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Abstract. When the index bundle of a longitudinal Dirac type operator is transversely smooth, we define

its Chern character in Haefliger cohomology and relate it to the Chern character of the K−theory index. This

result gives a concrete connection between the topology of the foliation and the longitudinal index formula.
Moreover, the usual spectral assumption on the Novikov-Shubin invariants of the operator is improved.

Contents

Introduction 1
1. Notation and Review 2
2. The K−theory index 3
3. The Chern character in Haefliger cohomology 8
4. Proof of Main Theorem 18
5. Bismut superconnections 26
6. Appendix 28
References 32

Introduction

In this paper, we continue our systematic study of the index theorem in Haefliger cohomology of foliations.
In [BH04], we defined a Chern character for leafwise elliptic pseudodifferential operators on foliations. By
using Connes’ extension in [Con86], we then translated the Connes-Skandalis K−theory index theorem
[CS84] into Haefliger cohomology, thus proving scalar index theorems in the presence of holonomy invariant
currents.

In order to get more insight into topological invariants of foliations, we extend here the results of [He95]
and [HL99], which tie the indices of a leafwise operator on a foliation of a compact manifold to the so-called
index bundle of the operator. In particular, we show that for a generalized Dirac operator D along the
leaves of a Riemannian foliation, the Chern character of the analytic index of D coincides with the Chern
character of the index bundle of D. In [He95] and [HL99], the groupoid G was assumed to be Hausdorff,
but for Riemannian foliations that is automatic. As in [He95] and [HL99], we assume that the projection
onto the kernel of D is transversely smooth, and that the spectral projections of D2 for the intervals (0, ε)
are transversely smooth, for ε sufficiently small. In those two papers, we assumed that the Novikov-Shubin
invariants of D were greater than three times the codimension of F . Here we use the K−theory index and
we need only assume that they are greater than half the codimension of F . More precisely, the pairings of
these Chern characters with a given Haefliger 2k−current agree whenever the Novikov-Shubin invariants of
D are greater than k. We conjecture that this theorem is still true provided only that the Novikov-Shubin
invariants are positive. Note that in the heat equation proof of the classical Atiyah-Singer families index
theorem, [B86], it is assumed that there is a uniform gap about zero in the spectrum of the operator, which
implies the conditions we assume on the spectral projections.
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In [Con79, Con81], Connes extended the classical construction of Atiyah [A75] of the L2 covering index
theorem to leafwise elliptic operators on compact foliated manifolds. To do so he replaced the lifting and
deck transformations used by Atiyah by a lifting to the holonomy covers of the leaves invariant under the
natural action of the holonomy groupoid. Moreover, he defined an analytic index map from the K-theory of
the tangent bundle of the foliation to the K-theory of the C∗ algebra of the foliation, which plays the role of
the K-theory of the space of leaves. In [CS84], Connes and Skandalis defined a push forward map in K-theory
for any K-oriented map from a manifold to the space of leaves of a foliation of a compact manifold. This
allowed them to define a topological index map from the K-theory of the tangent bundle of the foliation to
the K-theory of its C∗ algebra. Their main result is that the analytic and topological index maps are equal,
an extension of the classical Atiyah-Singer families index theorem. This theorem does not lead in general to
a relation between the index of the operator and its index bundle, by which we mean the (graded) projection
onto the kernel of the operator, even when this latter is transversely smooth and when its Chern character
is well defined. This index bundle, which lives in a von Neumann algebra of the foliation, carries important
information about the foliation.

In this paper, we extend the Chern character to the index bundle of D, provided the projection onto
the kernel of D is transversely smooth. Our main result is that, with the conditions given in the second
paragraph, the Chern character of D equals the Chern character of the index bundle of D. Since the Chern
character of the index bundle equals the superconnection index defined in [He95], we obtain as a corollary the
coincidence of the superconnection index with the Chern character of the analytic and topological indices.
This Chern character is readily computable and directly relates the index of D with the topology of the
foliation.

Here is a brief outline of the paper. In Section 1., we fix notation and briefly review some necessary
material. In Section 2., we extend our Chern character to the K−theory of the space of super-exponentially
decaying operators on the leaves of a foliation, and recall the construction of Dirac operators and the heat
index idempotent. In Section 3., we review the construction of the Chern character we use, and extend it
to the index bundle of a leafwise Dirac operator. In Section 4., we prove our main theorem, Theorem 4.1.
In Section 5., we show that the Chern character of the index bundle for D defined here is the same as that
defined in [He95] using Bismut superconnections.

It is also worth pointing out that our results are valid if we replace the holonomy groupoid G by any
smooth groupoid between the monodromy and holonomy groupoids, see [Ph87]. We point out the papers
[GL03, GL05] where Gorokhovsky and Lott prove, by a different method, an index theorem for longitudinal
Dirac operators.
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1. Notation and Review

Throughout this paper M denotes a smooth compact Riemannian manifold of dimension n, and F denotes
an oriented Riemannian foliation of M of dimension p and codimension q. So n = p+ q. We assume that the
metric on M , when restricted to the normal bundle ν of F , is bundle like, so the holonomy maps of ν and
its dual ν∗ are isometries. The tangent bundle of F will be denoted TF . If E → N is a vector bundle over a
manifold N , we denote the space of smooth sections by C∞(E) or by C∞(N ;E) if we want to emphasize the
base space of the bundle. The compactly supported sections are denoted by C∞c (E) or C∞c (N ;E). The space
of differential k−forms on N is denoted Ak(N), and we set A(N) = ⊕k≥0Ak(N). The space of compactly
supported k−forms is denoted Akc (N), and Ac(N) = ⊕k≥0Akc (N).

The holonomy groupoid G of F consists of equivalence classes of paths γ : [0, 1]→M such that the image
of γ is contained in a leaf of F . Two such paths γ1 and γ2 are equivalent if γ1(0) = γ2(0), γ1(1) = γ2(1), and
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the holonomy germ along them is the same. Two classes may be composed if the first ends where the second
begins, and the composition is just the juxtaposition of the two paths. This makes G a groupoid. The space
G(0) of units of G consists of the equivalence classes of the constant paths, and we identify G(0) with M .

For Riemannian foliations, G is a Hausdorff dimension 2p + q manifold, in fact a fibration. The basic
open sets defining its manifold structure are given as follows. Let U be a finite good cover of M by foliation
charts as defined in [HL90]. Given U and V in this cover and a leafwise path γ starting in U and ending in
V , define (U, γ, V ) to be the set of equivalence classes of leafwise paths starting in U and ending in V which
are homotopic to γ through a homotopy of leafwise paths whose end points remain in U and V respectively.
It is easy to see, using the holonomy defined by γ from a transversal in U to a transversal in V , that if
U, V ' Rp × Rq, then (U, γ, V ) ' Rp × Rp × Rq.

The source and range maps of the groupoid G are the two natural maps s, r : G → M given by s
(
[γ]
)

=

γ(0), r
(
[γ]
)

= γ(1). G has two natural transverse foliations Fs and Fr whose leaves are respectively L̃x =

s−1(x), L̃x = r−1(x) for x ∈M . Note that r : L̃x → L is the holonomy covering of L. Recall that there is a
canonical lift of the normal bundle ν of F to a bundle νG ⊂ TG so that TG = TFs⊕TFr⊕ νG and r∗νG = ν,
s∗νG = ν. It is given as follows. Let [γ] ∈ G with s

(
[γ]
)

= x, r
(
[γ]
)

= y. Denote by exp : ν → M the
exponential map. Given X ∈ νx and t ∈ R sufficiently small, there is a unique leafwise curve γt : [0, 1]→M
so that

i) γt(0) = exp tX ii) γt(s) ∈ exp(νγ(s)).

In particular γ0 = γ. Thus the family [γt] in G defines a tangent vector X̂ ∈ TG[γ]. It is easy to check that

s∗(X̂) = X and r∗(X̂) is the parallel translate of X along γ to νy.
The metric g0 on M induces a canonical metric g0 on G as follows. TG = TFs ⊕ TFr ⊕ νG and these

bundles are mutually orthogonal. On TFr we define g0 to be s∗
(
g0|TF

)
and on TFs⊕νG ' r∗TM we define

g0 to be r∗g0. So the normal bundle νs of TFs is νs = TFr ⊕ νG .
The (reduced) Haefliger cohomology of F , [H80], is given as follows. For each Ui ∈ U , let Ti ⊂ Ui be

a transversal and set T =
⋃
Ti. We may assume that the closures of the Ti are disjoint. Let H be the

holonomy pseudogroup induced by F on T . Give Akc (T ) the usual C∞ topology, and denote the exterior
derivative by dT : Akc (T )→ Ak+1

c (T ). The usual Haefliger cohomology is defined using the quotient of Akc (T )
by the vector subspace Lk generated by elements of the form α − h∗α where h ∈ H and α ∈ Akc (T ) has
support contained in the range of h. The (reduced) Haefliger cohomology uses the quotient of Akc (T ) by the

closure Lk of Lk. Set Akc (M/F ) = Akc (T )/Lk. The exterior derivative dT induces a continuous differential
dH : Akc (M/F ) → Ak+1

c (M/F ). Note that Akc (M/F ) and dH are independent of the choice of cover U .
In this paper, the complex {Ac(M/F ), dH} and its cohomology H∗c(M/F ) will be called, respectively, the
Haefliger forms and Haefliger cohomology of F .

As the bundle TF is oriented, there is a continuous open surjective linear map, called integration over
the leaves, ∫

F

: Ap+kc (M) −→ Akc (M/F )

which commutes with the exterior derivatives dM and dH . Given ω ∈ Ap+kc (M), write ω =
∑
ωi where

ωi ∈ Ap+kc (Ui). Integrate ωi along the fibers of the submersion πi : Ui → Ti to obtain

∫
Ui

ωi ∈ Akc (Ti).

Define

∫
F

ω ∈ Akc (M/F ) to be the class of
∑
i

∫
Ui

ωi. It is independent of the choice of the ωi and of the

cover U . As

∫
F

commutes with dM and dH , it induces the map

∫
F

: Hp+k(M ;R)→ Hk
c (M/F ).

2. The K−theory index

In this section, we recall the definition of the analytic index of a Dirac operator defined along the leaves
of a foliation. We begin with some general remarks about operators along the leaves of foliations.
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Let E1 and E′1 be two complex vector bundles over M with Hermitian metrics and connections, and set
E = r∗E1 and E′ = r∗E′1 with the pulled back metrics and connections. A pseudo-differential G-operator
with uniform support acting from E to E′ is a smooth family (Px)x∈M of G-invariant pseudo-differential

operators, where for each x, Px is an operator acting from E | L̃x to E′ | L̃x. The G-invariance property

means that for any γ ∈ L̃yx = L̃x ∩ L̃y, we have

(γ · P )y = Uγ ◦ Px ◦ U−1
γ = Py,

where Uγ denotes the operator on sections of any bundle induced by the isomorphism γ : L̃y → L̃x given by
composition with γ; for instance

Uγ : C∞c (L̃x;E) −→ C∞c (L̃y;E).

The smoothness assumption is rigorously defined in [NWX96]. If we denote by Kx the Schwartz kernel
of Px, then the G-invariance assumption implies that the family (Kx)x∈M induces a distributional section

K of Hom(E, Ê′) over G which is smooth outside G(0) = M . Here Ê′ = s∗E′1, which is also the pullback
bundle of E′ under the diffeomorphism γ 7→ γ−1. Since M is compact, the uniform support condition
becomes the assumption that the support of K is compact in G. The space of uniformly supported pseudo-
differential G−operators from E to E′ is denoted Ψ∞(G;E,E′), and the space of uniformly supported
regularizing G-operators is denoted by Ψ−∞(G;E,E′). When E′ = E we simply denote the correspond-
ing spaces by Ψ∞(G;E) and Ψ−∞(G;E). The Schwartz Kernel Theorem identifies Ψ−∞(G;E,E′) with

C∞c (G,Hom(E, Ê′)), see [Con79, NWX96].
An element of Ψ∞(G;E,E′) is elliptic if it is elliptic when restricted to each leaf of Fs. The parametrix

theorem can be extended to the foliated case and we have

Proposition 2.1. [Con79] Let P be a uniformly supported elliptic pseudo-differential G−operator acting
from E to E′. Then there exists a uniformly supported pseudo-differential G−operator Q acting from E′ to
E such that

IE −Q ◦ P ∈ Ψ−∞(G;E) and IE′ − P ◦Q ∈ Ψ−∞(G;E′).

Here IE and IE′ denote the identity operators of E and E′ respectively.

A classicalK−theory construction assigns to any uniformly supported elliptic pseudo-differential G−operator
P from E to E′, a K−theory class

Inda(P ) ∈ K0(Ψ−∞(G;E ⊕ E′)) = K0(C∞c (G; Hom(E ⊕ E′)))

called the analytic index of P , [CM91, BH04]. It will be useful to define this index class using functional
calculus in a wider space of smoothing operators, so we now relax the uniform support condition and extend
the above pseudodifferential calculus.

A super-exponentially decaying G−operator from E to E′ is a family P = (Px)x∈M of smoothing
G−operators so that its Schwartz kernel Px(y, z) is smooth in x, y, and z, and satisfies

2.2. Given non-negative integer multi indices α, β, and γ, there are positive constants ε, C1, and C2, such

that for all x ∈M , y, z ∈ L̃x,

‖∂
|α|+|β|+|γ|Px(y, z)

∂xα∂yβ∂zγ
‖ ≤ C1 exp

[
−dx(y, z)1+ε

C2

]
.

Here ∂/∂x , ∂/∂y, and ∂/∂z come from coordinates obtained from the finite good cover U of M and dx( , )

is the distance on L̃x. The space of all such operators is denoted Ψ−∞S (G;E,E′) or C∞S (G; Hom(E, Ê′)).

Again when E′ = E we denote the corresponding spaces by Ψ−∞S (G;E) and C∞S (G; Hom(E)) for simplicity.

When E and E′ are trivial line bundles, we omit them and denote the corresponding spaces by Ψ−∞S (G) and
C∞S (G).

Lemma 2.3. When E′ = E, the space Ψ−∞S (G;E) is an algebra.
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Proof. Let P and Q ∈ Ψ−∞S (G;E), with constants ε1, C1, C2 and ε2, D1, D2 respectively, for the estimate
given by Equation 2.2. We may replace ε1 and ε2 by ε = min(ε1, ε2). Set α = 1 + ε, C = C1D1 and

D = C2 +D2. Then for y, z ∈ L̃x,

|Px ◦Qx(y, z)| = |
∫
L̃x

Px(y, w)Qx(w, z) dw| ≤
∫
L̃x

C1e
−d(y,w)α/C2D1e

−d(w,z)α/D2 dw ≤∫
L̃x

Ce−d(y,w)α/De−d(w,z)α/D dw = Ce−(d(y,z)α/2αD)

∫
L̃x

e−(d(y,w)α+d(w,z)α−(d(y,z)/2)α)/D dw ≤

Ce−(d(y,z)α/2αD)
[ ∫

Sz

e−d(y,w)α/D dw +

∫
Sy

e−d(w,z)α/D dw
]
≤

Ce−(d(y,z)α/2αD)
[ ∫

L̃x

e−d(y,w)α/D dw +

∫
L̃x

e−d(w,z)α/D dw
]
,

where

Sz = {w ∈ L̃x | d(w, z) ≥ d(y, z)/2} and Sy = {w ∈ L̃x | d(y, w) ≥ d(y, z)/2}.

Now each of the integrals

∫
L̃x

e−d(y,w)α/D dw and

∫
L̃x

e−d(w,z)α/D dw is bounded independently of x, y, and

z. This is a standard argument for foliations of compact manifolds. Since M is compact, the leaves L̃x have
at most (uniformly bounded) exponential growth, and the integrands are super-exponentially decaying with
uniform super-exponential bounds. This gives us the estimate in 2.2 for P ◦Q.

To get the estimate for the derivatives ∂|α|+|β|+|γ|(P ◦Q)x(y, z)/∂xα∂yβ∂zγ we need only note that these
are finite sums of the form ∑

α1+α2=α

∫
L̃x

(∂|α1|+|β|Px(y, w)

∂xα1∂yβ

)(∂|α2|+|γ|Qx(w, z)

∂xα2∂zγ

)
dw.

We can then repeat the argument above, using the estimates for the individual integrands.
�

There is a continuous embedding of algebras

jS : C∞c (G; Hom(E ⊕ E′)) ↪→ C∞S (G; Hom(E ⊕ E′)),

and we define the Schwartz analytic index IndS
a as the composition of the analytic index Inda and the

induced morphism jS∗ : K0(C∞c (G; Hom(E ⊕ E′))) → K0(C∞S (G; Hom(E ⊕ E′))). So if P is a uniformly
supported elliptic pseudo-differential G−operator,

IndS
a (P ) = jS∗(Inda(P )) ∈ K0(C∞S (G; Hom(E ⊕ E′))).

By classical arguments, see for instance [MN96], it is easy to check that Ψ−∞S (G;E,E′) is a right module
over the algebra Ψ−∞(G). The extended pseudodifferential calculus is defined by:

Ψ∞S (G;E,E′) := Ψ−∞S (G;E,E′)⊗Ψ−∞(G) Ψ∞(G;E,E′).

It is generated by Ψ∞(G;E,E′) and Ψ−∞S (G;E,E′). When E′ = E, we obtain in this way an algebra

of pseudodifferential operators. The subspace Ψ−∞S (G;E) is then an ideal in the algebra Ψ∞S (G;E). This

is due to the estimate given in 2.2. In particular, we may define IndS
a (P ) directly using a parametrix

Q ∈ Ψ∞S (G;E′, E) and the classical construction, and it is obvious that the two definitions agree.
The construction of the Chern character cha : K0(C∞c (G; Hom(E ⊕ E′))) → H∗c(M/F ) in [BH04] is

reviewed and extended to this case in Section 3 below. Thus we have

chS
a : K0(C∞S (G; Hom(E ⊕ E′))) −→ H∗c(M/F )

and

chS
a ◦jS∗ = cha .

Finally, the formula for cha in Definition 3.3 below also holds for chS
a .
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Now assume that the dimension p of F is even and denote by D a generalized Dirac operator for the
foliation F . One of the most important examples of such an operator is given by the leafwise Dirac operator
with coefficients in a vector bundle over M . It is defined as follows. As above, let E1 be a complex vector
bundle over M with Hermitian metric and connection, and set E = r∗(E1) with the pulled back metric and
connection. Assume that the tangent bundle TF of F is spin with a fixed spin structure. Then TFs is also
spin, and we endow it with the pulled back spin structure from TF . Denote by S = S+ ⊕ S− the bundle of
spinors along the leaves of Fs. Denote by ∇0 the connection on TFs given by the orthogonal projection of
the Levi-Civita connection for g0 on TG. ∇0 in then the Levi-Civita connection on each leaf of Fs for the

induced metric. For all x ∈ M , ∇0 induces a connection ∇0 on S|L̃x and we denote also by ∇0 the tensor

product connection on S ⊗ E|L̃x. These data determine a smooth family D = {Dx} of Dirac operators,

where Dx acts on sections of S ⊗ E|L̃x as follows. Let X1, . . . , Xp be a local oriented orthonormal basis of

T L̃x, and set

Dx =

p∑
i=1

ρ(Xi)∇0
Xi

where ρ(Xi) is the Clifford action of Xi on the bundle S ⊗ E|L̃x. Then Dx does not depend on the
choice of the Xi, and it is an odd operator for the Z2 grading of S ⊗ E = (S+ ⊗ E) ⊕ (S− ⊗ E). Set
D+ = D : C∞c (S+ ⊗ E) → C∞c (S− ⊗ E) and D− = D : C∞c (S− ⊗ E) → C∞c (S+ ⊗ E). For more on
generalized Dirac operators, see [LM89].

A super-exponentially decaying G−operator on S ⊗ E is defined to be an operator of the form

A =

(
A11 A12

A21 A22

)
,

where each Aij is a smoothing operator whose Schwartz kernel Aij,x(y, z) is smooth in x, y, and z, and
satisfies the estimate in 2.2. A11 maps sections of S+ ⊗E to itself, A12 maps sections of S− ⊗E to sections
of S+ ⊗ E, etc. The set of all such operators is denoted Ψ−∞S (G;S ⊗ E) or C∞S (G; Hom(S ⊗ E)). If we

unitalize Ψ−∞S (G;S ⊗ E) by adding two copies of C corresponding to the projections π± : C∞c (S ⊗ E) →

C∞c (S± ⊗ E), then we get a unital algebra that we denote by Ψ̃−∞S (G;S ⊗ E). Note that π+ =

(
I 0
0 0

)
and π− =

(
0 0
0 I

)
. Since the grading operator α for S = S+ ⊕ S− satisfies α = π+ − π−, α belongs to

Ψ̃−∞S (G;S ⊗ E).
The odd operator D is elliptic, so its analytic index is defined using a parametrix Q for D which is also

odd, i.e.

Q = Q± : C∞c (S± ⊗ E) −→ C∞c (S∓ ⊗ E).

Set

S+ = I −Q− ◦D+ and S− = I −D+ ◦Q−

so

S± : C∞c (S± ⊗ E) −→ C∞c (S± ⊗ E).

Using embeddings of our bundles in trivial bundles and computing the boundary map in K−theory, it is
easy to see that the analytic index of D is the K−theory class, see [CM91], in K0(Ψ−∞(G;S ⊗ E)) =
K0(C∞c (G; Hom(S ⊗ E)),

Inda(D+) = [e]− [π−],

where the idempotent e is given by

2.4. e =

(
S2

+ −Q− ◦ (S− + S2
−)

−S− ◦D+ I − S2
−

)
.
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The class [e] − [π−] lives in the K0−group of the unital algebra Ψ̃−∞(G;S ⊗ E) but its image in the
K0−group of C⊕ C under the map induced by

p :

(
A11 + λIS+⊗E A12

A21 A22 + µIS+⊗E

)
7−→ (λ, µ),

is trivial. Since this epimorphism admits a splitting homomorphism, it is clear that the kernel of the
induced map p∗ is isomorphic to the K0−group of the non-unital algebra Ψ−∞(G;S ⊗E). Hence, the index
Inda(D+) = [e]− [π−] is well defined.

Proposition 2.5. Set

P (tD) =

 e−tD
−D+

(−e−tD−D+/2) I−e
−tD−D+

tD−D+

√
tD−

−e−tD+D−/2
√
tD+ I − e−tD+D−

 .
Then, for all t > 0, P (tD) is an idempotent in Ψ̃−∞S (G;S ⊗ E) and

[P (tD)]− [π−] = IndS
a (D+) ∈ K0(C∞S (G; Hom(S ⊗ E))).

Proof. It is classical that all the operators in P (tD) (with the possible exception of the term π−) are smooth-

ing when restricted to any L̃x, so their Schwartz kernels are smooth when restricted to any L̃x. Thus to check
for smoothness, we need only check that they are smooth transversely, i.e. smooth in the variable x ∈ M .

The coefficients of the D± are smooth, and Corollary 3.11 of [He95], says that the e−tD
±D∓ are transversely

smooth. We will show presently that e−tD
−D+/2 I − e−tD

−D+

tD−D+

√
tD− =

√
tD−e−tD

+D−/2 I − e−tD
+D−

tD+D−
is

also transversely smooth.

By [He95], the Schwartz kernels P±t,x(y, z) of the e−tD
±D∓ satisfy the following estimate. Given a non-

negative integer i and non-negative integer multi indices α, β, and γ, and a real number T > 0, there is a

constant C > 0 such that for all x ∈M , y, z ∈ L̃x, and 0 ≤ t ≤ T ,

2.6. ‖
∂i+|α|+|β|+|γ|P±t,x(y, z)

∂ti∂xα∂yβ∂zγ
‖ ≤ Ct−(p/2+i+|α|+|β|+|γ|) exp

[
−dx(y, z)2

4t

]
.

It follows immediately that the e−tD
±D∓ and the e−tD

±D∓/2 satisfy the estimate in Equation 2.2, and

so also e−tD
+D−/2

√
tD+ =

√
tD+e−tD

−D+/2, since the derivatives of the coefficients of D± are uniformly
bounded on G.

To handle e−tD
−D+/2 I − e−tD

−D+

tD−D+

√
tD− =

√
tD−e−tD

+D−/2 I − e−tD
+D−

tD+D−
, note that

d

ds

[I − e−sD+D−

D+D−

]
= e−sD

+D− , so
I − e−tD+D−

tD+D−
=

1

t

∫ t

0

e−sD
+D− ds.

Thus

√
tD−e−tD

+D−/2 I − e−tD
+D−

tD+D−
=

√
tD−

t

∫ t

0

e−(t/2+s)D+D− ds =

√
tD−

t

∫ 3t/2

t/2

e−sD
+D− ds.

A simple calculation using Equation 2.6 above then shows that for fixed t,
√
tD−e−tD

+D−/2 I − e−tD
+D−

tD+D−
is

transversely smooth and that it satisfies the estimate in Equation 2.2.

It is easy to check that the operator Q(tD) = Q±(tD) where Q−(tD) =
I − e−tD−D+/2

tD−D+

√
tD− and

Q+(tD) =
I − e−tD+D−/2

tD+D−

√
tD+, is a parametrix for

√
tD. The corresponding idempotent e given by

Equation 2.4 is then P (tD), so the Schwartz analytic index of tD is just [P (tD)] − [π−]. For t = 1 it is by

definition IndS
a (D+). Since P (tD) is a smooth family of idempotents, it follows from results of [BH04] that

the K-theory class [P (tD)]− [π−] is independent of t, and so is IndS
a (D+) for all t > 0. �
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Remark 2.7. The above representation of the analytic K−theory index uses the isomorphism between the
K−group of the algebra C∞S (G; Hom(S ⊗E)) and the kernel of the homomorphism induced by the surjection

p : Ψ̃−∞S (G;S ⊗ E) −→ C⊕ C,
as described in Section 3.

3. The Chern character in Haefliger cohomology

In this section we review and extend the construction of the Chern-Connes character in Haefliger cohomol-
ogy given in [BH04]. In view of our definition of the analytic index through the K−group of the unitalization

Ψ̃−∞S (G;S ⊗ E), the Chern character is easy to express in terms of heat kernels.
Denote the connection on the Hermitian bundle E1 over M by ∇E1 . Extend the leafwise Levi-Civita

connection on the bundle of spinors along the leaves of F to a connection ∇F on this bundle as a bundle
over M . Then ∇ = r∗(∇F⊗E1) is an extension of the leafwise connection ∇0 on S ⊗ E to a connection on
S ⊗E as a bundle over G. We may regard ∇ as an operator of degree one on C∞(S ⊗E ⊗∧T ∗G) where on
decomposable sections φ⊗ω, ∇(φ⊗ω) = (∇φ)∧ω+φ⊗dω. The foliation Fs has normal bundle νs = TFr⊕νG
and dual normal bundle ν∗s = s∗(T ∗M), and ∇ defines a quasi-connection ∇ν acting on C∞(S ⊗ E ⊗ ∧ν∗s )
by the composition

C∞(S ⊗ E ⊗ ∧ν∗s )
i−→ C∞(S ⊗ E ⊗ ∧T ∗G)

∇−→ C∞(S ⊗ E ⊗ ∧T ∗G)
pν−→ C∞(S ⊗ E ⊗ ∧ν∗s ),

where i is the inclusion and pν is induced by the projection pν : T ∗G → ν∗s determined by the decomposition
TG = TFs ⊕ TFr ⊕ νG .

Note that C∞(S ⊗E⊗∧ν∗s ) is an A(M)-module where for φ ∈ C∞(S ⊗E⊗∧ν∗s ), and ω ∈ A(M), we set

ω · φ = s∗(ω)φ.

Recall Ψ−∞(G;S ⊗ E) ' C∞c (G; Hom(S ⊗ E)) the space of uniformly supported regularizing G-operators.
We may consider the algebra

Ac(G,S ⊗ E) :=Ψ−∞(G;S ⊗ E)⊗̂C∞(M)A(M)

as a subspace of the space of A(M)-equivariant endomorphisms of C∞(S ⊗ E ⊗ ∧ν∗s ) by using the A(M)
module structure of C∞(S ⊗ E ⊗ ∧ν∗s ). More specifically, given φ ∈ C∞(S ⊗ E ⊗ ∧ν∗s ), write it as

φ =
∑
j

φj ⊗ s∗(ωj),

where the φj ∈ C∞(S ⊗ E) and the ωj ∈ A(M). Then for A⊗ ω ∈ Ψ−∞(G;S ⊗ E)⊗̂C∞(M)A(M),

(A⊗ ω)(φ) :=
∑
j

A(φ)⊗ s∗(ω ∧ ωj).

It is easy to check that this is well defined.
Denote by ∂ν : End(C∞(S⊗E⊗∧ν∗s ))→ End(C∞(S⊗E⊗∧ν∗s )) the linear operator given by the graded

commutator
∂ν(T ) = [∇ν , T ].

The operator ∂ν maps the space Ac(G,S⊗E) to itself, and (∂ν)2 is given by the commutator with the curva-
ture θ = (∇ν)2 of ∇ν . The operator θ is a leafwise differential operator. To see this, let (U, γ, V ) be a basic
open set for G where U, V ∈ U have coordinates x1, ..., xp, w1, ..., wq and y1, ..., yp, z1, ..., zq. The xi and yi are
the leaf coordinates for F , and the wi and zi are the normal coordinates. Then x1, ..., xp, y1, ..., yp, z1, ..., zq
are coordinates for (U, γ, V ), and TFs is spanned by the ∂/∂yj , ν

∗
s is spanned by the dxi and the dzi, and νs

is spanned by the ∂/∂xi (which span TFr) and vector fields of the form ∂/∂zi+
∑p
j=1 aij∂/∂yj (since vector

fields of the form ∂/∂zi+
∑p
j=1 aij∂/∂yj +

∑p
j=1 bij∂/∂xj span νG). The aij are locally defined functions on

(U, γ, V ) which only depend on y1, ..., yp, z1, ..., zq, i.e. they are pull backs of functions on V . In particular,
on V , the vector fields ∂/∂zi +

∑p
j=1 aij∂/∂yj span ν. A simple computation then shows that

pν(dxi) = dxi, pν(dzi) = dzi, and pν(dyj) = aijdzi,
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where we use the Einstein convention of summing over repeated indices. Suppose that φ is a local section of
C∞(S ⊗E⊗∧ν∗s ) and f is a smooth function defined on (U, γ, V ). Then another simple computation shows
that

θ(fφ) = pνd(pνdf)φ+ fθ(φ).

Thus we need to show that the operator (pνd)2 is a leafwise differential operator. Now

pνdf =
∂f

∂xi
dxi +

∂f

∂zi
dzi +

∂f

∂yj
aijdzi,

so

pνd(pνdf) =
∂2f

∂xk∂xi
dxk ∧ dxi +

∂2f

∂xk∂zi
dxk ∧ dzi +

∂2f

∂xk∂yj
aijdxk ∧ dzi +

∂f

∂yj

∂aij
∂xk

dxk ∧ dzi+

∂2f

∂zk∂xi
dzk ∧ dxi +

∂2f

∂zk∂zi
dzk ∧ dzi +

∂2f

∂zk∂yj
aijdzk ∧ dzi +

∂f

∂yj

∂aij
∂zk

dzk ∧ dzi+

∂2f

∂yk∂xi
a`kdz` ∧ dxi +

∂2f

∂yk∂zi
a`kdz` ∧ dzi +

∂2f

∂yk∂yj
a`kaijdz` ∧ dzi +

∂f

∂yj

∂aij
∂yk

a`kdz` ∧ dzi.

The first, sixth, and eleventh terms are zero as usual, the fourth term is zero as ∂aij/∂xk = 0, the second
and fifth terms cancel, the third and ninth terms cancel, and the seventh and tenth terms cancel. Thus

(pνd)2 =

[
∂aij
∂zk

+
∂aij
∂y`

ak`

]
dzk ∧ dzi ⊗

∂

∂yj
,

which is a first order leafwise differential operator, with coefficients in ∧∗ν∗s . In fact θ has coefficients in
r∗(∧∗ν∗), as it is the pull back under r of an analogous operator on M . In particular, we may form the
operator θF on M with respect to the foliation F and the normal bundle ν in complete analogy with the
operator θ. Using the coordinates above, it is clear that θ | (U, γ, V ) = r∗θF |V . This fact will allow us to
handle θ in the estimates used in the proof of the main theorem.

In the same way as above, we consider the algebra

AS(G,S ⊗ E) := Ψ−∞S (G;S ⊗ E)⊗̂C∞(M)A(M)

as a subspace of the space of A(M)-equivariant endomorphisms of C∞(S ⊗E⊗∧ν∗s ), where Ψ−∞S (G;S ⊗E)
is the algebra of superexponentially decaying G−operators defined in the previous section. To extend our
Chern-Connes character to K0(Ψ−∞S (G;S ⊗ E)), we need the following.

Lemma 3.1. ∂ν preserves AS(G,S ⊗ E), and (∂ν)2 is given by the commutator with θ.

Proof. This is a local (on M) question, so we may restrict attention to U ∈ U . If H ∈ Ψ−∞S (G;S ⊗ E) | U
and ω is a differential form on U , then ∂ν(H ⊗ s∗(ω)) = ∂ν(H) ⊗ s∗(ω) ± H ⊗ pνds∗(ω). As any element
of AS(G,S ⊗ E) | U may be written as a sum of elements of the form H ⊗ s∗(ω), to show that ∂ν preserves
AS(G,S ⊗ E), we need only show that iX∂νH ∈ Ψ−∞S (G;S ⊗ E) | U , for any bounded vector field X on U .
It then follows immediately from the proof of Lemma 3.1 in [BH04] that (∂ν)2 is given by the commutator
with θ.

The Schwartz kernel of H (also denoted H) is a section of a bundle over the double graph G[2] =
⋃
x∈M

L̃x×

L̃x. Given basic open sets (U, γ1, V1) and (U, γ2, V2) of G, the basic open set (U, γ1, V1, γ2, V2) on G[2] consists
of ordered pairs ([α1], [α2]), where [αj ] ∈ (U, γj , Vj), and s([α1]) = s([α2]). Let x1, ..., xp, w1, ..., wq be

coordinates on U , and yj1, ..., y
j
p, z

j
1, ..., z

j
q coordinates on Vj , where the xi and yji are the leaf coordinates,

and the wi and zji are the normal coordinates. Note carefully that we now use x1, ..., xp, w1, ..., wq, y
j
1, ..., y

j
p

as coordinates for (U, γj , Vj), and x1, ..., xp, w1, ..., wq, y
1
1 , ..., y

1
p, y

2
1 , ..., y

2
p as coordinates for (U, γ1, V1, γ2, V2).

On Vj , ν is spanned by the vector fields ∂/∂zji +
∑p
k=1 a

j
ik∂/∂y

j
k, where the ajik are locally defined functions,
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each of whose derivatives is uniformly bounded over all Vj in the good cover U . On (U, γj , Vj), we still have

the one forms dzji , and as above

pν(dxi) = dxi pν(dwi) = dwi, pν(dzji ) = dzji , and pν(dyji ) = ajkidz
j
k.

Denote by S0 the bundle of spinors along TF , and suppose that on Vj , ∇F⊗E1 is given by

∇F⊗E1 | Vj = dM +Ajidy
j
i +Bjkdz

j
k,

where Aji , B
j
k ∈ C∞(Vj ; Hom(S0 ⊗ E1)). The coefficients of the Aji and Bjk (with respect to orthonormal

bases of S0⊗E1) have each of their derivatives uniformly bounded over all Vj in the good cover U . Then on

(U, γj , Vj), ∇ = dG +Ajidy
j
i +Bjkdz

j
k and

∇ν = ∂/∂xi ⊗ pνdxi + ∂/∂wi ⊗ pνdwi + ∂/∂yji ⊗ pνdy
j
i +Ajipνdy

j
i +Bjkpνdz

j
k,

where Aji , B
j
k are now in C∞((U, γj , Vj); Hom(S ⊗ E)), and are really Aji ◦ r and Bjk ◦ r. Denote by πj :

(U, γ1, V1, γ2, V2)→ (U, γj , Vj) the obvious projections. Then a straight forward computation shows that the
Schwartz kernel ∂νH on (U, γ1, V1, γ2, V2) with respect to the corresponding local bases, is given by

∂νH = π∗1pν(∇ | (U,γ1,V1)) ◦H −H ◦ π∗2pν(∇ | (U,γ2,V2)) =

∂H

∂xi
π∗1pνdxi +

∂H

∂wi
π∗1pνdwi +

∂H

∂y1
i

π∗1pνdy
1
i +

∂H

∂y2
i

π∗2pνdy
2
i+

π∗1

(
A1
i pνdy

1
i +B1

kpνdz
1
k

)
◦H −H ◦ π∗2

(
A2
i pνdy

2
i +B2

kpνdz
2
k

)
=

∂H

∂wi
dwi +

∂H

∂y1
i

π∗1(a1
kidz

1
k) +

∂H

∂y2
i

π∗2(a2
kidz

2
k) + π∗1

(
(A1

i a
1
ki +B1

k)dz1
k

)
◦H −H ◦ π∗2

(
(A2

i a
2
ki +B2

k)dz2
k

)
,

as ∂H/∂xi = 0 since H is G−invariant. Since the wi are functions of the z1
k, ∂νH depends only on the yjk

and zjk, so it is also G invariant. In addition,

π∗j dz
j
k = h∗γjdz

j
k = cjkmdwm,

where h∗γj is the holonomy map defined by γj from ν∗ | Vj to ν∗ | U . As h∗γj is an isometry, the cjkm have each

of their derivatives uniformly bounded over all (U, γ1, V1, γ2, V2). Since each of the derivatives of the Aji , B
j
i

and ajki are also uniformly bounded, and H is super-exponentially decaying, it follows easily that for any
bounded vector field X on U , iX∂νH is also super-exponentially decaying. �

By the Schwartz kernel theorem, AS(G,S ⊗ E) is isomorphic to the algebra

C∞S (G; Hom(S ⊗ E))⊗̂C∞(M)A(M).

For any T ∈ AS(G,S ⊗ E), define the trace of T to be the (compactly supported) Haefliger k-form Tr(T )
given by

Tr(T ) =

∫
F

tr(Tx(x, x))dx,

where Tx(x, x) is the smooth Schwartz kernel of T , x is the class of the constant path at x, tr(Tx(x, x)) is the
usual trace of Tx(x, x) ∈ End((S ⊗ E)x) ⊗ ∧TM∗x and so belongs to ∧TM∗x , and dx is the leafwise volume
form associated with the fixed orientation of the foliation F . The map

Tr : AS(G,S ⊗ E) −→ Ac(M/F )

is then a graded trace which satisfies Tr ◦∂ν = dH ◦ Tr. See [HL02], Lemma 2.5, and [BH04], Lemma 3.2.
Note that Lemma 2.5 of [HL02] requires one of the elements to be uniformly exponentially decaying while
the other must have uniformly bounded coefficients. But if an operator is uniformly exponentially decaying
it does have uniformly bounded coefficients.

Since ∂2
ν is not necessarily zero, we used Connes’ X−trick to construct a new graded differential algebra

(ÃS, δ) out of the graded quasi-differential algebra (AS(G,S ⊗E), ∂ν), see [Con94], p. 229. By Lemma 3.1,
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the curvature operator θ preserves AS(G,S ⊗ E). As a vector space ÃS = M2(AS(G,S ⊗ E)). An element

T̃ =

(
T11 T12

T21 T22

)
∈ ÃS is homogeneous of degree ∂T̃ = k if

k = ∂T11 = ∂T12 + 1 = ∂T21 + 1 = ∂T22 + 2.

On homogeneous elements of ÃS, δ is given by

δT̃ =

(
∂νT11 ∂νT12

−∂νT21 −∂νT22

)
+

(
0 −θ
1 0

)
T̃ + (−1)∂T̃ T̃

(
0 1
−θ 0

)
,

and is extended to non-homogenous elements by linearity. A straightforward computation gives δ2 = 0. For

homogeneous T ∈ AS(G,S ⊗ E), the differential δ on

(
T 0
0 0

)
∈ ÃS is given by

δ

(
T 0
0 0

)
=

(
∂νT (−1)∂TT
T 0

)
.

Set

Θ =

(
1 0
0 θ

)
and define a new product on ÃS by

T̃ ∗ T̃ ′ = T̃ΘT̃ ′.

This makes (ÃS, δ) a graded differential algebra.

The graded algebra AS(G,S ⊗ E) embeds as a subalgebra of ÃS by using the map

T ↪→
(
T 0
0 0

)
.

We shall therefore also denote by T the image in ÃS of any T ∈ AS(G,S ⊗ E).

For homogeneous T̃ ∈ ÃS define

Φ(T̃ ) = Tr(T11)− (−1)∂T̃ Tr(T22θ),

and extend to arbitrary elements by linearity. The results of [BH04] extend easily to show that the map

Φ : ÃS → A∗c(M/F ) is a graded trace, and that Φ ◦ δ = dH ◦ Φ.
The (algebraic) Chern-Connes character in the even case is the morphism

cha : K0(C∞S (G,S ⊗ E)) = K0(Ψ−∞S (G;S ⊗ E)) −→ H∗c(M/F )

defined as follows. Denote by Ψ̂−∞S (G;S ⊗ E) the minimal unitalization of Ψ−∞S (G;S ⊗ E). This amounts
to adding a copy of the complex numbers C, so

Ψ̂−∞S (G;S ⊗ E) = Ψ−∞S (G;S ⊗ E)⊕ C.

Let MN (Ψ̂−∞S (G;S ⊗ E)) be the space of N × N matrices with coefficients in Ψ̂−∞S (G;S ⊗ E). Denote by

tr : MN (Ψ−∞S (G;S ⊗ E))→ Ψ−∞S (G;S ⊗ E) the usual trace.
The results in [BH04] again extend easily to give the following.

Theorem 3.2. Let B = [ẽ1]−[ẽ2] be an element of K0(Ψ−∞S (G;S⊗E)), where ẽ1 = (e1, λ1) and ẽ2 = (e2, λ2)

are idempotents in MN (Ψ̂−∞S (G;S ⊗ E)). Then the Haefliger forms

(Φ ◦ tr)
(
e1 exp

(
−(δe1)2

2iπ

))
and (Φ ◦ tr)

(
e2 exp

(
−(δe2)2

2iπ

))
are closed and the Haefliger cohomology class of their difference depends only on B.

Definition 3.3. The algebraic Chern character cha(B) of B is the Haefliger cohomology class

3.4. cha(B) =

[
(Φ ◦ tr)

(
e1 exp

(
−(δe1)2

2iπ

))]
−
[
(Φ ◦ tr)

(
e2 exp

(
−(δe2)2

2iπ

))]
.
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In order to effectively compute the Chern character of the index of a generalized Dirac operator for F , we
need some further results. The exact sequence of algebras

0→ Ψ−∞S (G;S ⊗ E)
i
↪→ Ψ̃−∞S (G;S ⊗ E)

p−→ C2 → 0

has a splitting homomorphism % : C2 → Ψ̃−∞S (G;S ⊗E) given by %(λ, µ) = λπ+ +µπ−. Therefore the kernel
of the induced map

p∗ : K0(Ψ̃−∞S (G;S ⊗ E)) −→ K0(C2) ' Z2,

is isomorphic to the group K0(Ψ−∞S (G;S ⊗E)). Denote by p0 the obvious projection of Ψ̂−∞S (G;S ⊗E) onto
C. Then the inclusion map

β : Ψ̂−∞S (G;S ⊗ E) −→ Ψ̃−∞S (G;S ⊗ E),

given by β(T, λ) = T + λπ+ + λπ− induces the isomorphism

β∗ : K0(Ψ−∞S (G;S ⊗ E)) = Ker(p0,∗) −→ Ker(p∗) ⊂ K0(Ψ̃−∞S (G;S ⊗ E)).

We shall use the universal graded algebra in the proof of Proposition 3.5 below, so we recall its definition.
To any algebra C, there corresponds a (universal) differential graded algebra Ω(C) = ⊕n≥0Ωn(C) which is
defined by

Ω0(C) := C ⊕ C, and for n ≥ 1,Ωn(C) := (C ⊕ C)⊗ C⊗n .
The differential d : Ωn(C)→ Ωn+1(C) is defined for aj ∈ C and c ∈ C by

d
[
(a0 + c)⊗ a1 ⊗ · · · ⊗ an)

]
:= 1⊗ a0 ⊗ a1 ⊗ · · · ⊗ an.

It is clear that by definition d2 = 0. The space Ωn(C) is endowed with a natural right C-module structure
(and hence right C ⊕ C-module structure) defined by

((a0 + c)⊗ a1 ⊗ · · · ⊗ an)an+1 := (−1)n
n∑
j=0

(−1)j(a0 + c)⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ an+1.

The algebra structure of Ω(C) is defined by setting

((a0 + c)⊗ a1 ⊗ · · · ⊗ an)(b0 ⊗ b1 ⊗ · · · ⊗ bk) := ((a0 + c)⊗ a1 ⊗ · · · ⊗ an)b0 ⊗ b1 ⊗ · · · ⊗ bk

and

((a0 + c)⊗ a1 ⊗ · · · ⊗ an)c′ ⊗ b1 ⊗ · · · ⊗ bk) := c′[(a0 + c)⊗ a1 ⊗ · · · ⊗ an ⊗ b1 ⊗ · · · ⊗ bk].

A straightforward verification shows that (Ω(C), d) is a differential graded algebra, see [Con85]. We point
out that by definition

(a0 + c)da1 · · · dan = (a0 + c)⊗ a1 ⊗ · · · ⊗ an.
The following is known to experts. We give the proof for completeness, since it will be used in the sequel.

Proposition 3.5. Let ẽ and ẽ′ be two idempotents in MN (Ψ̃−∞S (G;S ⊗ E)) such that [ẽ] − [ẽ′] belongs to
the kernel of p∗. Then the Haefliger forms

(Φ ◦ tr)
(

(ẽ− (% ◦ p)(ẽ)) exp

(
−(δ(ẽ− (% ◦ p)(ẽ)))2

2iπ

))
and

(Φ ◦ tr)
(

(ẽ′ − (% ◦ p)(ẽ′)) exp

(
−(δ(ẽ′ − (% ◦ p)(ẽ′)))2

2iπ

))
are closed and we have the following equality in Haefliger cohomology:

(cha ◦β−1
∗ )([ẽ]− [ẽ′]) =

[
(Φ ◦ tr)

(
(ẽ− (% ◦ p)(ẽ)) exp

(
−(δ(ẽ− (% ◦ p)(ẽ)))2

2iπ

))]
−
[
(Φ ◦ tr)

(
(ẽ′ − (% ◦ p)(ẽ′)) exp

(
−(δ(ẽ′ − (% ◦ p)(ẽ′)))2

2iπ

))]
.
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Proof. We define for every k ≥ 0 a multilinear functional Φ̃ on the unital algebra Ψ̃−∞S (G;S ⊗ E) by the
equality

Φ̃(T̃ 0, · · · , T̃ k) := Φ(T 0δT 1 · · · δT k) + Φ(δ(Λ0T 1)δT 2 · · · δT k),

where T̃ j = T j + Λj ∈ Ψ̃−∞S (G;S ⊗ E) with

T j = T̃ j − (% ◦ p)(T̃ j) ∈ Ψ−∞S (G;S ⊗ E) and Λj = % ◦ p(T̃ j) =

(
λj 0
0 µj

)
= λjπ+ + µjπ−.

Then Φ̃ is a functional on the universal differential graded algebra associated with Ψ̃−∞S (G;S ⊗ E), see
[Con85] and also the bivariant constructions in [CQ97, Nis93]. More precisely, we set:

Φ̃((T̃ 0 + c)dT̃ 1 · · · dT̃ k) := Φ̃(T̃ 0, · · · , T̃ k).

We then have by definition

(Φ̃ ◦ d) = 0

on the universal differential graded algebra associated with Ψ̃−∞S (G;S ⊗ E).

For T̃ j = T j + Λj ∈ Ψ̃−∞S (G;S ⊗ E), we have

(−1)kΦ̃([T̃ 0dT̃ 1 · · · dT̃ k, T̃ k+1]) = (−1)kΦ̃(T̃ 0dT̃ 1 · · · dT̃ kT̃ k+1)− (−1)kΦ̃(T̃ k+1T̃ 0dT̃ 1 · · · dT̃ k)

= Φ̃(T̃ 0T̃ 1dT̃ 2 · · · dT̃ k+1) +

k∑
j=1

(−1)jΦ̃(T̃ 0dT̃ 1 · · · dT̃ j−1d(T̃ j T̃ j+1)dT̃ j+2 · · · dT̃ k+1)

− (−1)kΦ̃(T̃ k+1T̃ 0dT̃ 1 · · · dT̃ k)

= Φ((T 0T 1 + Λ0T 1 + T 0Λ1)δT 2 · · · δT k+1) + Φ(δ(Λ0Λ1T 2)δT 3 · · · δT k+1)

+

k∑
j=1

(−1)jΦ(T 0δT 1 · · · δT j−1δ(T jT j+1 + ΛjT j+1 + T jΛj+1)δT j+2 · · · δT k+1)

− Φ(δ(Λ0(T 1T 2 + Λ1T 2 + T 1Λ2))δT 3 · · · δT k+1)

+

k∑
j=2

(−1)jΦ(δ(Λ0T 1)δT 2 · · · δT j−1δ(T jT j+1 + ΛjT j+1 + T jΛj+1)δT j+2 · · · δT k+1)

− (−1)kΦ((T k+1T 0 + T k+1Λ0 + Λk+1T 0)δT 1 · · · δT k)

− (−1)kΦ(δ(Λk+1Λ0T 1)δT 2 · · · δT k).

By using a connection which commutes with the grading we insure that ∂ν(Λ) = 0 for any Λ ∈ Cπ+⊕Cπ−.
Thus, using the definitions of the product and the differential δ, we can easily deduce the following relations
for all Λ, T,Λ′, and T ′:

3.6. ∂ν(ΛT ) = Λ(∂νT ), ∂ν(TΛ) = (∂νT )Λ, θΛT = ΛθT, TΛδ(T ′) = Tδ(ΛT ′), δ(TΛ)T ′ = (δT )(ΛT ′),

δ(TΛ)δ(T ′) = δ(T )δ(ΛT ′), TΛδ(Λ′T ′) = Tδ(ΛΛ′T ′) and δ(TT ′) = δTT ′ + TδT ′.

It is then a straightforward calculation that

Φ((T 0T 1 + Λ0T 1 + T 0Λ1)δT 2 · · · δT k+1)+

k∑
j=1

(−1)jΦ(T 0δT 1 · · · δT j−1δ(T jT j+1 + ΛjT j+1 + T jΛj+1)δT j+2 · · · δT k+1)

collapses to

Φ(Λ0T 1δT 2 · · · δT k+1) + (−1)kΦ(T 0δT 1 · · · δT k−1(δT kT k+1 + δ(T kΛk+1))),

and

Φ(δ(Λ0Λ1T 2)δT 3 · · · δT k+1)− Φ(δ(Λ0(T 1T 2 + Λ1T 2 + T 1Λ2))δT 3 · · · δT k+1)+



14 M-T. BENAMEUR AND J. L. HEITSCH JANUARY 14, 2023

k∑
j=2

(−1)jΦ(δ(Λ0T 1)δT 2 · · · δT j−1δ(T jT j+1 + ΛjT j+1 + T jΛj+1)δT j+2 · · · δT k+1)

collapses to

−Φ(Λ0T 1δT 2 · · · δT k+1) + (−1)kΦ(δ(Λ0T 1)δT 2 · · · δT k−1(δT kT k+1 + δ(T kΛk+1))).

Substituting and multiplying by (−1)k, we get

Φ̃([T̃ 0dT̃ 1 · · · dT̃ k, T̃ k+1]) = (−1)kΦ(Λ0T 1δT 2 · · · δT k+1)

+ Φ(T 0δT 1 · · · δT kT k+1))

+ Φ(T 0δT 1 · · · δT k−1δ(T kΛk+1))

− (−1)kΦ(Λ0T 1δT 2 · · · δT k+1)

+ Φ(δ(Λ0T 1)δT 2 · · · δT kT k+1)

+ Φ(δ(Λ0T 1)δT 2 · · · δT k−1δ(T kΛk+1))

− Φ(T k+1T 0δT 1 · · · δT k)

− Φ(T k+1Λ0δT 1 · · · δT k)

− Φ(Λk+1T 0δT 1 · · · δT k)

− Φ(δ(Λk+1Λ0T 1)δT 2 · · · δT k).

The first and the fourth terms on the right cancel. Using 3.6 and the trace property of Φ we have the
following equations:

0 = Φ(T 0δT 1 · · · δT kT k+1)− Φ(T k+1T 0δT 1 · · · δT k).

0 = Φ(T 0δT 1 · · · δT k−1δ(T kΛk+1))− Φ(Λk+1T 0δT 1 · · · δT k).

0 = Φ(δ(Λ0T 1)δT 2 · · · δT kT k+1)− Φ(T k+1Λ0δT 1 · · · δT k).

0 = Φ(δ(Λ0T 1)δT 2 · · · δT k−1δ(T kΛk+1))− Φ(δ(Λk+1Λ0T 1)δT 2 · · · δT k).

Thus

Φ̃([T̃ 0dT̃ 1 · · · dT̃ k, T̃ k+1]) = 0.

Hence Φ̃ is a closed graded trace on the whole universal algebra associated with Ψ̃−∞S (G;S ⊗ E) which
commutes with the differentials.

Given the above, we know that for any idempotent ẽ in the matrix algebra MN (Ψ̃−∞S (G;S ⊗ E)), the
expression

(Φ̃ ◦ tr)
(
ẽ exp

(
−δ(ẽ)2

2iπ

))
is a closed Haefliger form and that its cohomology class only depends on the K−theory class [ẽ] of the
idempotent ẽ, see for instance [BH04]. But note that this Haefliger differential form coincides with the
differential form

(Φ ◦ tr)
(

(ẽ− (% ◦ p)(ẽ)) exp

(
−(δ(ẽ− (% ◦ p)(ẽ)))2

2iπ

))
which is then also closed and represents the same Haefliger cohomology class. Thus we deduce that the
Haefliger class[

(Φ ◦ tr)
(

(ẽ− (% ◦ p)(ẽ)) exp

(
−(δ(ẽ− (% ◦ p)(ẽ)))2

2iπ

))]
−[

(Φ ◦ tr)
(

(ẽ′ − (% ◦ p)(ẽ′)) exp

(
−(δ(ẽ′ − (% ◦ p)(ẽ′)))2

2iπ

))]
,
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is well defined and only depends on the K−theory class [ẽ]− [ẽ′]. We denote it by c̃ha([ẽ]− [ẽ′]). So we have
the following morphism

c̃ha : K0(Ψ̃−∞S (G;S ⊗ E)) −→ H∗c(M/F ).

The above construction applies also to the minimal unitalization Ψ̂−∞S (G;S⊗E) of the algebra Ψ−∞S (G;S⊗E)
and yields a morphism

ĉha : K0(Ψ̂−∞S (G;S ⊗ E)) −→ H∗c(M/F ),

whose restriction to K0(Ψ−∞S (G;S ⊗E)) is by definition the Chern character cha. Note that ĉha is given by
the same formula (3.4), except that the K−theory element is no longer supposed to live in the kernel of

p0,∗ : K0(Ψ̂−∞S (G;S ⊗ E)) −→ K0(Ψ−∞S (G;S ⊗ E)).

Now the map β : Ψ̂−∞S (G;S⊗E)→ Ψ̃−∞S (G;S⊗E) induces a well defined morphism of short exact sequences

0

0

-

-

K0(Ψ−∞S (G;S ⊗ E))

?

K0(Ψ−∞S (G;S ⊗ E))

id

i0,∗-

-i∗

K0(Ψ̂−∞S (G;S ⊗ E))

?

K0(Ψ̃−∞S (G;S ⊗ E))

β∗

p0,∗-

-p∗

K0(C) ' Z

?

K0(C2) ' Z2

[β]∗

-

-

0

0.

Hence composing with c̃ha gives the following diagram which is commutative by the very definition of the
maps:

0 - K0(Ψ−∞S (G;S ⊗ E))

i0,∗

i∗

β∗

c̃ha

ĉha
�
���

@
@
@R

K0(Ψ̃−∞S (G;S ⊗ E))

K0(Ψ̂−∞S (G;S ⊗ E))

?

�
���

@
@@R

Hc(M/F ).

In particular, c̃ha ◦ β∗ = ĉha, so

c̃ha ◦ β∗ ◦ i0,∗ = ĉha ◦ i0,∗ = cha .

But,
β∗ ◦ i0,∗ : K0(Ψ−∞S (G;S ⊗ E)) −→ Ker p∗,

is an isomorphism, so we may define the Chern character directly on the group K0(Ψ−∞S (G;S⊗E)) = Ker p∗.
The proof is thus complete. �

Corollary 3.7. Let D be a generalized Dirac operator for the foliation F acting on the sections of the

Z2−graded bundle S ⊗ E. Let P (tD) be the associated idempotent in the algebra Ψ̃−∞S (G;S ⊗ E), as in
Proposition 2.5. Set Pt = P (tD)− π−. Then for all t > 0, the Haefliger form

(Φ ◦ tr)
(
Pt exp

[
−(δPt)

2

2iπ

])
,

is closed and as Haefliger classes, we have the equality

cha(Inda(D+)) =

[
(Φ ◦ tr)

(
Pt exp

[
−(δPt)

2

2iπ

])]
.

Proof. The analytic K−theory index of D in the K−theory group K0(Ψ−∞S (G;S⊗E)) of superexponentially
decaying operators is given by

Inda(D+) = [P (tD)]− [π−] ∈ Ker
(
K0(Ψ̃−∞S (G;S ⊗ E))→ Z2

)
.
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Since the splitting map % : C2 → Ψ̃−∞S (G;S ⊗ E) is %(λ, µ) = λπ+ + µπ−, we have that

P (tD)− (% ◦ p)(P (tD)) = Pt and π− − (% ◦ p)(π−) = 0.

Now apply Proposition 3.5. �

In [BH04] we proved that the Chern character cha composed with the topological and analytic index maps
of Connes-Skandalis [CS84] yield the same map. As a particular case, for any generalized Dirac operator
D with coefficients in a Hermitian bundle E1 over M , the Chern character of the topological index of D,
denoted cha(Indt(D

+)), coincides with the Chern character of the analytic index of D, i.e.

cha(Indt(D
+)) = cha(Inda(D+)),

and the common value of this Haefliger cohomology class is

cha(Indt(D
+)) = cha(Inda(D+)) =

∫
F

Â(TF ) ch(E1).

Here Â(TF ) is the usual Â genus of the tangent bundle of F , and ch is the usual Chern character of E1.
In order to define the Chern character of the index bundle of D, we need the concept of “transverse

smoothness” for A(M) equivariant bounded leafwise smoothing operators on S ⊗ E ⊗ ∧ν∗s .
The spaces we consider carry a natural Sobolev structure due to the compactness of the ambient manifold

M . For each leaf L̃x of the foliation Fs of G, and k ∈ R, denote by Hk(S ⊗E | L̃x) the Sobolev space which

is the completion of C∞c (S ⊗ E | L̃x) with respect to the norm ‖σ‖k = ‖(1 + D2)k/2σ‖, where ‖ ‖ is the L2

norm on C∞c (S ⊗ E | L̃x). Because all of the objects we use are the pull-backs of objects on the compact

manifold M which are smooth as objects on M , the Sobolev spaces Hk(S ⊗ E | L̃x) do not depend on the
choices made. An operator

A : C∞(S ⊗ E)→ C∞(S ⊗ E)

is a bounded leafwise smoothing operator provided that for all k and `, and all x ∈M , A defines a bounded
operator

A : Hk(S ⊗ E | L̃x)→ H`(S ⊗ E | L̃x),

with bound independent of x, but perhaps depending on k and `. A prime example of such an operator is
g(D2), where g is a Borel function on [0,∞) so that for all k, (1 + x)k/2g(x) is bounded on [0,∞).

An A(M) equivariant bounded leafwise smoothing operator H on C∞(S⊗E⊗∧ν∗s ) is first of all a leafwise
operator

H : C∞(S ⊗ E ⊗ ∧ν∗s )→ C∞(S ⊗ E ⊗ ∧ν∗s )

which is equivariant with respect to the A(M) module structure of C∞(S ⊗ E ⊗ ∧ν∗s ). As such it can be
written as

H = H[0] +H[1] + · · ·+H[n],

where H[d] is homogeneous of degree d, that is, for all t,

H[d] : C∞(S ⊗ E ⊗ ∧tν∗s )→ C∞(S ⊗ E ⊗ ∧t+dν∗s ).

Then H[d] may be written as

H[d] =
∑
j

H[d],j ⊗ s∗(ωj),

where the ωj ∈ C∞(∧dTM∗) and H[d],j is a leafwise operator on S ⊗ E. We further require that for any

X ∈ C∞(∧dTM), iXH[d] is a bounded leafwise smoothing operator on S ⊗E. The k, ` norm ||H||k,` of such
an operator is given by

||H||k,` = sup
x,d,X

||iXHx
[d]||k,`,

where X ∈ ∧dTMx has norm 1, and ||iXHx
[d]||k,` is the norm of the operator

iXH[d] : Hk(S ⊗ E | L̃x)→ H`(S ⊗ E | L̃x).
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The norm ||H||0,0 will also be denoted ||H||. Since M is compact, it is easy to prove that ||H||k,` <∞ for
all k, `.

For X ∈ C∞(∧dTM), and Y ∈ C∞(TM), set

∂Yν (iXH[d]) = iY (∂ν(iXH[d])),

which (if it exists) is an operator on S ⊗ E.

Definition 3.8. Suppose H is a A(M) equivariant bounded leafwise smoothing operator on S ⊗ E ⊗ ∧ν∗s .
We say H is transversely smooth provided that for any X ∈ C∞(∧dTM), and any Y1, ..., Y` ∈ C∞(TM), the
operator

∂Y1
ν ...∂Y`ν (iXH[d])

is a bounded leafwise smoothing operator on S ⊗ E.

If H is transversely smooth, so is ∂νH. Note that as in the proof of Lemma 3.1, this is a local question
on M . On U ∈ U , H is a sum of operators of the form iXH[d]⊗ s∗(ωX) where ωX ∈ C∞(∧dT ∗U) is a closed

form and X ∈ C∞(∧dTU), both of which extend to M . Then on U , ∂νH is a sum of operators of the form
∂ν(iXH[d])⊗ s∗(ωX), and the result is immediate.

Suppose that φ and ψ ∈ C∞c (G), with associated multiplication operators, Mφ andMψ. IfH is transversely
smooth, then Mφ ◦H ◦Mψ is also transversely smooth. Standard techniques using the local expression for

∂Yν then show that the Schwartz kernel Hx(y, z) is smooth in all its variables, where x ∈M , and y, z ∈ L̃x.
It follows from Lemma 3.1 that any element A ∈ AS(G,S ⊗ E) is transversely smooth.
We shall assume that P0, the projection onto the kernel of D, is transversely smooth. Note that classical

results imply that P0 is a smoothing operator when restricted to any leaf L̃x.
Recall that α = π+ − π− is the grading involution for S ⊗ E = (S+ ⊗ E)⊕ (S− ⊗ E). Then

P0 =

[
P+

0 0
0 P−0

]
, so αP0 =

[
P+

0 0
0 −P−0

]
is the super-projection onto the leafwise kernel of D, where P±0 is projection onto the kernel of D±. Note
that ∂νπ± = 0, provided we use a connection which preserves the splitting S = S+ ⊕ S−, which we assume
that we do, so ∂να = 0, and αθ = θα. Note also that αP0 = P0α, so

(∂ν(αP0))2 = α2(∂νP0)2 = (∂νP0)2 and αP0θαP0 = α2P0θP0 = P0θP0, which implies (δ(αP0))2 = (δP0)2.

Proposition 3.9. The Haefliger form (Φ ◦ tr)
(
αP0 exp(

−(δ(αP0))2

2iπ
)
)

= (Φ ◦ tr)
(
αP0 exp(

−(δP0)2

2iπ
)
)

is

closed, and the Haefliger class it defines depends only on P0.

Proof. Set U = 2P0 − 1 then

αU = Uα,U2 = I, UP0 = P0 = P0U and U(δP0) =
1

2
U(δU) = −1

2
(δU)U = −(δP0)U.

Thus, for any k ≥ 0,

(dH ◦ Φ ◦ tr)
(
αP0(δP0)2k

)
= (Φ ◦ tr)

(
α(δP0)2k+1

)
=

(Φ ◦ tr)
(
U2α(δP0)2k+1

)
= (−1)2k+1(Φ ◦ tr)

(
Uα(δP0)2k+1U

)
= −(Φ ◦ tr)

(
Uα(δP0)2k+1U

)
.

Lemma 3.10. (Φ ◦ tr)
(
Uα(δP0)2k+1U

)
= (Φ ◦ tr)

(
α(δP0)2k+1

)
.

This immediately implies that

(dH ◦ Φ ◦ tr)
(
αP0(δP0)2k

)
= 0.



18 M-T. BENAMEUR AND J. L. HEITSCH JANUARY 14, 2023

Proof. Using U = 2P0 − 1, we get by multiplying out

(Φ ◦ tr)
(
Uα(δP0)2k+1U

)
= 4(Φ ◦ tr)

(
P0α(δP0)2k+1P0

)
− 2(Φ ◦ tr)

(
α(δP0)2k+1P0

)
−

2(Φ ◦ tr)
(
P0α(δP0)2k+1

)
+ (Φ ◦ tr)

(
α(δP0)2k+1

)
.

Thus we need to show that

(Φ ◦ tr)
(
α(δP0)2k+1P0

)
= (Φ ◦ tr)

(
P0α(δP0)2k+1P0

)
= (Φ ◦ tr)

(
P0α(δP0)2k+1

)
.

As P0 = P0e
−tD2

, we have

(Φ ◦ tr)
(
α(δP0)2k+1P0

)
= (Φ ◦ tr)

(
α(δP0)2k+1P0e

−tD2
)
.

The operator α(δP0)2k+1P0 is bounded, and e−tD
2

is super exponentially decaying, so we may apply Lemma
2.5 of [HL02] to get that this last equals

(Φ ◦ tr)
(
e−tD

2

α(δP0)2k+1P0

)
,

which is true for all t > 0. Now the proof of Theorem 2.3.17 [HL90] allows us to conclude that

lim
t→∞

(Φ ◦ tr)
(
e−tD

2

α(δP0)2k+1P0

)
= (Φ ◦ tr)

(
lim
t→∞

e−tD
2

α(δP0)2k+1P0

)
= (Φ ◦ tr)

(
P0α(δP0)2k+1P0

)
.

Similarly for the second equality. �

In order to show the independence of the choice of connection, we use the relevant parts of the proof of
Theorem 4.1 of [BH04]. Indeed, it is obvious that the Poincaré argument developed there still applies to the
regularizing operator P0 even though it may be non-compactly supported. �

Definition 3.11. The analytic Chern character cha([P0]) of the index bundle of D is the class of the Haefliger

form (Φ ◦ tr)
(
αP0 exp(

−(δ(αP0))2

2iπ
)
)

= (Φ ◦ tr)
(
αP0 exp(

−(δP0)2

2iπ
)
)

.

Finally, an easy induction argument using the fact that for any idempotent e, e(∂νe)
2`−1e = 0 for all

` > 0, shows that

e(δe)2j =

(
e
(
(∂νe)

2 + eθe
)j

0
0 0

)
.

Thus

3.12. cha([P0]) =)
[
(Tr ◦ tr)

(
αP0 exp(

−((∂νP0)2 + P0θP0)

2iπ
)
)]
.

4. Proof of Main Theorem

Denote by Pε the spectral projection for D2 for the interval (0, ε). Recall that the Novikov-Shubin
invariants of D are greater than k ≥ 0 provided that there is β > k so that

(Tr ◦ tr)(Pε) = (Φ ◦ tr)(Pε) is O(εβ) as ε→ 0.

When we say a Haefliger form Ψ depending on ε is O(εβ) as ε → 0 we mean that there is a representative
ψ ∈ Ψ defined on a transversal T , and a constant C > 0, so that the function on T , ‖ψ‖T ≤ Cεβ as ε→ 0.
Here ‖ ‖T is the pointwise norm on forms on the transversal T induced from the metric on M .

We now prove our main theorem.

Theorem 4.1. Assume that F is Riemannian, and that the Novikov-Shubin invariants of D are greater
than q/2. Assume further that the leafwise operators P0, and (for ε sufficiently small) Pε are transversely
smooth. Then the analytic Chern character of the K-theory index of D equals the analytic Chern character
of the index bundle of D, that is

cha(Inda(D+)) = cha([P0]).
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Theorem 4.1 uses estimates on Novikov-Shubin invariants of D to deduce the equality of the whole Chern
character of the index bundle with that of the analytic index. We will actually prove the following stronger
theorem.

Theorem 4.2. Assume that F is Riemannian, and that the leafwise operators P0, and (for ε sufficiently
small) Pε are transversely smooth. For a fixed integer k with 0 ≤ k ≤ q/2, assume that the Novikov-Shubin
invariants of D are greater than k. Then the kth component of the Chern character of the K-theory index
of D equals the kth component of the Chern character of the index bundle of D, that is

chka(Inda(D+)) = chka([P0]) ∈ H2k
c (M/F ).

The proof of this theorem is rather long and involves a number of complicated estimates. For easier
reading, we will split it into a series of propositions and lemmas. Note that Theorem 4.2 implies Theorem
4.1.

For the rest of this section, let k be a fixed integer in the interval [0, q/2]. By Corollary 3.7, we need only
show that,

lim
t→∞

(Φ ◦ tr)
(
Pt(δPt)

2k
)

= (Φ ◦ tr)
(
αP0(δ(αP0))2k

)
.

If we ignore the minus signs in Pt, we see that the diagonal terms give e−tD
2

, and the off diagonal terms are

given by (Pt)21 = (e−tD
2/2
√
tD)21 and (Pt)12 = (e−tD

2/2 I − e−tD
2

tD2

√
tD)12. Thus

Pt = π+e
−tD2

π+ − π−e−tD
2

π− − π−e−tD
2/2
√
tDπ+ − π+e

−tD2/2 I − e−tD
2

tD2

√
tDπ−.

As the connection ∇ used in the definition of ∂ν preserves the splitting S ⊗ E = (S+ ⊗ E) ⊕ (S− ⊗ E),

∂νπ± = 0, and we may work with the operators e−tD
2

, e−tD
2/2
√
tD, and e−tD

2/2 I − e−tD
2

tD2

√
tD in what

follows instead of the (more notationally complicated) entries of Pt.
We will assume that the reader is familiar with the Spectral Mapping Theorem, see for instance [RS80],

and how to use it to compute bounds on norms, strong convergence, etc. This theorem gives that for ` ≥ 0,

the norms of the operators D`e−tD
2

, D`e−tD
2/2
√
tD and D`e−tD

2/2 I − e−tD
2

tD2

√
tD are uniformly bounded

as t→∞. In addition, for ` > 0, all three converge in norm to zero as t→∞.
Choose δ so that

−1 < δ <
−k
β

< 0

and couple ε to t by setting

ε = tδ.

Because of the uniformly bounded geometry of the leaves of Fs, which follows from the fact that all the
structures we use on G are pulled back from the compact manifold M , the leafwise estimates we give below
are uniform over all leaves of Fs.

Denote by Qε the spectral projection for D2 for the interval [ε,∞). Since I = P0 + Pε +Qε, the operator
∂νQε is bounded. Now consider

Pt = P0PtP0 + PεPtPε +QεPtQε = αP0 + PεPtPε +QεPtQε.

Proposition 4.3. As t→∞,

(i) ||QεPtQε|| is bounded by a multiple of e−(t(1+δ)/16),

(ii) ||∂ν(QεPtQε)|| is bounded by a multiple of e−(t(1+δ)/16),
(iii) ||PεPtPε|| is bounded,

(iv) ||∂ν(PεPtPε)|| is bounded by a multiple of t(
1
2 +a), for any a > 0.

Remark 4.4. The coefficient 1
16 in (i) and (ii) can be improved very easily but this does not allow us to

improve the assumption on the Novikov-Shubin invariants.
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Proof. Note that the element

∂ν(QεPtQε) = ∂ν(Qε)PtQε +QεPt∂ν(Qε) +Qε∂ν(Pt)Qε

and ||∂ν(Qε)|| is bounded. We may write Pt = e−tD
2/4P̂t = P̂te

−tD2/4 where

P̂t =

 e−3tD−D+/4 (−e−tD−D+/4)
I − e−tD−D+

tD−D+

√
tD−

−e−tD+D−/4
√
tD+ −e−3tD+D−/4

 .
P̂t has essentially the same properties as Pt, in particular its norm is bounded independently of t. Since

||e−tD2/4Qε|| = ||Qεe−tD
2/4|| ≤ e−tε/4 = e(−t(1+δ)/4), we have that ||PtQε|| and ||QεPt|| (so also ||QεPtQε||,

||∂ν(Qε)PtQε|| and ||QεPt∂ν(Qε)||) are bounded by a multiple of e(−t(1+δ)/4). Thus we have (i) of the
Proposition, and to establish (ii) we need only consider the term Qε∂ν(Pt)Qε. First however, we need the
following result on the operators ∂ν(D) and ∂ν(D2).

Lemma 4.5. Suppose that H is a bounded leafwise smoothing operator on S ⊗E, and extend it to an A(M)
equivariant bounded leafwise smoothing operator on S ⊗ E ⊗ ∧ν∗s . Then H∂ν(D), ∂ν(D)H, H∂ν(D2) and
∂ν(D2)H are A(M) equivariant bounded leafwise smoothing operators on S ⊗ E ⊗ ∧ν∗s .

Proof. We may construct the partial derivative ∂Fν for the foliation F and its normal bundle ν∗ in complete
analogy with the operator ∂ν , and we have the leafwise Dirac operator DF for the foliation F and the bundle
E1. Then, ∂ν(D) = r∗∂Fν (DF ). In particular, let (U, γ, V ) be a basic open set for G where U, V ∈ U have
coordinates x1, ..., xp, w1, ..., wq and y1, ..., yp, z1, ..., zq. The xi and yi are the leaf coordinates for F , and the
wi and zi are the normal coordinates. We use x1, ..., xp, y1, ..., yp, z1, ..., zq as coordinates for (U, γ, V ), and
ν∗s is spanned by the dxi and the dzi. On V , ν∗ is spanned by the dzi, and ∂Fν (DF ) is given by an expression
of the form

∂Fν (DF ) = Aij(y, z)dzj ⊗ ∂/∂yi +Bj(y, z)dzj ,

where Aij , Bj ∈ C∞(V ; Hom(S0 ⊗E1)). The coefficients of the Aij and Bj (with respect to an orthonormal
basis of S0⊗E1 |V ) have each of their derivatives uniformly bounded over all V in the good cover U . Because
D is independent of x1, ..., xp, and ∇ | (U,γ,V ) has the form given in the proof of Lemma 3.1, ∂ν(D) has exactly
the same form on (U, γ, V ), that is

∂ν(D) = Aij(y, z)dzj ⊗ ∂/∂yi +Bj(y, z)dzj ,

where Aij , Bj are now in C∞((U, γ, V ); Hom(S ⊗ E)), and are really Aij ◦ r and Bj ◦ r.
Now suppose that x ∈ U and X ∈ TMx with ||X|| = 1, and consider the leafwise operator iX∂ν(D) on

L̃x. Write X = XF +Xν where XF ∈ TFx and Xν ∈ νx. Then the local expression for iX∂ν(D) in (U, γ, V )
is

iX∂ν(D) = Aij(y, z)dzj(hγ(Xν))∂/∂yi +Bj(y, z)dzj(hγ(Xν)),

where hγ : νx → νx′ is the holonomy map induced by γ and x′ = (y, z) ∈ V . Since hγ is an isometry,
||hγ(Xν)|| ≤ 1. Thus, iX∂ν(D) is a smooth first order leafwise differential operator on S ⊗E with uniformly

bounded coefficients. It follows that for any k ∈ R, the operator iX∂ν(D) maps Hk(S ⊗E | L̃x) to Hk−1(S ⊗
E | L̃x), and it is a bounded operator with norm independent of x. See [S92], [K91], and [K95].

If H is a bounded leafwise smoothing operator on S ⊗ E, then for all k, ` ∈ R and all x ∈ M , H :

Hk−1(S ⊗ E | L̃x)→ Hk+`(S ⊗ E | L̃x) and it is a bounded operator with norm independent of x. Thus, for
all k, ` ∈ R and all x ∈M , the composition

iXH∂ν(D) : Hk(S ⊗ E | L̃x)
iX∂ν(D)−→ Hk−1(S ⊗ E | L̃x)

H−→ Hk+`(S ⊗ E | L̃x),

is a bounded operator, and its norm ‖iXH∂ν(D)‖k,k+` ≤ ‖H‖k−1,k+`‖iX∂ν(D)‖k,k−1, which is independent
of x. Thus H∂ν(D) is an A(M) equivariant bounded leafwise smoothing operator on S ⊗ E ⊗ ∧ν∗s , in
particular ‖H∂ν(D)‖ <∞.
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The same argument using the composition

iX∂ν(D)H : Hk(S ⊗ E | L̃x)
H−→ Hk+`+1(S ⊗ E | L̃x)

iX∂ν(D)−→ Hk+`(S ⊗ E | L̃x),

shows that ‖∂ν(D)H‖ <∞.
The same proof gives the result for ∂ν(D2) if we replace ∂ν(D) by ∂ν(D2), and ∂Fν (DF ) by ∂Fν (D2

F ). The
fact that iX∂ν(D2) is a smooth second order leafwise differential operator on S ⊗E with uniformly bounded

coefficients gives that for any k ∈ R, the operator iX∂ν(D2) maps Hk(S ⊗E | L̃x) to Hk−2(S ⊗E | L̃x), and
it is a bounded operator with norm independent of x. �

Now we establish (ii) by considering the individual elements making up the term Qε∂ν(Pt)Qε.

Lemma 4.6. ||Qε∂ν(e−tD
2/k)Qε|| is bounded by a multiple of e−(t1+δ/8k).

Proof. Recall the foliation Duhamel formula of [He95] (which requires that G be Hausdorff) which states
that

∂ν(e−tD
2

) = −
∫ t

0

e−sD
2

∂ν(D2)e(s−t)D2

ds.

Thus

Qε∂ν(e−tD
2

)Qε = −
∫ t

0

Qεe
−sD2

∂ν(D2)e(s−t)D2

Qεds =

−
∫ t

t/2

Qεe
−sD2

∂ν(D2)e(s−t)D2

Qεds−
∫ t/2

0

Qεe
−sD2

∂ν(D2)e(s−t)D2

Qεds.

The norm of the first integral satisfies

||
∫ t

t/2

Qεe
−sD2

∂ν(D2)e(s−t)D2

Qεds|| ≤
∫ t

t/2

||Qεe−sD
2

∂ν(D2)e(s−t)D2

Qε||ds

≤
∫ t

t/2

||Qεe−
s
2D

2

|| ||e− s2D
2

∂ν(D2)|| ||e(s−t)D2

Qε||ds.

Now ||e(s−t)D2

Qε|| ≤ 1, and the operator e−
1
2D

2

is a bounded leafwise smoothing operator, so by Lemma

4.5, ‖e− 1
2D

2

∂ν(D2)‖ is bounded. Thus

||e− s2D
2

∂ν(D2)|| ≤ ||e−
s−1
2 D2

|| ||e− 1
2D

2

∂ν(D2)|| ≤ ||e− 1
2D

2

∂ν(D2)||

for t > 2, as then ||e− s−1
2 D2 || ≤ 1 for all s ≥ t/2. Finally, ||Qεe−

s
2D

2 || ≤ e−sε/2, so the last integral is
bounded by a multiple of

ε−1(e−(tε/4) − e−(tε/2)) = t−δ(e−(t1+δ/4) − e−(t1+δ/2)) < t−δe−(t1+δ/4).

This in turn is bounded by a multiple of e−(t1+δ/8), for t sufficiently large.

The change of variables s→ t−s transforms the integral

∫ t/2

0

Qεe
−sD2

∂ν(D2)e(s−t)D2

Qεds to the integral∫ t

t/2

Qεe
(s−t)D2

∂ν(D2)e−sD
2

Qεds, so this satisfies the same estimate. Replacing D2 by D2/k then gives the

estimate of the lemma. �

Lemma 4.7. As t→∞, ||Qε∂ν(e−tD
2√
tD)Qε|| is bounded by a multiple of e−(t1+δ/16).

Proof. Observe that

Qε∂ν(e−tD
2√
tD)Qε = Qε∂ν(e−tD

2/2
√
tDe−tD

2/2)Qε =

Qε∂ν(e−tD
2/2)
√
tDe−tD

2/2Qε +Qεe
−tD2/2∂ν(

√
tD)e−tD

2/2Qε +Qεe
−tD2/2

√
tD∂ν(e−tD

2/2)Qε =

Qε∂ν(e−tD
2/2)Qε

√
tDe−tD

2/2Qε +Qεe
−tD2/2

√
t∂ν(D)e−tD

2/2Qε +Qεe
−tD2/2

√
tDQε∂ν(e−tD

2/2)Qε.

By the Spectral Mapping Theorem,
√
tDe−tD

2/2 = e−tD
2/2
√
tD has norm bounded by 1/

√
e. Using Lemma

4.6 and the fact that ||Qε|| ≤ 1, the first and third terms satisfy the estimate.
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The operator e−tD
2/2 is a bounded leafwise smoothing operator, so by Lemma 4.5, ∂ν(D)e−tD

2/2 is an

A(M) equivariant bounded leafwise smoothing operator. As e−(s+t)D2

= e−sD
2

e−tD
2

and ||e−tD2 || ≤ 1,

it follows easily that its norm is bounded independently of t, for t large. The fact that ||Qεe−tD
2/2
√
t|| ≤√

te−tε/2 =
√
te−(t1+δ/2) ≤ e−(t1+δ/4), for t large, gives the estimate for the middle term. �

Lemma 4.8. As t→∞, ||Qε∂ν(e−tD
2 I − e−tD2

tD2

√
tD)Qε|| is bounded by a multiple of e−(t1+δ/16).

Proof.

||Qε∂ν(e−tD
2 I − e−tD2

tD2

√
tD)Qε|| = ||Qε∂ν(e−tD

2√
tD

I − e−tD2

tD2
)Qε|| ≤

||Qε∂ν(e−tD
2√
tD)Qε

I − e−tD2

tD2
Qε||+ ||Qεe−tD

2√
tD∂ν(

I − e−tD2

tD2
)Qε||

and ||I − e
−tD2

tD2
|| ≤ 1, so by Lemma 4.7 the first term immediately above satisfies the lemma. If G is

the Green’s operator for D, the second term may be written as Qε(G/
√
t)Qεe

−tD2

tD2∂ν(
I − e−tD2

tD2
)Qε,

and ||QεG/
√
t|| ≤ (tε)−1/2 = t−(1+δ)/2, which is bounded for t large since 1 + δ > 0. The operator

tD2 I − e−tD
2

tD2
= I − e−tD2

, so

tD2∂ν(
I − e−tD2

tD2
) = −∂ν(tD2)

I − e−tD2

tD2
− ∂ν(e−tD

2

),

and

Qεe
−tD2

tD2∂ν(
I − e−tD2

tD2
)Qε = −Qεe−tD

2

∂ν(tD2)
I − e−tD2

tD2
Qε −Qεe−tD

2

∂ν(e−tD
2

)Qε.

Now,

Qεe
−tD2

∂ν(tD2) = Qεte
−tD2/2e−tD

2/2∂ν(D2),

and, as in the proof of Lemma 4.7, e−tD
2/2∂ν(D2) has norm bounded independently of t, for t large. As

||Qεte−tD
2/2|| ≤ te−tε/2 = te−(t1+δ/2) < e−(t1+δ/4)

for t large, the term Qεe
−tD2

∂ν(tD2)
I − e−tD2

tD2
Qε has norm bounded by a multiple of e−(t1+δ/4). By

Lemma 4.6, the term Qεe
−tD2

∂ν(e−tD
2

)Qε = Qεe
−tD2

Qε∂ν(e−tD
2

)Qε is bounded by a multiple of e−(t1+δ/8)

(actually e−t
1+δ

if we use the estimate ||Qεe−tD
2 || ≤ e−tε = e−t

1+δ

). �

Thus we have the second inequality of Proposition 4.3. The third estimate follows immediately from the
fact that both Pt and Pε are bounded.

Lemma 4.9. ||Pε∂ν(e−tD
2

)Pε|| is bounded by a multiple of t1+(δ/2).

Note that 1 + (δ/2) > 1/2, but by choosing δ close to −1, we can make 1 + (δ/2) as close to 1/2 as we
please.

Proof.

Pε∂ν(e−tD
2

)Pε = −
∫ t

0

Pεe
−sD2

∂ν(D2)e(s−t)D2

Pεds = −
∫ t

0

Pεe
−sD2

Pε[∂ν(D)D +D∂ν(D)]Pεe
(s−t)D2

Pεds.

As Pε is a bounded leafwise smoothing operator, ||Pε∂ν(D)|| and ||∂ν(D)Pε|| are bounded (Lemma 4.5
again). Since ε → 0 as t → ∞, their norms are bounded independently of t for t large. This follows

since for ε1 ≤ ε, Pε1 = Pε1Pε = PεPε1 and ||Pε1 || ≤ 1. Both ||Pεe−sD
2 || and ||e(s−t)D2

Pε|| are bounded by

1, and both ||PεD|| and ||DPε|| are bounded by
√
ε. Thus ||Pε∂ν(e−tD

2

)Pε|| is bounded by a multiple of∫ t

0

√
εds =

√
εt = t1+(δ/2). �
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Lemma 4.10. ||Pε∂ν(e−tD
2√
tD)Pε|| is bounded by a multiple of t(3/2)+δ.

Again note that we can make 3/2 + δ as close to 1/2 as we please.

Proof.

||Pε∂ν(e−tD
2√
tD)Pε|| ≤ ||Pε∂ν(e−tD

2

)Pε
√
tDPε||+ ||Pεe−tD

2

Pε∂ν(
√
tD)Pε||

≤ ||Pε∂ν(e−tD
2

)Pε||
√
t ||DPε||+

√
t ||Pεe−tD

2

Pε|| ||∂ν(D)Pε||
≤ C1(t1+(δ/2))

√
tε+ C2t

1/2 = C1t
(3/2)+δ + C2t

1/2 ≤ Ct(3/2)+δ.
�

Lemma 4.11. ||Pε∂ν(e−tD
2 I − e−tD2

tD2

√
tD)Pε|| is bounded by a multiple of t(3/2)+δ.

Proof.

Pε∂ν(e−tD
2 I − e−tD2

tD2

√
tD)Pε = Pε∂ν(e−tD

2√
tD)Pε

I − e−tD2

tD2
Pε + Pεe

−tD2√
tDPε∂ν(

I − e−tD2

tD2
)Pε,

so by the Lemma 4.10 and the fact that ||I − e
−tD2

tD2
|| ≤ 1, we need only consider the term

||Pεe−tD
2√
tDPε∂ν(

I − e−tD2

tD2
)Pε|| ≤ ||e−tD

2√
tDPε|| ||Pε∂ν(

I − e−tD2

tD2
)Pε|| ≤

C
√
tε ||Pε∂ν(

I − e−tD2

tD2
)Pε|| = Ct(1+δ)/2||Pε∂ν(

I − e−tD2

tD2
)Pε||.

Thus we need only show that ||Pε∂ν(
I − e−tD2

tD2
)Pε|| is bounded by a multiple of t1+(δ/2). Note that

d

dr
(
I − e−rD2

D2
) = e−rD

2

so
d

dr
(∂ν(

I − e−rD2

D2
)) = ∂ν(

d

dr
(
I − e−rD2

D2
)) = ∂ν(e−rD

2

) = −
∫ r

0

e−sD
2

∂ν(D2)e(s−r)D2

ds.

Thus

∂ν(
I − e−tD2

D2
) =

∫ t

0

d

dr
(∂ν(

I − e−rD2

D2
))dr = −

∫ t

0

∫ r

0

e−sD
2

∂ν(D2)e(s−r)D2

ds dr,

and

||Pε∂ν(
I − e−tD2

tD2
)Pε|| = ||

1

t
Pε∂ν(

I − e−tD2

D2
)Pε|| = ||

1

t

∫ t

0

∫ r

0

e−sD
2

Pε∂ν(D2)Pεe
(s−r)D2

ds dr|| ≤

1

t

∫ t

0

∫ r

0

||e−sD
2

|| ||Pε[∂ν(D)D +D∂ν(D)]Pε|| ||e(s−r)D2

||ds dr ≤ 1

t

∫ t

0

∫ r

0

C
√
ε ds dr = Ct1+(δ/2).

�

This finishes the proof of Proposition 4.3 �

To finish the proof of Theorem 4.1, first note that the estimates of Proposition 4.3 remain true with ∂ν
replaced by δ. This follows from the fact that for T ∈ AS(G,S ⊗ E) ⊂ ÃS, δT involves only T and ∂νT .
Similarly, δP0, δ(αP0), δPε, and δQε are bounded operators.

Next, recall that for T̃1, T̃2 ∈ ÃS, T̃1 ∗ T̃2 = T̃1ΘT̃2, so we must take the operator Θ =

(
1 0
0 θ

)
(which is in general an unbounded operator) into account. The calculation made at the beginning of
Section 3 shows that the operator θ = r∗(θF ), where θF is (at worst) a first order leafwise differen-
tial operator which is globally smooth on M . Thus it will behave in our estimates just like the op-

erator ∂ν(D). If H is a bounded leafwise smoothing operator on S ⊗ E, e.g. H = P0, Pε, or P̂t, it
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follows, just as in the proof of Lemma 4.5, that the composition θH is an A(M) equivariant bounded
leafwise smoothing operator on S ⊗ E ⊗ ∧ν∗s . In particular, θP0 and θPε are bounded operators, as is
θαP0 = (θP0)α. As ‖θPεPtPε‖ = ‖θPεPεPtPε‖ ≤ ‖θPε‖ ‖PεPtPε‖ and ‖PεPtPε‖is bounded by (iii) of
Proposition 4.3, ‖θPεPtPε‖ is bounded, that is, it also satisfies estimate (iii) of Proposition 4.3. Finally,

‖θQεPtQε‖ = ‖θP̂tQεe−tD
2/4Qε‖ ≤ ‖θP̂t‖ ‖Qεe−tD

2/4Qε‖, and ‖θP̂t‖ is bounded, so ‖θQεPtQε‖ satisfies es-

timate (i) of Proposition 4.3, since ‖Qεe−tD
2/4Qε‖ satisfies that estimate. In the argument below, wherever

Θ occurs non-trivially in an estimate (e.g. ΘPε =

(
1 0
0 θ

)(
Pε 0
0 0

)
= Pε is a trivial occurrance), it

occurs in the form Θδ(A) where A is one of αP0, Pε, PεPtPε, or QεPtQε. But,

Θδ(A) =

(
1 0
0 θ

)(
∂ν(A) ±A
A 0

)
=

(
∂ν(A) ±A
θA 0

)
,

so any norm estimate satisfied by ∂ν(A), where A = αP0, Pε, PεPtPε, or QεPtQε, is also satisfied by Θδ(A),
with possibly a different constant. In particular, Θδ(QεPtQε) and Θδ(PεPtPε) satisfy estimates (ii) and (iv)
respectively of Proposition 4.3.

Previously, we suppressed the occurrence of Θ in the products we considered. For the sake of clarity, we
will no longer do this, except for some trivial occurrences.

Since Pt = αP0 + PεPtPε +QεPtQε,

Φ ◦ tr(Pt(ΘδPt)
2k) = Φ ◦ tr(αP0(Θδ(αP0))2k) + Φ ◦ tr(αP0(ΘδPt)

2k − αP0(Θδ(αP0))2k)+

Φ ◦ tr(PεPtPε(ΘδPt)
2k) + Φ ◦ tr(QεPtQε(ΘδPt)

2k),

and we need to show that the limits as t goes to infinity of the last three terms on the right side are zero.
For any integer ` ≥ 0,

||D2`QεPtQε(ΘδPt)
2k|| = ||D2`Qεe

−tD2/4QεP̂t(ΘδPt)
2k|| ≤ ||D2`Qεe

−tD2/4Qε|| ||P̂t(ΘδPt)2k||.
Now

Θδ(Pt) = Θδ(αP0) + Θδ(PεPtPε) + Θδ(QεPtQε),

and ||P̂t|| is bounded independently of t. So ||P̂t(ΘδPt)2k|| is bounded by a multiple of

||(ΘδPt)2k|| = ||Θδ(αP0) + Θδ(PεPtPε) + Θδ(QεPtQε)||2k ≤ Ct2k( 1
2 +a)

where a > 0 is a number to be chosen later (as close to zero as we please). On the other hand, for t sufficiently
large (so that t1+δ > 4`), the maximum of z`e−tz/4 on the interval [ε,∞) occurs at ε, so

||D2`Qεe
−tD2/4Qε|| ≤ ε`e−tε/4 = tδ`e−(t(1+δ)/4)

so

||D2`QεPtQε(ΘδPt)
2k|| ≤ Ct2k( 1

2 +a)tδ`e−(t(1+δ)/4)

which goes to zero as t → ∞. The proof of Theorem 2.3.13 of [HL90] shows that this implies that
tr(QεPtQε(ΘδPt)

2k) is pointwise bounded on M and converges pointwise to zero as t → ∞. As Φ is
integration over a compact set, the bounded convergence theorem gives

4.12. lim
t→∞

Φ ◦ tr(QεPtQε(ΘδPt)
2k) = 0.

To finish the proof we need the following lemma whose proof is given in the Appendix.

Lemma 4.13. Suppose that H and K are G invariant A(M) equivariant bounded leafwise smoothing oper-
ators on S ⊗ E ⊗ ∧ν∗s , which are transversely smooth, then Tr([H,K]) = 0.

By assumption, P0, Pε and Qε satisfy the hypotheses of this Lemma. If H satisfies the hypotheses, so
does ∂νH. See the proof of Lemma 3.1. Since ∂ν is a derivation, any product of operators which satisfy
these hypotheses, also satisfies them. As noted above, any super-exponentially decaying operator, e.g. Pt,
satisfies these hypotheses. Since the coefficients of θ and all their derivatives are uniformly bounded, the
product of θ with any operator satisfying these hypotheses, also satisfies them. Finally, note that the trace
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property in the conclusion of the Lemma extends in the obvious way to Φ ◦ tr applied to terms which have
elements which satisfy the hypotheses of the Lemma.

Now consider Φ ◦ tr(PεPtPε(ΘδPt)
2k) = Φ ◦ tr(PεPtP

2
ε (ΘδPt)

2k) = Φ ◦ tr(Pε(ΘδPt)
2kPεPtPε). The proof

of Proposition 12 of [HL99] shows that

||Φ ◦ tr(Pε(ΘδPt)
2kPεPtPε)||T ≤ C||Pε(ΘδPt)2kPεPt|| ||Φ ◦ tr(Pε)||T .

Now Pε and PεPt are bounded and ||(ΘδPt)2k|| ≤ Ct2k( 1
2 +α), so ||Pε(ΘδPt)2kPεPt|| ≤ Ct2k( 1

2 +α) also. As
||Φ ◦ tr(Pε)||T is O(εβ), ||Φ ◦ tr(Pε(ΘδPt)

2kPεPtPε)||T is bounded by a multiple of

t2k( 1
2 +a)εβ = t2k( 1

2 +a)tδβ = t2k( 1
2 +a)+δβ .

Recall that −1 < δ < −k/β and therefore we can choose a > 0 so small that

2k(
1

2
+ a) + δβ < 0.

Then

4.14. lim
t→∞

Φ ◦ tr(PεPtPε(ΘδPt)
2k) = 0.

Finally, consider the individual terms of

Φ ◦ tr(αP0(ΘδPt)
2k − αP0(Θδ(αP0))2k) = Φ ◦ tr(P0[α(ΘδPt)

2k − α(Θδ(αP0))2k]).

Suppose the term P0A contains a Θδ(QεPtQε). Then

||P0A|| ≤ ||P0|| ||α|| ||Θδ(QεPtQε)||µ||Θδ(αP0)||β ||Θδ(PεPtPε)||γ

where µ+ β + γ = 2k and µ > 0. Since ||α|| is bounded, Proposition 4.3, gives that as t→∞,

||P0A|| ≤ Ce−µ(t1+δ/16)tγ( 1
2 +a).

For every positive integer `, D2`P0 = 0, so for every integer ` ≥ 0, ||D2`P0A|| → 0 as t→∞. Proceeding as
in the proof of Equation 4.12, we have

lim
t→∞

Φ ◦ tr(P0A) = 0.

Now suppose that we have one of the remaining terms. It must contain a term of the form Θδ(PεPtPε).
As P 2

ε = Pε and δ is a derivation, we may replace Θδ(PεPtPε) by

Θδ(P 2
ε PtPε) = Θδ(Pε)Θ(PεPtPε) + ΘPεΘδ(PεPtPε) = Θδ(Pε)(PεPtPε)Pε + Pεδ(PεPtPε).

Using the trace property of Φ ◦ tr, (any terms we need to interchange have elements which satisfy the
hypotheses of Lemma 4.13) we get two terms of the form Φ ◦ tr(APε). As above, the proof of Proposition 12
of [HL99] shows that

||Φ ◦ tr(APε)||T ≤ C||A|| ||Φ ◦ tr(Pε)||T .

Now A is a product of terms of the form α, P0,Θδ(αP0), Pε,Θδ(Pε), PεPtPε, and Θδ(PεPtPε). Each of these

is bounded in norm, except the last which has norm bounded by a multiple of t(
1
2 +a). As A can contain no

more that 2k terms of the form Θδ(PεPtPε), and Φ◦ tr(Pε) is O(εβ), we have that ||Φ◦ tr(APε)||T is bounded
by a multiple of

t2k( 1
2 +a)εβ = t2k( 1

2 +a)tδβ = t2k( 1
2 +a)+δβ .

By our choice of a, we have that the limit as t→∞ of these terms is zero, just as in the proof of Equation
4.14.

This completes the proof of Theorem 4.2.
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5. Bismut superconnections

As noted above, in [BH04] we proved that the Chern character cha composed with the topological and
analytic index maps of Connes-Skandalis [CS84] yield the same map. In particular, for any Dirac operator
D, the Chern character of the topological index of D, coincides with the Chern character of the analytic
index of D, i.e.

cha(Indt(D
+)) = cha(Inda(D+)).

In [HL99], it is proved that cha(Indt(D
+)) is equal to the Chern character of the index bundle of D

in another sense. We defined a “connection” ∇ on the index bundle [P0] of D, and defined the Chern

character of [P0] to be the Haefliger class of Tr(αe−(∇2/2iπ)). We then used a Bismut superconnection for

foliations, [He95], to show that cha(Indt(D)) contains the Haefliger form Tr(αe−(∇2/2iπ)), provided that
the assumptions of Theorem 4.1 are satisfied, but with the stronger assumption that the Novikov-Shubin
invariants of D are greater than three times the codimension of F . We will now show that whenever P0 is

smooth, cha([P0]) contains the Haefliger form Tr(αe−(∇2/2iπ)), so the two definitions of the Chern character
of [P0] agree.

We first recall the construction of Bismut superconnections for D. See [B86], [BV87], and also [He95]. Let
∇B be a Bott connection on ν∗s . If ω1, . . . , ωn is a local framing for ν∗s , then ∇Bωi =

∑n
j=1 ωj ⊗ θij where θij

are local one forms on G and the θij satisfy dωi =

n∑
i=1

ωj ∧ θij . That is, the composition

C∞(ν∗s )
∇B→ C∞(ν∗s ⊗ T ∗G)

∧→ C∞(ν∗s ∧ T ∗G)

is just ω → dω. ∇B induces a connection on ∧ν∗s also denoted ∇B so that

C∞(∧ν∗s )
∇B→ C∞(∧ν∗s ⊗ T ∗G)

∧→ C∞(∧ν∗s ∧ T ∗G)

is also just ω → dω.
Set V = TFs ⊕ νs ⊕ ν∗s = TG ⊕ ν∗s over G, and define a symmetric bilinear form g on V as follows. TFs

and νs ⊕ ν∗s are orthogonal and g|TFs is g0|TFs. The form g|νs ⊕ ν∗s is given by the canonical duality, i.e.
νs and ν∗s are totally isotropic and g(X,ω) = ω(X) for X ∈ νs, ω ∈ ν∗s . In [BV87], p. 455. it is shown that
there is a unique connection ∇, the Bismut connection, on V so that ∇ preserves ν∗s and g, ∇|ν∗s = ∇B and
for all X, Y ∈ C∞(TG), ∇XY −∇YX = [X,Y ]. Note that in general ∇ does not preserve TG but that for
X,Y ∈ C∞(TG), ∇XY −∇YX ∈ C∞(TG).

Consider the vector space V = Rp ⊕ Rn ⊕ Rn∗. Define a bilinear form Q on V as g was on V, i.e. Rp is
orthogonal to Rn ⊕Rn∗, Q|Rp is the usual inner product, and Q|Rn ⊕Rn∗ is given by the canonical duality.
Let C(V,Q) be the associated Clifford algebra and set S0 = ∧Rn∗ ⊗ S where S is the spinor space for Rp
with the usual inner product. Let ρ be the representation of the Clifford algebra of Rp in S. Then S0 is the
spinor space for C(V,Q) with the Clifford multiplication being defined by

ρ0(X)(ω ⊗ s) = (−1)degωω ⊗ ρ(X)s
ρ0(Y )(ω ⊗ s) = −2i(Y )ω ⊗ s
ρ0(φ)(ω ⊗ s) = φ ∧ ω ⊗ s

for X ∈ Rp, Y ∈ Rn, φ ∈ Rn∗, ω ∈ ∧Rn∗, s ∈ S. See [BV87], p. 456 and for general facts about spinors and
Clifford algebras, [LM89].

The above fact allows Berline and Vergne to give a beautiful and concise definition of Bismut supercon-
nections for fiber bundles which was extended to foliations in [He95]. Recall that S is the spinor bundle along
the leaves of Fs, and consider the vector bundle S0 = ∧ν∗s ⊗ S over G and the bundle of Clifford algebras
C(V) over G associated to V, g. Then S0,y, the fiber over y ∈ G of S0, is a module for the algebra C(V)y
and we denote the module action also by ρ0. The connection ∇ on V induces a connection ∇ on S0 ([BV87],
p. 456; or more generally [LM89], Ch. 4). Let E be a vector bundle with connection over G as in Section 2.
We shall also denote by ∇ the tensor product connection on S0 ⊗ E.
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A Bismut superconnection B for Fs and E is the Dirac type operator on C∞c (S0 ⊗ E) defined as follows.
Let X1, . . . , Xp be a local oriented orthonormal basis of TFs, and Xp+1, . . . , Xp+n a local basis of νs. Let
X∗1 , . . . , X

∗
p+n be the dual basis in TFs ⊕ ν∗s , i.e. X∗i = Xi for 1 ≤ i ≤ p, X∗i = ωi, for p + 1 ≤ i ≤ p + n

where ωi ∈ ν∗s and ωi(Xj) = δij . Set

B =

p+n∑
i=1

(
ρ0(X∗i )⊗ 1

)
∇Xi =

p∑
i=1

ρ(Xi)∇Xi +

p+n∑
i=p+1

ωi∇Xi .

B does not depend on the choice of X1, . . . , Xp+n.
Since S = S+ ⊕S− is Z2 graded and ∧ν∗s is Z graded, S0 = ∧ν∗s ⊗S has a total Z2 grading and we write

S0 = S+
0 ⊕S

−
0 . We then have an associated Z2 grading S0⊗E = (S+

0 ⊗E)⊕ (S−0 ⊗E). It is immediate from
the fact that ∇ preserves the grading that B is an odd operator, i.e. B maps C∞(S+

0 ⊗ E) to C∞(S−0 ⊗ E)
and vice-versa.

Finally, we may use the Z grading on ∧ν∗s to grade the operator B, i.e. B = B [0] + B [1] + · · · , where
B [i] : C∞(∧kν∗s ⊗ S ⊗ E)→ C∞(∧k+iν∗s ⊗ S ⊗ E).

It is straightforward to check that

Proposition 5.1. The term B [1] is a quasi-connection ∇ν for E ⊗ ∧ν∗sas defined in Section 3.

Recall, [HL99], that a connection on the index bundle of D is defined by

∇ = P0B [1]P0.

For this to be well defined, we must require that P0 is transversely smooth.

Theorem 5.2. Suppose that P0 is transversely smooth. Then cha([P0]) contains the Haefliger form Tr(αe−(∇2/2iπ))

Proof. First we calculate ∇2.

∇2 = P0B [1]P0B [1]P0

= P0[B [1], P0]B [1]P0 + P0(B [1])2P0

= P0[B [1], P0][B [1], P0] + P0[B [1], P0]P0B [1] + P0(B [1])2P0

= P0[B [1], P0][B [1], P0] + P0(B [1])2P0.

The last equality is a consequence of the relation P0[B [1], P0]P0 = 0 which is true since P 2
0 = P0 and since

[B [1], ·] is a derivation. This derivation is precisely ∂ν , so (B [1])2 = θ as in Section 3. Thus

∇2 = P0(∂νP0)2 + P0θP0,

and

∇2k = (P0(∂νP0)2 + P0θP0)k.

Note that

∂ν(P0) = ∂ν(P0P0) = ∂ν(P0)P0 + P0∂ν(P0),

so

∂ν(P0)P0 = ∂ν(P0)− P0∂ν(P0).

Using this twice, one can easily show that

P0∂ν(P0)∂ν(P0) = P0∂ν(P0)∂ν(P0)P0.

Then a simple induction argument shows that

(P0(∂νP0)2 + P0θP0)k = P0((∂νP0)2 + P0θP0)k

Thus,

Tr(α∇2k) = Tr(αP0((∂νP0)2 + P0θP0)k),

and comparing with Equation 3.12, we see that cha([P0]) contains the Haefliger form Tr(αe−(∇2/2iπ)). �
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6. Appendix

We now prove Lemma 4.13, namely the fact that if H and K are G invariant A(M) equivariant bounded
leafwise smoothing operators on S ⊗ E ⊗ ∧ν∗s , which are transversely smooth, then Tr([H,K]) = 0. To
accomplish this it suffices to construct forms in Tr([H,K]) which are arbitrarily C` close to 0, for any `. To
do so, we adapt the argument in the proof of Lemma 2.6 of [HL02].

Denote by Hx(y, z) and Kx(y, z) the Schwartz kernels of H and K, where x ∈ M and y, z ∈ L̃x. Denote
by k(x, y, z), the pointwise trace k(x, y, z) = tr(Hx(y, z)Kx(z, y) ±Kx(y, z)Hx(z, y)), where the ambiguity
of signs occurs because we are using graded comutators. Then,

Tr([H,K]) =

∫
F

∫
L̃x

k(x, x, z)dz dx,

where x ∈ L̃x is the class of the constant path at x.
Let UG =

{
(Ui, γijk, Uj)

}
be the cover of G corresponding to the good cover U of M . Here, Ui, Uj ∈ U

and γijk is a leafwise path from Ui to Uj . Let {φi} be a partition of unity subordinate to the cover U . For
each (Ui, γijk, Uj), define φijk : G → R by φijk(z) = φj(r(z)) for z ∈ (Ui, γijk, Uj), and φijk(z) = 0 otherwise.

Then for each x ∈ M , {φijk} restricted to L̃x is a partition of unity subordinate to the cover of L̃x by its
placques in the various (Ui, γijk, Uj).

On the transversal Ti ⊂ Ui, the class

∫
F

∫
L̃x

k(x, x, z)dz dx is represented by

∫
Px

φi(x)

∫
L̃x

k(x, x, z)dz dx,

where Px is the placque of x ∈ Ui. Because of the G invariance of k, this is equal to

∫
Px

φi(y)

∫
L̃x

k(x, y, z)dz dy,

where now x = Px ∩ Ti and y ∈ Px is thought of as the class of the path in Px from x to y. Now we have∫
Px

∫
L̃x

φi(y)k(x, y, z)dz dy =
∑
j,k

∫
Px

∫
L̃x

φi(y)φi,j,k(z)k(x, y, z)dz dy =

∑
j,k

∫
Px

∫
Pz

φi(y)φj(z)k(x, y, z)dz dy,

where z ∈ Pz ⊂ Uj is thought of as the element of (Ui, γijk, Uj) starting at x and ending at z. Note that
with this interpretation, φi,j,k(z) becomes φj(z). For any chart of the form (Ui, x, Ui), where x ∈ Ui,∫

Px

∫
Px

φi(y)φi(z)k(x, y, z)dz dy = 0

by symmetry. For the chart (Ui, γijk, Uj), consider the form Iijk =

∫
Px

∫
Pz

φi(y)φj(z)k(x, y, z)dz dy on

Ti. On Tj ⊂ Uj there is the corresponding form Ijik =

∫
Pz

∫
Px

φj(z)φi(y)k(x, z, y)dy dz for the chart

(Uj , γ
−1
ijk, Ui). The crucial point is that because we are using graded commutators, Iijk = h∗γijk(−Ijik). Thus

if we move the term Ijik to Ti using the holonomy map hγijk associated to γijk, it will cancel Iijk and we

obtain a new form in

∫
F

∫
L̃

k, which at x ∈ Ti is given by∫
Px

∫
L̃x

φi(y)(1− φijk(z))k(x, y, z)dz dy,

and for x ∈ Tj is given by ∫
Pz

∫
L̃x

φj(z)(1− φjik(y))k(x, z, y)dy dz.

Doing this procedure over all γijk of length less than or equal to R (of which there are only a finite number),

we obtain the form in

∫
F

∫
L̃

k which on Ti it is given by
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6.1.

∫
Px

φi(y)

∫
L̃x

(1− φR(z))k(x, y, z)dz dy,

where φR(z) =
∑
j,k φijk(z), and the sum is over all j and k such that the length of γijk ≤ R.

We claim that this form and all its derivatives converge to zero as R→∞.

Lemma 6.2.

∫
L̃x

|k(x, y, z)| dz is bounded independently of x and y.

Proof. We will use the notation of the proof of Theorem 2.3.9 of [HL90], and will use subscripts to distinguish

the different inner products we use (e.g. < , >z on (S ⊗ E)z, < , >x on sections of S ⊗ E | L̃x).
Let X ∈ ∧dTM with ||X|| = 1 and recall that iXH[d],x(y, z) ∈ Hom((S ⊗ E)z, (S ⊗ E)y). Let v1, . . . , v`

and w1, . . . , w` be orthonormal bases of (S ⊗E)y and (S ⊗E)z. Recall the Dirac delta sections δ
vj
y , and δwiz

of S ⊗ E | L̃x, and set

ψ
X,vj
[d],y (z) =

∑
i

< iXH[d],xδ
wi
z , δvjy >x wi.

Then ψ
X,vj
[d],y (z) is independent of the choice of basis wi and so defines a section ψ

X,vj
[d],y of S ⊗E | L̃x. Standard

techniques show that ψ
X,vj
[d],y ∈ C

∞(L̃x;S ⊗ E). For ξ ∈ L2(L̃x;S ⊗ E), it is easy to see that

iXH[d],xξ(y) =
∑
j

(∫
L̃x

< ψ
X,vj
[d],y (z), ξ(z) >z dz

)
vj ,

that is
iXH[d],x(y, z) =

∑
j

ψ
X,vj
[d],y (z)⊗ vj .

We claim that ψ
X,vj
[d],y (z) ∈ L2(L̃x;S ⊗ E), and that its L2 norm is uniformly bounded over all x, y, vj , and

X. This is true provided there is a constant C, independent of x, y, vj , and X, so that for all sections ξ of

L2(L̃x;S ⊗ E),

| < ψ
X,vj
[d],y , ξ >x | ≤ C ||ξ||0.

Since the L̃x have uniformly bounded geometry, there is a k > 0 so that the Sobolev norms ||δvjy ||−k are
bounded independently of x, y and vj . Finally, since H is transversely smooth and ||X|| = 1, the Sobolev

norm ||iXH[d],x||0,k is bounded, independently of x and X (by ||H||0,k). Now for any ξ ∈ L2(L̃x;S ⊗E), we
have

| < ψ
X,vj
[d],y , ξ >x | = |

∫
L̃x

< ψ
X,vj
[d],y (z), ξ(z) >z dz| = | <

∑
i

(∫
L̃x

< ψX,vi[d],y (z), ξ(z) >z dz
)
vi, vj >y | =

| < iXH[d],xξ(y), vj >y | = | < iXH[d],xξ, δ
vj
y >x | ≤ ||iXH[d],xξ||k ||δvjy ||−k ≤

||iXH[d],x||0,k||ξ||0 ||δvjy ||−k ≤ C ||ξ||0,
and the constant C is independent of x, y, vj , and X.

Similarly, if Y ∈ ∧eTM with ||Y || = 1, we have

(iYK[e],x)∗(y, z) =
∑
j

φ
Y,vj
[e],y(z)⊗ wj ,

where (iYK[e],x)∗ is the adjoint of iYK[e],x, and so is a bounded smoothing operator with bound independent

of x and Y . As above, the φ
Y,vj
[e],y(z) ∈ L2(L̃x;S ⊗ E), and have L2 norms uniformly bounded over all x, y,

vj , and Y . A standard argument gives that

tr(iXH[d],x(y, z)iYK[e],x(z, y)) =
∑
j

< ψ
X,vj
[d],y (z), φ

Y,vj
[e],y(z) >z,

so ∫
L̃x

tr(iXH[d],x(y, z)iYK[e],x(z, y)) dz =
∑
j

< ψ
X,vj
[d],y , φ

Y,vj
[e],y >x .
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As ψ
X,vj
[d],y and φ

Y,vj
[e],y ∈ L

2(L̃x;S ⊗E), with norm bounds independent of x, y, vj , X, and Y , the function z →

tr(iXH[d],x(y, z)iYK[e],x(z, y)) ∈ L1(L̃x), and

∫
L̃x

| tr(iXH[d],x(y, z)iYK[e],x(z, y))| dz has bound independent

of x, y, X and Y . The same holds for

∫
L̃x

| tr(iYK[e],x(y, z)iXH[d],x(z, y))| dz, so

∫
L̃x

|k(x, y, z)| dz, which is

bounded by a finite sum of terms with these forms, is bounded independently of x and y. �

As ∫
L̃x

(1− φR(z))|k(x, y, z)|dz ≤
∫
L̃x

|k(x, y, z)| dz,∫
L̃x

(1 − φR(z))|k(x, y, z)|dz is also uniformly bounded. In addition, it is monotonically decreasing as a

function of R. An application of the Dominated Convergence Theorem gives

lim
R→∞

∫
Px

φi(y)

∫
L̃x

(1− φR(z))|k(x, y, z)|dz dy =

∫
Px

φi(y)
[

lim
R→∞

∫
L̃x

(1− φR(z))|k(x, y, z)|dz
]
dy.

Now, 0 ≤ 1− φR(z) ≤ 1, and lim
R→∞

1− φR(z) = 0. It follows immediately that

lim
R→∞

∫
L̃x

(1− φR(z))|k(x, y, z)|dz = 0,

and the convergence in monotonic in R. So

lim
R→∞

∫
Px

φi(y)

∫
L̃x

(1− φR(z))|k(x, y, z)|dz dy = 0,

and the convergence in monotonic in R. Thus given any ε > 0, and x ∈ T , there is an R(x) so that if
R > R(x) ∫

Px

φi(y)

∫
L̃x

(1− φR(z))|k(x, y, z)|dz dy < ε/2.

For each R, the function

∫
Px

φi(y)

∫
L̃x

(1−φR(z))k(x, y, z)dz dy is in A∗c(T ), since

∫
Px

φi(y)

∫
L̃x

k(x, y, z)dz dy

and all the terms Iijk are in A∗c(T ). Thus

∫
Px

φi(y)

∫
L̃x

(1− φR(z))|k(x, y, z)|dz dy is at least continuous, so

given ε > 0, and x ∈ T , there is δ(x) so that if w ∈ T and |x − w| < δ(x), then for all R > R(x) (due to
monotonicity), ∫

Pw

φi(y)

∫
L̃w

(1− φR(z))|k(w, y, z)|dz dy < ε.

We may assume that the closure T of T in M is an embedded compact transverse submanifold, that is a
smooth compact submanifold with boundary. The open sets U(x) = {w | |x− w| < δ(x)} form a cover of T .
Let U(x1), ..., U(xk) be a finite subcover, and set R = max(R(x1), ..., R(xk)). Then for all x ∈ T ,

|
∫
Px

φi(y)

∫
L̃x

(1− φR(z))k(x, y, z)dz dy| ≤
∫
Px

φi(y)

∫
L̃x

(1− φR(z))|k(x, y, z)|dz dy < ε.

Thus

∫
Px

φi(y)

∫
L̃x

(1− φR(z))k(x, y, z)dz dy, which is in Tr([H,K]), is arbitrarily C0 close to 0.

To treat the derivatives, we need the following lemma.

Lemma 6.3. Suppose that H is an A(M) equivariant bounded leafwise smoothing operator on S ⊗E⊗∧ν∗s ,

which is transversely smooth, and that its Schwartz kernel is zero on L̃x × L̃x, if φi(x) = 0. Then on Ti∫
Px

tr((∂νH)x(y, y)) dy = dTi

∫
Px

tr(Hx(y, y)) dy.
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Proof. The Schwartz kernel of H, also denoted H, is a section of a bundle over the double graph G[2]. Denote

by Ũi = {(α, β) ∈ G[2] |α, β ∈ (Ui, x, Ui)}, and set W = {(a, a) | a ∈ suppφi}. Then W is a compact subset

of the open set Ũi. As ∂ν is a local operator and we are integrating over W , we may assume that supp(H),

the support of the Schwartz kernel of H, is a subset of Ũi.
Note that the lemma is a coordinate free statement, so we are free to choose coordinates as we please,

and we need only confirm the statement at a single point x ∈ Ti. We use the exponential map exp : ν →M
restricted to Px, to construct coordinates on a neighborhood of Px in Ui, which we may assume is all of Ui.
Then Ui ' Rp × Rq has coordinates (y, z), with Px = Rp × {0}. We may identify Ti with (0, 0)× Rq. That
is, we use the coordinates induced on Ti, thought of simply as a manifold in its own right, by the natural
diffeomorphism Ti ' (0, 0)×Rq. Thus we have Ui ' Rp×Ti, and the fact that we have used the exponential
map to define the coordinates means that ν(y,0) = T (Ti)(y,0), i.e. at (y, 0), ν is spanned by ∂/∂z1, . . . , ∂/∂zq.

The set (Ui, x, Ui) ' Rp × Rq × Rp has coordinates (y, z, w). On Ui, with the coordinates (w, z), where
w = y, ν is spanned by vector fields of the form ∂/∂zi +

∑
j aij∂/∂wj , and aij |Px ≡ 0. On (Ui, x, Ui),

∇ν = dy + dz +
∑
ij aijdzi ⊗ ∂/∂wj + A where A ∈ C∞((Ui, x, Ui); Hom(S ⊗ E))⊗̂C∞(Ui)A1(Ui). See the

proof of Lemma 3.1. Thus∫
Px

tr(∂νH) dy =

∫
Px

tr([dy + dz +
∑
ij

aijdzi ⊗ ∂/∂wj +A,H] dy =

∫
Px

tr(dyH) dy +

∫
Px

tr(dzH) dy +

∫
Px

tr([A,H]) dy,

since aij |Px ≡ 0. The term

∫
Px

tr(dyH) dy is obviously zero. A direct computation, using the fact that

supp(H) ⊂ Ũi, shows that

∫
Px

tr([A,H]) dy = 0. Finally, note that in these coordinates, dTi is dz. Thus∫
Px

tr(dzH) dy =

∫
Px

dz tr(H) dy = dTi

∫
Px

tr(H) dy.

�

The form in 6.1 may be written as∫
Px

(∫
L̃x

tr(Mφi ◦H ◦M1−φR ◦K ±Mφi ◦K ◦M1−φR ◦H)
)
dy

where the integrand satisfies the hypothesis of Lemma 6.3. To simplify the notation, we may assume that
both H and K are degree zero A(M) equivariant operators. We want to show that the derivatives of the
coefficients of this differential form on Ti go to zero as R→∞. It is sufficient to estimate the norm of

i∂/∂yj`dTi · · · i∂/∂yj1dTi
∫
Px

(∫
L̃x

tr(Mφi ◦H ◦M1−φR ◦K ±Mφi ◦K ◦M1−φR ◦H)
)
dy,

where 1 ≤ j1 ≤ · · · ≤ j` ≤ q. Let Y be the vector field ∂/∂yr on Ti, and denote also by Y its extension to
Ui. Then

iY dTi

∫
Px

(∫
L̃x

tr(Mφi ◦H ◦M1−φR ◦K ±Mφi ◦K ◦M1−φR ◦H)
)
dy =∫

Px

(∫
L̃x

tr(∂Yν (Mφi ◦H ◦M1−φR ◦K ±Mφi ◦K ◦M1−φR ◦H))
)
dy =∫

Px

(∫
L̃x

tr(M(Y φi) ◦H ◦M1−φR ◦K ±M(Y φi) ◦K ◦M1−φR ◦H)
)
dy +∫

Px

(∫
L̃x

tr(Mφi ◦ ∂Yν H ◦M1−φR ◦K ±Mφi ◦K ◦M1−φR ◦ ∂Yν H)
)
dy −∫

Px

(∫
L̃x

tr(Mφi ◦H ◦M(iY pνdφR) ◦K ±Mφi ◦K ◦M(iY pνdφR) ◦H)
)
dy +



32 M-T. BENAMEUR AND J. L. HEITSCH JANUARY 14, 2023∫
Px

(∫
L̃x

tr(Mφi ◦H ◦M1−φR ◦ ∂Yν K ±Mφi ◦ ∂Yν K ◦M1−φR ◦H)
)
dy.

The first, second and fourth integrands above all have the same properties as the integrand in 6.1. So the
same proof shows that as R → ∞, these terms converge uniformly on Ti to zero. To obtain monotone
estimates for the third integrand, first note that since φR is constructed out of the partition of unity on the
compact manifold M , there is a constant C1 > 0 so that the derivatives of φR have norm bounded by C1.
Because M is compact, there is a constant C2 so that supp(iY dνφR) ∩ supp(φR−C2

) = ∅. Then the third

integral is majorized by the integral

∫
Px

φi(y)

∫
L̃x

C1(1−φR−C2
(z))|k(x, y, z)| dz dy. This integrand also has

the same properties as the integrand in 6.1. An obvious induction argument finishes the proof.
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