Math 215 - Assignment Number 5, Spring 2013

Read Chapters 10,11,12. Read the notes on sets by Rudin that we have on our website.

1. Eccles page 115-119. problems $3,5,11,12,13,14,15,16,22$.
2. Prove that the number of subsets of the set $\{1,2, \cdots, n\}$ is 2^{n}. You may wish to do this by induction on $n=1,2,3, \cdots$.
3. Prove again that the number of subsets of the set $\{1,2, \cdots, n\}$ is 2^{n}, this time by using the binomial theorem for $(x+y)^{n}$ with $x=y=1$.
4. Eccles page 132. problem 10.3.
5. Eccles page 155. problem 12.2 and problem 12.5.
6. The following is a "proof" that "All horses have the same color." What is wrong with this proof?

Theorem. All horses have the same color.
Proof. We will prove this theorem by induction on n where n is the number of horses. For $n=1$ we have one horse and obviously this horse has one color. (We assume that each horse has a definite color.). Now suppose for the induction hypothesis that any k horses have the same color for some specific natural number k. We wish to show that any $k+1$ horses have the same color. So let $k+1$ horses be given and choose one of the horses, call it A, and put it aside. We now have k horses and so by the induction hypothesis, they all have the same color. Now take the horse A that we put aside and add it to this group, but take away another horse B. Now the horse A belongs to a group of k horses and so must be the same color as them. But B has this color and so A and B have the same color. We have shown that all the horses except A have the same color and that B (a member of all the horses except A) has the same color as A. Thus all $k+1$ horses have the same color. We have shown that if every group of k horses have the same color, then every group of $k+1$ horses have the same color. This completes the induction proof that all horses have the same color. QED.
7. The following is a "proof" that $1=0$. What is wrong with this proof? Begin with x and y non-zero and $x=y$. Then $x=y$ implies that $x^{2}=x y$, and subtracting y^{2} from both sides, we have $x^{2}-y^{2}=x y-y^{2}$. Now divide both sides by $x-y$ and get $x+y=y$. But since $x=y$ we then have $2 y=y$ and since y is non-zero we divide by y and get $2=1$. Subtracting 1 from both sides, we have shown that $1=0$. QED.

