Math 215 - Assignment Number 2, Spring 2013
(A) Eccles. Page 53 - 55. Problems

1,2,
3
(in this problem you are allowed to make an evaluation.
for example , letting A notand $B=A \# B$,
$T \# P=\sim(T \wedge P)=\sim P$. in this way, $\#$ can be used to make ~.), 4, 5, 7, 8, 9, 10, 12, 16.
(B) Show that the following is a tautology using only algebra: $\quad(A--->B) v(B--->A)$.
(C) Prove that the square root of 5 is irrational.

Note that you will need to prove that if 5 divides n^{2} then 5 divides n when n is a natural number. (In order to do this you need to know that every natural number is in one of the following forms for some natural number k : $5 k$, $5 k+1$, $5 k+2,5 k+3,5 k+4$ or just $1,2,3,4$. That is given a natural number it will leave a remainder of $0,1,2,3$ or 4 upon division by 5.)
(D) Take the set of non-zero digits $D=\{1,2,3,4,5,6,7,8,9\}$. Find all triples $\{\mathbf{a}, \mathrm{b}, \mathrm{c}\}$ of distinct digits such that $\mathrm{a}+\mathrm{b}+\mathrm{c}=15$. You will find that there are 8 such unordered triples. Arrange these eight triples in a 3×3 grid so that each row adds to 15 , each column adds to 15 and the two diagonals also add to 15 . This is the simplest known example of a magic square.

