert pairing, 

for special singularities. 

$3. WHEN IS A SIMPLE BOOK A FIBERED KNOT? 

We wish to find conditions on a simple open book M2”+l which insure that M2”+l is a 

homotopy sphere. In particular, one wants conditions on the monodromy. 

Note that for n > 1 a simple book is simply connected. Thus, for n > 1, one need only 

find conditions for M2”+’ to be a homology sphere. 

PROPOSITION 3.3. Let M2”+’ be a simple open book with leaf F, monodromy h and n > 1. 

Let A : H,(F, dF) + H,(F) be the variation described in $2. Then A4’“+’ is a homotopy sphere 
if and only if A is an isomorphism. 

The proof of this proposition will occur at the end of the section after some preliminary 

discussion. 

Recall the Wang sequence [12] for a fibration 4 : E + S’ (fiber F’“(n - I)-connected, 

monodromy h). 0 --f H,+,(E) + H,(F) rWh - H,(F) + H,(E) + 0. This sequence is exact. 
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The map on the right is induced by inclusion F c E. The map H,+,(E) -+ H,(F) is the com- 

posite H,+,(E) +H,+r(E, E) = H,+,(F x [O, 11, F x 64 1)) = ff,(F?. 

LEMMA 3.1. Let M*“+’ be a simple open book with n > 1, leaf F and bundle E as above. 
Then the following diagram commutes: 

0 + ZZ,(BF) + H”(F) i H,(F, aF) a - H,-I(aF) --f 0 

x.5’ I I = I A I XS’ 

0 -+ H,+,(E) + K(F) 
I-h 

- H”(F) - H,(E) -to. 

XS’ 
Here xS’:H,(aF) -+ H,+l(E) denotes the composite H,(aF) - H,+l(aF x S’) 

= 
- HeeI(dE) -+ H,+,(E). Thus, zf A is an isomorphism then the two sequences are 
isomorphic. 

Proof The middle square commutes since it follows from the definition of A that 

A oj = Z - h. Commutativity of the left-hand square follows directly from the definition of 

H,+,(E) --+ H,(F) in the Wang sequence. 

To see commutativity of the right hand square, suppose x E H,_ l(aF) and X E H,(F, al;> 

so that 8X = x. Let 8 E C,(F, aF) be a relative chain representing X. By translating r? 

around the bundle E one obtains an (n + l)-chain B E C,+,(E)(B =05vs Ih,(8)) such that 

as = Ar? - (ar? x S’) (viewing C,(F, aF) c C,(E)). Thus AZ is homologous to a8 x S’ in 

H,(E). This completes the proof of the lemma. 

LEMMA 3.2. Let M*“‘l be a simple open book, n > 1, E, F and h as above. Zf A is an 

isomorphism then i’: H,(aF) + H,,(E), induced by inclusion, is the zero map. 

Proof Consider i: H,(aE; Q) + H,(E; Q). A standard argument [see 1 l] shows that 

dim(Ker i) = l/2 dim(H,(aE; Q)). Here dim refers to vector space dimension over Q = the 

rationals. But aE = aF x S’ and H,(aF x S’) = H,(BF) 0 H,,_,(aF) so that H,(aE) + H,(E) 

is given by H,(aF) @ H,_,(aF) 5% H,(E). By Lemma 3.1, x S’: H,_,(aF) + H,,(E) is 

an isomorphism. Since dim(H,_,(aF; Q)) = dim(H,(aF; Q)) and H,(aF) is free, we conclude 

that i’ is the zero map. 

Proof (of 3.3). We need only check that if A is an isomorphism then M is a homology 

sphere. Write M = E u (aF x 0”) with E n (aF x 0’) = aE = aF x S’ and apply the 

Mayer-Vietoris sequence. Note that H,(E) = 0 for * # 0, n, n + 1,2n + 1; H,(BF) = 0 for 

*#O,n-1,n,2n-1;H,(~FxS’)=H,(~F)~H,_,(BF)=Ofor*#O,n-l,n,n+1, 
2n - 1, 2n. Thus the relevant sections of the sequence are of the form 

H,+l(M) --f H,(aF x S’) --f H,(E) @ H&F x D*) -+ H,(M). 

The center map is given by 

H,(=) 0 H, - r(aF) -+ H,(E) 0 H,(aF) 

(x,y)+(i(x) +y x S’,x) 

where i: H*(aF) --) H,(E) is induced by inclusion and x S’ is the map discussed above. It 
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then follows from Lemmas 3.1 and 3.2 that this is an isomorphism often enough to insure 

that H,(M) = 0 for * # 0, 2n + 1. Thus A4 is a homology sphere and hence a homotopy 

sphere. 

$4. CONSTRUCTION OF BRANCHED COVERINGS 

In this section and the next K’“-i c S’“+’ . 1s a simple knot with spanning surface F’“. 

No open book structure is assumed. 

Using the normal field of S2”+’ in D2n+2 one can push F into the interior of D2n+2 

obtaining a diffeomorphic copy of F lying near dDZni2. Joining the boundary of this copy to 

K by normal trajectories one obtains a manifold E c D2”+2 such that P n aD2”+’ = 

afi = K. Note that fi is a manifold with corners. By the usual technique of “straightening 

the angle” one may assume that E is a smooth submanifold of D2”+’ and E N F. 

Since E has trivial normal bundle in D2n+2 we can extend the inclusion to an embedding 

II/: E x D2 + D2nf2. Let X = D’“+’ - $(E x b2)(b = ’ t m erior of 0). Then X is a manifold 

with boundary (and corners). 

LEMMA 4.1. H,(X) CI Z. 

Proof. Note that D2”+2 =(Ex D2)ubX where4=$18xSS’. Letj:D2--,Px D2, 

j(z) = (x, z) for some fixed x E P. In the diagram below the bottom vertical maps are induced 

by& 

0 = H2(D 2”+2) -_, H2(D2”+2, X) & H,(X) + Hl(D2”+‘) = 0. 
+ * 

H,$ x D2, E x S’) + H,$ x S’) 

I 

1 

I 

Hence H,(X) N Z. 

H2(D2, S’) + H,(S’) 

Let n : 8 +X be the regular covering space corresponding to the kernel of nl(X) -+ 

H,(X) --f h/d for a given choice of positive integer a. The embedding C$ induces an embed- 

ding 6 : F x S’ + r? so that the following diagram commutes. 

I IX,%. I II A,(x) = xa, x E s’. 

Pxs’ L x 

Definition 4.2. F(a) = (8 x 0’) ~6 8 

K(u) = aF(a). 

Thus F(u) is the u-fold cyclic cover of D2”+’ with branch set I?, and its boundary K(u) is 

the u-fold cyclic cover of S’““’ branching along K. They are both smooth manifolds with 
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differentiable structure independent of the choices of tubular neighborhoods, and so on, 

involved in their construction. Verification of this last point will be omitted. 

We wish to investigate the topology of F(u) and K(a) The first task will be to give a cut 

and paste description of F(a). 

55. CUTTING, PASTING AND THE INTERSECTION FORM FOR F(u) 

The first result of this section gives a decomposition of F(Q). This decomposition is then 

used to find the intersection form on H,+,(F(a)). 

Definition 5.1. Let W, W_ , W, denote the following submanifolds of S2n+1 : 

W= u i,(F),W_= u i,(F),W+= u it(F). Here the family of embeddings 
151s+1 

i,:F;S2”+l 

-l$fsO 0_<25+1 

, - 1 I t I + 1, is defined in $2. Note that i, [ aF is the identity. There is an 

involution T: W-+ W such that T( Wk) = Wr , T(W+) n W+ = F. Given i,(x) E W, 

T(i,(x)) = i_t(x); thus T( r = 1,. 

PROPOSITION 5.2. Let x : F(a) + F(a) denote the generating covering translation. Thus x 

has order a and is the identity when restricted to the branch set F c F(a). Then there is a 

“fundamental domain” b c F(a) such that 

(9 
(ii) 

(iii) 

D has the structure of smooth submanifold so that b N D2”f2. 

F(a) = US:: x’d. 

Identifying ad with aD2”+2 and using the notation of 5.1, one has xi b n xi+’ D = 

x’w_ =xi+tw+, xi b n xjd = F for 1 i - jl f 0, 1 (mod a). The identification 

x’W_ =xi’lW, isgiven by 

x’(p) = x’+‘T(p), T as in 5.1. 

Proof Recall that F(a) = (E x D2) u4 x and note an alternate description of 8: 

Since H,(X) N Z, there is a map u :X + S’ such that CL 1 E‘ x S1 is projection on the second 

factor and 8 is the pullback 

r? --L s’ 

(The map CI is a generator for H1(X) = [X, S’]. That u]E x S’ is projection follows from 

the proof of 4.1.) 

By choosing a differentiable representative for CI and making it transverse to a point on 

S’ we obtain a splitting of X along a codimension 1 submanifold. Then 2 is a union of a 

split copies of X. 

Since fi was obtained by sliding F into the interior of D2n+2 via an inward normal 

vector field, we actually constructed a submanifold WZnfl c D2n+2 such that d w = P u F. 

(Essentially, w is the union of all the trajectories running from F to F.) We may assume 

that the embedding + : E x D2 + D2”+’ is transverse to m along P x S1 and that IC/(E x D2) 
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intersects W in a collar neighborhood of E in W. Thus w’ = wn X is a submanifold of X 

such that 8 w’= (F x *) u F’ where F’ c S2”+’ and aF’ = K x *, * E S’. 

Now define a :X -+ S’ as follows. First set CL 1 Fx S’ to be projection on the second factor. 

Next, define C$ W’) = *. It is then an easy exercise in obstruction theory to see that this 

extends to c1 :X + S’. 

Thus w’ may be used to effect the splitting of X. 

Since F(a) = 8 u (E x D’), it may be described as follows : Let b = D2”+’ split 

along ( W- E) so that & = 9 2n+1 u v_u v+ where wn m+-p, r_- r+-W, 

aw_ =FuF-, aw, =hF+, aFf = K, F, N F. Similarly 3 = S2n+1 split along F, 

and&=F_ uF+,F_ nF+ =K. 

Then F(a) = U:ZJ x’b and the x’d intersect according to the schema in the statement 

of the proposition with W, replaced by V* . 

It remains to show that b N D2nf2, 3 u V- u V+ N S2”+’ and that W- u W+ = W 

under this identification. It is clear abstractly that vk N W, . Furthermore, the quotient 

space of DZni2 under identification of x E W- with TX E W, is clearly diffeomorphic to 

D2”‘2 with W, and W- going to a submanifold of D2n’2 diffeomorphic to m Thus 

B = DZni2 split along w- D2”+2. 

Using this identification, the proposition follows. 

Remarks. (1) Smoothing details for the above proof have been suppressed. The sub- 

manifold b, as defined, is a manifold with corner along F. It is clear that upon following the 

above proof and straightening the angle that b N D2”+‘. 

(2) A simple example for this proposition is given by a solid torus double branch 

covering D3 (same geometry even though 3 is odd). Let T = {(zl, z2) E C21 1 z1 1 s 1, 1 z2 ( = I} 

and x : T + T by x(zr, z2) = (Z1, Z2) where Z denotes the complex conjugate of z. Then B = 

Kz1, z2) E T( Im(z,) 2 0) and T = b u xd, T/x = b/x = D3 and b N D3. Figure 1 illus- 

trates this example. Note that here K = four points in S2 and F = two disjoint arcs joining 

pairs of points. 

FIG. 1 
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(3) From now on b will be denoted simply by D. 

TO describe the topology of F(u), let CF c D be the join of I: c aD with the center of 

D. Similarly, x’CF c x’D. Thus F(u) I F’(a) where F’(u) = CF u xCF u * * * u x*-ICF and 

x’CF n xjCF = F for i $ j (mod a). 

LEMMA 5.3. F’(u) c F(u) is a homotopy equivalence. 

Proof. Let D’ c D be a smaller concentric disk. Let D” = D’ u F x [0, l] where 

F x [0, l] is radially embedded in the annulus between D and D’ (F x t c a sphere con- 

centric to aD) and F x 0 = F c aD. Let F”(u) = D” u xD” u . . . u x’-~D”. Thus F”(u) 2 

F’(u). Now note that F”(u) c F(u) is a retract of F(u) and F’(u) c F”(u) is a homotopy 

equivalence. Hence F’(u) c F(u) is a homotopy equivalence. 

We know that H,(F) has a basis represented by embedded spheres. Let these be 

{a,, a,, . . . . a,}. Let cui c CF denote the radial cone over a, in D similarly xjcui c x’CF. 

These cones fit together to form many (n + I)-spheres in F(u). Let Zuj = cuj u xcuj and, as 

an element of the chain group C,,+,(F(u)), Caj = cuj - xcuj. Note that one may regard 

x : C”(F) + C” + 1 Q%N. 

LEMMA 5.4. The homology group H,+,(F(u)) is free of rank r . (a - 1). A basis is given by 

~={xi~uj~O~i~u-2,j=1 ,..., r}. 

Proof. H,+,(F(u)) N H,+l(F’(u)) and the lemma is clear for the latter. 

Next, we wish to determine the intersection pairing ( , ) : H,+,(F(u)) x H,+l(F(u)) + Z. 

Dejnition 5.5. d(G) = ci*a - xc&cl. Here i” = i_-1,2, i, = i+1,2 with i, as usual. Note 

that Ti* = i* and thus d(L) is a cycle on F(u). It is clearly homologous to Ccr via the family 

d,(&) = ci_,a - xci,, a, 0 I t s l/2. (See Fig. 2.) Similarly, d(x%) = x’d(&). 

FIG. 2 



and 
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Since cones are taken radially, x’Ccr and d(x’Cfl) can intersect only at the apex of cones, 

hence in at most two points. 

PROPOSITION 5.6. On the basis 9? the intersection form is given by 

(O(ai, ai,) + (- l)n+l&a,,, aJ j = j’ 

(&a,, xj’Ca,,> = I (- l)“e(fZi,, f.Zi) 

- B(a, , ai,) 

j=j'+l 

j+l=j' 

\ 0 otherwise. 

Here 8: H,(F) x H,(F) + Z is the Seifert pairing. 

Proof. This calculation involves the deformation of Definition 5.5 and the definition of 

linking numbers in SZn+’ in terms of intersection numbers in D2n+2. Since it is straight- 

forward, we do the case j = j’ and leave the rest to the reader. 

(xjCa,, xjXai,) = @ai, Za,,) 

= (Eai, d(Cai~)) 

= (cai - xcai, ci*ai, - xci, ai,) 

= (cai , ci*a,,) + (ca,, ci, ai,) 

= Z(ai , i*a,,) + Z(ai , i, ai,) 

= @ai, a,,) + (- l)“+‘B(ai,, ai). 

The other cases follow similarly. 

COROLLARY 5.7. With respect to the basis W, ( , ) has matrix N(a) = V(a) + (- I)“+’ V(a)l 

where V(a) = V @ L, , V = Seifert matrix Vij = 8(ai, aj), l-1 
l-l 0 

L, = [ *I . * ((a - 1) x (a - 1)). 

o I.;’ 

Here @ denotes tensor product of matrices. 

Proof. This is simply a restatement of (5.6) in matrix terms. 

It is also useful to have an explicit basis for H,+,(F(a), dF(a)). Let {a,, . . . , ii,} be a 

dual basis for H,(F, 8F) so that f (ai, aj) = dij, f: H,,(F) x H,(F, 3F) -+ Z the Poincarb 

Lefschetz duality pairing. The dual basis in F can be used to construct a dual basis in F(a). 

Dejinition 5.8. Let Bi = u i,(ai) c W+ c D and let Bi = T(B,)(T: W, + W_ as in 
Of< 1 

(5.1)). Let K’ = Fj(a,) = Bi - x’Bi for 0 I j 2 a - 2 and 1 I i 5 r. Note that one may 

regard Fj as a map Fj : C,(F, I?F) --) C,,, l(F(a), dF(a)). 

LEMMA 5.9. The set 4 = {SiilO I j I a - 2, 1 5 i I r} is a basisfor H,+,(F(a), aF(a)). 
PoincarP dual to .@. 
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Proof. Simply note that the x’CUi are transverse to the 9_i’, intersecting only along F. 

AlsoTjis a relative cycle. If?: H,+,(F(u)) x H,+,(F(u), F(u)) + Z is the duality pairing then 

it follows, using the deformation d of (5.5), that f(x’Cai, S/) = 6jj, . diis. This proves the 

lemma. 

$6. CONSTRUCTION OF AN OPEN BOOK WITH LEAF F(u) 

Now add to the structure by assuming that K and Fare the binding and leaf of a simple 

book decomposition of S’“+‘. Let h : F-+ F, h 1 aF = l,, be the monodromy. Let E = 

F x [0, l]/[x x 1 - (hx) x 0] so that S’“+’ z E u (K x 0’). 

In this section a map H(a) : F(a) + F(u) will be defined and we show that the open book 

with monodromy H(u) is a homotopy sphere. 

Note that under the above assumptions one may define h : E -+ E by h[x, t] = [hx, t] 

([x, t] = equivalence class of x x t in E). Since h 1 aF = l,, , this extends to a diffeomorphism 
h : p+l~ pa+‘. 

LEMMA 6.1. The diffeomorphism h : SZn+l -+ S”‘+’ is isotopic to the identity map. 

Proof. Regard E = F x Iw/ - where (f, t) - (h-If t + l), [f, t] = - class of (f, t). Let 

he(lf,t])=[f,t+&],OI&I1.Thush,=1,andh,[f,r]=[f,t+1]=[hf,t]=h[f,t]. 

Hence fl E is isotopic to 1,. To extend to S’“+l, define h, : K x S’ + K x S’, h(x, [t]) = 

(x, [t + E]), S’ = [w/Z This agrees with h, 1 aE. Viewing S’ c C, h,(x, A) = (x, e2nia . A). Thus 

we may define h, : K x D2 -+ K x D2 by h,(x, z) = (x, eZniE . z). This gives the extension 
h, : S2n+1 ~ S2n+1 such that h, = identity and hI = h. 

Remarks. (1) Under the above conditions we may define a diffeomorphism h : D2”+’ + 

D”“’ which agrees with h above on the boundary by using the isotopy on S2”+’ x I and 

filling in the identity map on a smaller concentric disk. 

(2) For I E S’ let [0, 11 = {tn E Dz IO I t I l}. In S2”+l, let F = F u (K x [0, 11). Thus 

h,(F) = h,(F) u (K x [0, e’““]) and S2”+’ = U h,(F). Thus we may take for 
-1/2~s~+1/2 

W c S2”+l (as in (5.1) and (5.2)) W = U h,(F). Letting i, = h1,4 and i* = h-1,4 
-1/4s;E<t1/4 

one has 8 W = i,F u i*F and W has an involution T: W -+ W with T(x) = h_2E(x) for 

x E h,(F). Proposition 5.2 now holds using this choice of W. 

The next lemma observes that under the assumption that K is a binding of a simple book 

structure on Szntl it follows that K(u) is also an open book with the same binding and leaf. 

LEMMA 6.2. Let E(u) = F x IX/-, (L t) -(h-“f, t + a). Let (A t) = the equivalence 

class of(S, t) in E(u) and [f, t] = the equivalence class of(f, t) in E (E = E(1)). Define 7~ : E(u)+ 

E by z(f, t) = [f, t] and extend this to 71 : E(u) u (K x 0’) -+ E u (K x 0’) N S’“+’ via 

Kx D22Kx 0’. 

Then there is a diffeomorphism $ : K(u) + E(u) u (K x 0’) such that the following 

diagram commutes : 
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K(u) JI E(a) u (K x D*) 

I/ z’ 
x 

s2n+1 

Here n’ is the branched covering map, 

Proof. This is easily seen from Remark 2 above and the proof of Proposition 5.1. 

Remark. In K(a) = aF(u) we have denoted the action of Z/u72 by x : K(u) + K(a). In E(a) 

this corresponds to (f, t) t+ (h-If, t + 1) and extends over K x 0’. This justifies writing 

x(s, t) = (h-lx t + 1). 

DeJinition 6.3. Define a diffeomorphism h^ : F(u) -+ F(u) via F(u) = USZo’ x~D~"+~ and 

h(x'p) = xi/z(p) where p E D2”+2 and h : DZn+’ + D2”+2 is the extension of the monodromy 

defined in Remark 1 after (6.1). One sees that this is well-defined by examining Proposition 5.2 

in the light of Remark 2. 

LEMMA 6.4. Let H : F(a) -+ F(u) denote the composite H = x 0 1;. Then H 1 K(a) is isotopic 

to 1K(n). 

ProoJ: Let g = H (K(u). Identifying K(a) and E(a) u (K x D2) by (6.2) we find 

g(A t) = x(hf, t) = (h-‘hf, t + 1) = (f, t + 1). 

This is isotopic to the identity in such a way that it extends over K x D2. Define g,(f, t) = 

(f, t + E) and proceed as in (6.1). 

Thus, by collaring F(a) and carrying the isotopy gE on the collar K(a) x [0, l] we obtain 

from H a map H(a) : F(u) -+ F(a) such that H(a) 1 aFcaj = laFC.). 

DeJinition 6.5. Let M2n+3(a) be the manifold with open book structure: leaf F(u), 

binding K(a), monodromy H(a). 

THEOREM 6.6. The manifold M(u) is a homotopy sphere for n 2 1. Furthermore, one can 

modlyy the monodromy H(u) so that its action on H,, + 1 (F(u)) and its variation A(a) : H,,+l(F(u), 

aF(u)) -+ H,+,(F(a)) are unchanged but M’“+“(a) is dzfiomorphic to S2n+3. Thus S2”+3 

inherits an open book structure with binding K(u) and leaf F(u). 

ProoJ By (3.3) it suffices to show that A(a) is an isomorphism. Let 93 and 4 be the 

bases for H,+,(F(a)) and H,+,(F(u), aF(a)) discussed in $5. 

Claim. With respect to the bases 4 and S?, A(u) has matrix (also written A(u)) A(a) = 

p * A 0 S, where A is the matrix of A : H,(F, 8F) -+ H,(F) and 

1 1 I.e.1 
1 I*..1 

s, = 

[ 1 1 ... 1 ((a - 1) x (a - 1)). 

0 ‘.*l 

Here p = + 1 to be determined later. 
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Note that, given this claim, it follows that A(a) is an isomorphism. For, A is uni- 

modular and A-’ = (- l)“+’ V where I/is the Seifert matrix (see Lemma 2.7). Let V(u) be as 

in (5.7). Then A(u) * V(a) = p . (A 0 S,) * (VO L,) = p . (- l)“+‘Z. Hence, as a matrix, 

A(u) is unimodular and thus as a map it is an isomorphism. 

The modification of the monodromy follows a remark of Milnor : Taking connected sum 

of M with an exotic sphere may be described by splitting M along a ball D2”+2 c MZnf 3 and 

repasting via a diffeomorphism cp : D2n+2 -+ D2”+’ such that cp 1 aD2n+2 = the identity. 

Thus, if M 1: C, E an exotic sphere, let cp : D2”+2 -+ D2”+2 be a diffeomorphism correspond- 

ing to #(-C). Modify H(u) by composing with cp along a tiny ball in the interior of F(u). 

The new open book will be diffeomorphic to M# (- C) = C # (-C) N S2”+3. This certainly 

leaves the homological properties of the monodromy unaffected. 

Proof of Claim. Recall that 4 = {S,j}. In order to compute A(u)(Sj) it suffices to 

know the intersection numbersj(A(u)(Y:), YF) since these are the coefficients of A(u)(qj) 

expressed as a combination of the elements of the dual basis 8. (Here7 is as in (5.9).) As in 

(5.2), regard F(u) = u x’D where x’D n x’+‘D = xi+l W, and so on. Then one can deform 

A(u)(Sj) so that A(u)(Y,‘) c D u xj+lD and A(u)(Yj) n [&;A xkW+] = A(ai) c F (see 

Fig. 3). It then follows that 

f(A(u)(@), J<“) = 
/J .f(Aai, a,) for k_< j 

0 otherwise 

since qk c ui1: xk W, and qk n F = d,. It is another deformation argument to see that 

the intersections occur in the range k 5 j. 

9-l w~x.0 

FIG. 3 

&W’) 

Reformulation of this in matrix terms gives the claim as stated. 

This completes the proof of the theorem. 

Discussion. Since M2”+j( a is a sphere, it follows that A(u)-’ = (- l>” Vwhere vis the ) 

Seifert matrix for F(u) c M(u) (Lemma 2.7). Now the matrix forms of Lemmas 2.4 and 

2.5 read I%(u) = (- 1)“v’ and (- l)“N(u) = v(Z - H(u)). Here H(a) is the matrix of the 

monodromy with respect to the basis B. Now H(u)(xiCaj) = xi+‘Uzaj and, since 1 + x + x2 

+ ...+xa-l = 0 on homology, H(u) = h 0 C, where 

[ 

0 
1 

c, = 
0 
1 

0 

1) x (a - 1)). 



BRANCHED COVERINGS, OPEN BOOKS AND KNOT PERIODICITY 157 

In the proof of (6.6) we found that A(a)-’ = ZJ . (- l)“+’ V(u). Thus v = -- pV(u). Also, one 

may check directly that V(a) . H(u) = (- l)“V(u)‘. Thus N(u) = V(u) + (- l)“+‘V(u)’ = 

V(U) - V(U) . H(u) = V(u)(Z - H(u)). Thus (- 1)” V(u)(Z - H(u)) = -,~V(u)(l - H(u)) and 

hencep=(-l)n+r. Thus A(u)-’ = V(u) and therefore 7 = (- l>“V(u). We have shown: 

LEMMA 6.7. The Seifert matrix for F(u) c M(u) is given by v = ( - I>” V(u) with respect 

to the basis B for H,+l(F(u)). 

Since we can assume M2”+ 3 N Szn+ 3, the construction may be iterated. Let SZnfl have 

any simple open book decomposition with binding K. Given a sequence of positive integers 

{a,, ~1~) cc3, . . .} define K(a,, . . . , cc,) inductively by K(al, . . . , ~l~+~) = K(a,, . . . ,a,)(a,+l). 

Thus one has a tower: 

. . . . 

:I 
4 

K(a,, a2) + S2”+5 

I 
K(a,) + S2”+3 

The horizontal maps are placements of bindings for open book structures; the vertical maps 

are cyclic branched coverings. 

Note that these “generalized Brieskorn manifolds” have many symmetries and they 

are themselves open books as well as being bindings for book structures on spheres. 

Iterated application of (6.7) allows calculation of the Seifert pairing of F(a,, . . . , a& -+ 
S2”+2k+‘. The matrix is (_ l)nk+(k(k-1))/2. V 0 L,, 0 La2 0 . . .@ L,, where V is the Seifert 

matrix for F 4 S2”+’ and L,, is as in (5.7). 

$7 APPLICATIONS 

(a) Hypersurface Singularities and Algebraic Books 

The constructions of this paper were motivated by attempts to understand the algebraic 

case. Here we examine open books determined by isolated hypersurface singularities and 

show how to give a topological construction of the Brieskorn manifolds. 

Dejinition 7.1. Let T(F, h) denote the open book determined by h : F + F, h ( aF = l,, . 

One says that two books T(F, h) and T(F’, h’) are isomorphic if there is a diffeomorphism 

JI: T(F, h) -+ T(F’, h’) preserving the book structures (i.e. 9 preserves leaves and bindings). 

To relativize this definition let M be a fixed manifold. A book structure on M is a triple 

{F, h, g} su,ch that T(F, h) 9 M is a diffeomorphism. Two book structures (F, h, g} and 
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{P’, h’, g’} on M are said to be isomorphic if there is a book isomorphism $ : T(F, h). + 

T(F’, h’) such that g’ 0 II/ = g. Let S(M) denote the set of isomorphism classes of simple book 

structures on M. 

Here we restrict ourselves to weighted homogeneous polynomials, although this is 

probably unnecessary. Recall that a polynomialf(z) =f(z, , z,, . . . , z,) in n + 1 complex 

variables is said to be weighted homogeneous if there exists a tuple of positive rational 

numbers (wO, wl, . . . , IV,) such that f(z) is a linear combination of monomials zoiOzl i1 . . . znin 

with iO/w, + il/wl + . . . + i,,/w,, = 1. 

Givenfweighted homogeneous of type (w,, , . . . , w,) define p*z = (pl’wOz,, , . . , pllwnz) 

for p positive real. Thusf(p*z) = pf(z). 

If f has an isolated singularity at 0 E a=“” then Milnor [12] constructs a fibration 

4 :sn+r - K -+ S’ with 4(z) =f(z)/jf(z)] , K = V(f) A S*“+l. This gives a simple book 

structure on S*“+l with (open) leaf F = {z E S*“+’ If(z) E IF!‘}. 

Let f(x, z) = x’ + f(z) where x is a new complex variable. Then p(x, z) is also weighted 

homogeneous. 

THEOREM 7.2. Let T(f) and T(f) denote the book structures on S2+“3 and S*“+l deter- 

mined by j‘andf respectively. Let T(F(a), H(a)) be the book on S2”+3 determined by T(f) and 

(6.6). Then T(p) is isomorphic to T(F(a), H(a)). 

Proof. It will suffice to identify F(a) with the fiber of the Milnor fibration for xp +f(z), 

and H(a): F(a) + F(a) with the monodromy for xa +f(z). To see this Let 

E = {z E D*“+‘j If(z)1 = S} 

where 0 < S g 1. Then 4’: E --) S’, 4’(z) =f(z)/I f(z) 1 is a C” fiber bundle with fiber 

F = {zlf(z) = 6, IfI I l}. Define q: E + S*“+’ - N, N = {z E S’“+‘j If(z) I I 6) by q(z) = 

p*z for the unique p 2 1 such that (q(z) ( = 1. Then, since f(p*z) = pf(z), v] is a bundle 

isomorphism. Now N N K x D2 since it is a trivial bundle over D’,. The open book 

structure on S*“+i is given by v](E) u N. 

Note that F = {z If(z) = 6, I z I I l} may be taken as the model for the leaf pushed into 

D2”+* via a normal vector field. Let E = {(x, z) E D2n+4 I x’ +f(z) = S}. Define 7~: E --f D*“+* 

by TC(X, z) = p*z for the unique p such that I p*z 1 = I x I * + I z I*. Then n exhibits P as the 

a-fold cyclic branched cover of D2n+2 with branch set F. Hence P N F(a). 

Sincefis weighted homogeneous, its monodromy is given by a map h : C”+l + @“+’ such 

that ]/r(z)/ = JzJ, The monodromy of xB +f(z) is then I?(x, z) = (wx, h(z)) where w = 

exp(2zi/a). Here fi : E + 8 and note that it is the composition of the coveringactionfor 71 with 

h acting on DZnf2, This serves to identify I? with the monodromy H(a) of $6. 

Similar analysis shows that an isotopy of c?l@ to the identity corresponds to the 

isotopy used in constructing H(a). Thus T(f) = T(p, E?) is isomorphic to T(F(a), H(a)). 

Remark. Since xa + f(z) is again weighted homogeneous one can iterate the above 

argument. Thus if Z(f; a,, . . . , a,,) = V(f(z) + xl”l + ... + x,“‘) n S2n+2k+1 then 

~(f;a,,...,a,)NK(a,,...,a,) 
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where K = V(f) n S2”+’ and the symbol on the right denotes the binding of the iterated 

book. 

In order to give a topological description of Brieskorn manifolds we now need only 

give a geometric description of the algebraic book structure on S3 corresponding to 

f(z) = zoao + zl’l. This is easily done. Simply let g(z) = z,, + z1 and take the (trivial) book 

structure on S3 determined by g. Here the binding is an unknotted circle and the leaf a disk. 

Define P : S3 + S3 by P(z, , zl) = (pzoao, pzlal) for p > 0 such that ) P(z, , zl) 1 = 1. Then 

P : C(a, , a,) + C(1, 1) and the inverse image of the trivial book structure of S3 under P is the 

book corresponding to zoo0 + zl’l. 

Since C(a,, a,, . . . , a,) = C(a,, a1)(a2, . . , a,,) this gives a completely topological 

construction for Brieskorn manifolds. It follows from 96 and a direct calculation of the 

Seifert pairing for torus links that the Seifert matrix corresponding to F(a,, , . . . , a,,) c 

S2”+’ (the fiber for the Brieskorn book) is (- l)n(n-1)i2L00 @ La1 0 . . .@ L," . 

(b) Book Structures on Spheres 

In [5], Kato discusses the classification of open book structures (spinnable structures in 

his terminology) on odd dimensional spheres. Given 9’ = {F, h, g} E S, = S(S’“+‘) (Defini- 

tion 7.1) one has the Seifert matrix V(Y) and also the variation A(9) : H,(F, 8F) --f H,,(F). 

Kato proves : 

(i) Given a unimodular n x n matrix A, then there exists a simple book decomposition 

9 on S2”+’ with V(Y) = A, for n 2 3. 

(ii) Given simple books Y, Y’ on S2n+1, n 2 3, such that V(Y) - V(Y’)(- E con- 

gruent matrices) then 9’ = 9” (i.e. the books are isomorphic). 

(iii) (Levine) Given simple books Y and 9’ on S”‘+i, n 2 3, then the leaves F and F’ 

are ambient isotopic in SZnfl if V(Y) - V(Y). 

Given Y = (F, h, g} a simple book structure on SZn+’ we have shown that F(2,2, . . . ,2) 

is the leaf of a simple structure ok(Y) on S2”f2kf1 @2’s) such that V(w,(Y)) = + V(Y). 

Hence, as Y runs over all simple books for S2nf1, n 2 3, c&(y) runs over all simple books 

for S2n+2k+1. This implies the following result: 

THEOREM 7.3. Let S, = S(S2”+‘) and ok : S, + Sri+++ as above. Then for n 2 3 ok is a 

l-1 correspondence. Zn particular Sk+3 = ok(S3). 

COROLLARY 7.4. Let C,,,’ m = 2n - 1 be the subgroup of the Levine knot cobordism 

group of spherical (2n - 1) knots in S2”“, n 2 3, which is generated byjibered knots. Then 

. 02 ’ Cm’ + CA,, is an explicit isomorphism. 

This is an analog of the more general isomorphism constructed explicitly by Bredon [l]. 

In fact, our construction is essentially the same as his for this case. 

(c) Codimension One Foliations of Spheres 

Let f(z) = (zO + z12) (zo2 + z15), K = V(f) n SE3. Then K(2, 2, . . . , 2) --+ S2”+l 

((n - 1) - 2’s). Calculation of the Seifert pairing for f shows that K(2, . . . , 2) N + C# 
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(27-l x S”) where n is odd 23, E = Milnor sphere. This book structure is the basic in- 

gredient for producing codimension one foliations A la Durfee [3] or Tamura [19]. This 
is Durfee’s method placed in an open book context. 
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